JP3755452B2 - Method for manufacturing raw materials for sintering - Google Patents

Method for manufacturing raw materials for sintering Download PDF

Info

Publication number
JP3755452B2
JP3755452B2 JP2001347169A JP2001347169A JP3755452B2 JP 3755452 B2 JP3755452 B2 JP 3755452B2 JP 2001347169 A JP2001347169 A JP 2001347169A JP 2001347169 A JP2001347169 A JP 2001347169A JP 3755452 B2 JP3755452 B2 JP 3755452B2
Authority
JP
Japan
Prior art keywords
raw material
powder raw
solid fuel
sintering
drum mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001347169A
Other languages
Japanese (ja)
Other versions
JP2003138319A (en
Inventor
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001347169A priority Critical patent/JP3755452B2/en
Publication of JP2003138319A publication Critical patent/JP2003138319A/en
Application granted granted Critical
Publication of JP3755452B2 publication Critical patent/JP3755452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造する際に用いる焼結用原料の製造方法に関するものである。
【0002】
【従来の技術】
高炉用原料として用いられる焼結鉱は、一般的に次のような焼結原料の処理方法を経て製造されている。図1に示すように、まず、粒径が10mm以下の鉄鉱石1、および珪石、蛇紋岩または、ニッケルスラグなどからなるSiO2 含有原料2、石灰石などのCaOを含有する石灰石系粉原料3、および粉コークスまたは無煙炭などの熱源となる固体燃料系粉原料4をドラムミキサー5を用いて、これに適当量の水分を添加して混合、造粒して擬似粒子と呼ばれる造粒物を形成する。この造粒物からなる配合原料は、ドワイトロイド式焼結機のパレット上に適当な厚さ例えば500〜700mmになるように装入して表層部の固体燃料に着火し、着火後は下方に向けて空気を吸引しながら固体燃料を燃焼させ、その燃焼熱によって配合した焼結原料を焼結させて焼結ケーキとする。この焼結ケーキは破砕、整粒され、一定の粒径以上の焼結鉱を得る。一方、それ未満の粒径を有するものは返鉱となり、焼結原料として再利用される。
【0003】
このように製造された成品焼結鉱の被還元性は、従来から指摘されているように、とくに高炉の操業を大きく左右する因子となる。通常、焼結鉱の被還元性はJISM8713で定義されており、ここでは、焼結鉱の被還元性をJIS−RIと記す。
図2に示すように、焼結鉱の被還元性(JIS−RI)と高炉でのガス利用率(ηco)との間には正の相関があり、また、図3に示すように、高炉でのガス利用率(ηco)と燃料比との間には負の相関がある。このため、焼結鉱の被還元性(JIS−RI)は、高炉でのガス利用率(ηco)を介して燃料比と良好な負の相関があり、焼結鉱の被還元性を向上させると、高炉での燃料比は低下する。
【0004】
なお、ガス利用率(ηco)と燃料比は、下記のとおり定義される。
ガス利用率(ηco)= CO2(%)/〔CO(%)+ CO2 (%)〕
ここで、CO2(%) 、CO(%)は、いずれも高炉の炉頂ガス中の体積%である。
燃料比=(石炭+コークス)の使用量(kg)/銑鉄(1ton )
さらに、製造された成品焼結鉱の冷間強度も高炉での通気性を確保する上での重要な因子であり、各々の高炉では、冷間強度の下限基準を設けて、操業を行っている。したがって、高炉にとって望ましい焼結鉱とは、被還元性に優れ、冷間強度が高いものであると言える。
表1に焼結鉱を形成する主要鉱物組織であるカルシウムフェライト(CF):nCaO・Fe2 3 、ヘマタイト(He):Fe2 3 、カルシウムシリケート(CS):CaO・SiO2 、マグネタイト(Mg):Fe3 4 の4つの被還元性、引張強度を表1に示す。表1に示すように、被還元性の高いものはヘマタイト(He)であり、引張強度の高いものはカルシウムフェライト(CF)である。
【0005】
【表1】

Figure 0003755452
【0006】
本発明が目的とする望ましい焼結鉱組織とは、図4に示すように、塊表面に強度の高いカルシウムフェライト(CF)を、塊内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成させたものであり、被還元性や強度が低いカルシウムシリケート(CS)は可能な限り生成させないようにすべきである。
しかし、従来は、前述したように鉄鉱石、SiO2 含有原料、石灰石系粉原料、固体燃料系粉原料を同時に混合・造粒しているため、図5に示すように、擬似粒子構造では粗粒の核鉱石の周囲に粉鉱石、石灰、コークスが混在しており、焼結により得られた焼結鉱構造ではヘマタイト(He)、カルシウムフェライト(CF)、カルシウムシリケート(CS)、マグネタイト(Mg)の4つの鉱物組織が混在することになる。
【0007】
そこで、これまでにカルシウムフェライト(CF)とヘマタイト(He)を多く生成する方法が試みられてきた。例えば、カルシウムシリケート(CS)は高温で焼結した場合に多く生成することから、特開昭63−149331号公報では粉状の鉄鉱石にバインダや石灰石を加えて造粒した後に、熱源である粉コークスを表面に被覆することでコークスの燃焼性を改善し、低温で焼結させて被還元性を向上する技術が提案されている。
【0008】
しかしながら、前記特開昭63−149331号公報に提案された従来方法では、CaOと鉄系原料中のSiO2 やSiO2 系原料が近接しているため、どうしてもカルシウムシリケート(CS)が多く生成してしまい、カルシウムフェライト(CF)とヘマタイト(He)を主体とする構造には必ずしもならない場合も多かった。
【0009】
特開平11-241124 号公報には、 鉄鉱石粉、返鉱、生石灰と石灰石の一部または全量およびSiO2 源原料の一部または全量を1次ミキサーで混合造粒した後、 別の系統から切り出した粉コークスおよび造滓源を前記混合造粒した原料に添加し、2次ミキサーで造粒して造粒粒子の表層部に粉コークスおよび造滓源の層を形成させた原料を焼結することを特徴とする低SiO2 焼結鉱の製造方法が開示されている。
【0010】
しかしながら特開平11-241124 号公報に開示された技術では、造粒粒子(すなわち本発明の擬似粒子に相当)の外装部に低SiO2 を含有した原料が入る可能性があり、表1に示すように、焼結鉱の構成鉱物の中で、最も引張強度が低いカルシウムシリケート(CS)が形成されてしまい、冷間強度であるシャッター強度もしくはタンブラー強度が低下する。さらに造粒粒子内に一部石灰石を含有した原料が入ってしまうため、焼結鉱の内部には高被還元性のヘマタイト(He)だけでなく、ヘマタイト(He)よりは被還元性が劣るカルシウムフェライト(CF)や著しく被還元性が悪いカルシウムシリケート(CS)を形成してしまい、飛躍的な被還元性の向上効果が得られないという問題がある。
【0011】
また特開昭61-163220 号公報には、粉コークスを配合せずペレットフィードを混合した焼結原料を1次ミキサーで調湿混合し、 次いでこの調湿造粒物に粉コークスを添加して2次ミキサーで転動造粒することを特徴とする焼結原料の事前処理方法が開示されている。
しかしながら特開昭61-163220 号公報に開示された技術では、擬似粒子内に石灰石を含有した原料が入ってしまうため、焼結鉱の内部には高被還元性のヘマタイト(He)だけでなく、ヘマタイト(He)よりは被還元性が劣るカルシウムフェライト(CF)や著しく被還元性が悪いカルシウムシリケート(CS)を形成してしまい、飛躍的な被還元性の向上効果が得られないだけでなく、冷間強度を確保しなければならないはずの焼結鉱の外側において、焼結鉱の構成鉱物の中で、最も引張強度が低いカルシウムシリケート(CS)が形成されてしまい、冷間強度であるシャッター強度もしくはタンブラー強度が低下するという問題がある。
【0012】
なお、特開昭61-163220 号公報,特開平11-241124 号公報に開示されているように、1次ミキサー,2次ミキサーを保有して混合・造粒を行なう焼結原料の予備処理方法あるいは焼結原料の製造方法では、基本的には1次ミキサーで焼結原料の混合を主体とする混合・造粒を行ない、 その後、 2次ミキサーで造粒が行なわれる。このように1次ミキサーと2次ミキサーを有する(合計2台のミキサーを有する)場合、一般的には、 焼結原料の1次ミキサーにおける混合・造粒時間は 120秒程度を確保しており、2次ミキサーにおける造粒時間は 180秒程度を確保することが通常行なわれる。
【0013】
【発明が解決しようとする課題】
本発明は、前記従来の問題点を解決するため、焼結鉱を製造するプロセスの事前処理として膨大な設備を必要とせず、鉄鉱石とSiO2 含有原料を、石灰石系原料と固体燃料系原料から分離して段階的に擬似粒子にすることにより、塊表面には強度の高いカルシウムフエライト(CF)を、一方、塊内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成させた構造の焼結鉱を製造し、冷間強度を向上させ、かつ、焼結鉱の被還元性を改善することができる焼結用原料の製造方法を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
前記目的を達成するための請求項1記載の本発明は、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から石灰石系粉原料および固体燃料系粉原料を除く焼結原料を装入して造粒すると共に該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜90秒範囲となる下流側途中に設定した領域で石灰石系粉原料および固体燃料系粉原料を添加し、排出口に至る間に石灰石系粉原料と固体燃料系粉原料を焼結原料の外装部に付着・形成することを特徴とする焼結用原料の製造方法である。
【0015】
請求項2記載の本発明は、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から石灰石系粉原料および固体燃料系粉原料を除く焼結原料を装入して造粒すると共に該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜90秒範囲となる下流側途中に設定した領域において、石灰石系粉原料を添加した後、固体燃料系粉原料を添加し、排出口に至る間に焼結原料の外装部に、石灰石系粉原料、固体燃料系粉原料の順で、付着・形成することを特徴とする焼結用原料の製造方法である。
【0016】
請求項3記載の本発明は、前記ドラムミキサーを複数に分割したドラムミキサーとして、最終のドラムミキサーを装入口から排出口に到達するまでの滞留時間が10〜90秒範囲に設定されたドラムミキサー長さとしたことを特徴とする請求項1または2記載の焼結用原料の製造方法である。
【0017】
【発明の実施の形態】
以下に、本発明を完成するに至った経緯および本発明の具体的な実施の概要を図面に基づき詳細に説明する。本発明者が種々の検討を重ねた結果、SiO2 を多く含有する鉄鉱石やSiO2 含有原料を、石灰石系粉原料と固体燃料系粉原料から分離して造粒すること、及び石灰石系粉原料と固体燃料系粉原料を造粒の後半の過程で添加してさらに造粒することで、石灰石系粉原料と固体燃料系粉原料を焼結原料の外装部に付着・形成させCaOとSiO2 の反応を遅らせ、被還元性が悪く、冷間強度も低いカルシウムシリケート(CS)の生成を抑制する。これにより焼結鉱表面に強度の高いカルシウムフェライト(CF)を、焼結鉱内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成させた焼結鉱が形成されることを見出した。
【0018】
しかし、石灰石系粉原料と固体燃料系粉原料を焼結原料の外装部に付着・形成させるために添加する時間の設定、すなわち、造粒されつつある焼結原料に対し石灰石系粉原料と固体燃料系粉原料を添加した後、該焼結原料がドラムミキサーの排出口に到達するまでの添加後の滞留時間、所謂石灰石系粉原料と固体燃料系粉原料を焼結原料の外装部に付着・形成させるための添加後の造粒時間(以降、単に外装時間と呼ぶ)の設定によって、大きく効果が異なることを見出した。
【0019】
そして、図6に示すように、石灰石系粉原料および固体燃料系粉原料を除く焼結原料の造粒時間を一定として、石灰石系粉原料および固体燃料系粉原料の外装時間を60秒から360秒で変化させた実験を実施した。
その結果、図7のように、外装時間が長くなるとともに、被還元性の向上に有効な 0.5mm以下の微細気孔が減少し、被還元性が低下することが分かり、石灰外装時間は90秒以下が望ましいことが分かった。また、別の実験より、外装時間が10秒を下回ると、外装時間不足により、添加した石灰石系粉原料および固体燃料系粉原料が原料中の一部分に偏析を起こし、均一な焼結状態が得られず、本発明の効果が発揮されないこととなった。
【0020】
ここで、外装時間が10秒から90秒と言う外装領域は、ドラムミキサー内での焼結原料の転動回数でいえば、2回転から36回転に相当する。
図8に電子線マイクロアナライザー(以下単にEPMAと呼ぶ)による焼結原料の擬似粒子中のCaとFeの分布状況を調査した結果を示す。これより、適切な外装時間(本例は60秒)をとると、Caの分布が外輪状となり、外装化が達成されていることが確認できるが、一方、外装時間を長くすると、ドラムミキサー内で粒子が壊れ、石灰石が擬似粒子内に取り込まれる結果、Caは全体に分布して、従来法と変化が無くなっていることが確認された。
【0021】
つまり、ドラムミキサー内では、造粒だけでなく、擬似粒子の破壊も同時に進行していることから、外装時間を長くとりすぎると外装のために添加した石灰石系粉原料および固体燃料系粉原料が擬似粒子の破壊により内部に取り込まれて、内外装ともに存在することになり、塊表面には強度の高いカルシウムフエライト(CF)を、一方、塊内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成させた構造の焼結鉱を得ることができないことが確認でき、外装時間の適正な選定が重要であることが判った。
【0022】
また、前記したように、外装時間を短くしすぎては、添加した石灰石系粉原料および固体燃料系粉原料が焼結原料の中で、偏析してしまい、焼結機上でのムラ焼けの原因となる。そこで、本発明者が調査した結果、偏析しないためには、外装時間は10秒以上は必要と分かった。すなわち、外装時間は厳密な条件下にあり、単に後半部分においての添加では内装化されてしまう欠点があった。
【0023】
本発明での前記外装時間の条件を満たすことにより、石灰石系粉原料および固体燃料系粉原料が内部に取り込まれることなく、初めて外装化されることになり、SiO2 含有原料を、石灰石系粉原料から分離した、石灰石のない状態で焼結用原料を製造することが達成されるのである。これにより、CaOとSiO2 の反応を遅らせ、被還元性が悪く、冷間強度も低いカルシウムシリケート(CS)の生成を抑制することができる。
【0024】
そして、本発明では、外装化された石灰石系粉原料と鉄鉱石の界面でカルシウムフエライト(CF)系融液を生成させ、鉄鉱石の周囲を覆うことにより、十分な冷間強度を発揮させるのである。この焼結用原料を用いて焼結することにより、塊表面に強度の高いカルシウムフェライト(CF)を、塊内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成させた焼結鉱が形成されることになる。
【0025】
本発明になる造粒フロー例(方法A)を図9および図10に示す。
図9に示すように、ドラムミキサーの装入側からは、石灰石系粉原料3および固体燃料系粉原料4である石灰石、粉コークスを除く焼結原料が装入され、また、外装時間を制御するため、前記石灰石、粉コークスは、ドラムミキサーの排出側から添加される。図10はその具体例であって、焼結用原料が排出口に到達するまでの滞留時間が10〜90秒範囲となるドラムミキサー5の下流側途中に設定した外装領域に合わせて、下流側排出口からドラムミキサー5内の長手方向に進退自在に配置したベルトコンベヤ6の先端位置を、例えば10秒〜90秒範囲の中の60秒に相当する外装領域の中間位置に調整する。
【0026】
そして、ベルトコンベヤ6を介して石灰石系粉原料3(例えば粉石灰石)および固体燃料系粉原料4(例えば粉コークス)を所定領域(ここでは外装領域の中間位置)に添加し、ドラムミキサー5内で外装領域に達するまでに造粒により形成された擬似粒子の周囲に、石灰石系粉原料3および固体燃料系粉原料4を付着・形成させた外装部分を有する擬似粒子を造粒する。石灰石系粉原料3および固体燃料系粉原料4は、平均粒径が 1.5mm以下、好ましくは 1.0mm以下とすることにより外装部分に付着し易くなり、その外表面を覆うことができる。この方法Aは、単一のドラムミキサーを使用するケースである。
【0027】
また、図11に、別の本発明の望ましい擬似粒子構造を製造するための造粒フロー例(方法B)を示す。造粒フロー例(方法B)は、前記図10に示すドラムミキサー5を長手方向に複数に分割して使用する例で、本例では2分割タイプを示す。図11(A)では、石灰石系粉原料および固体燃料系粉原料を除く焼結原料を装入して造粒し擬似粒子を得る第一ドラムミキサー5Aと、第一ドラムミキサー5Aで造粒された擬似粒子の周囲に石灰石系粉原料3と固体燃料系粉原料4を付着させた外装部分を有する擬似粒子を造粒する第二ドラムミキサー5Bとを直列に配置する。第一ドラムミキサー5Aは、擬似粒子が造粒できる長さに設定され、また第二ドラムミキサー5Bは、擬似粒子の外周に石灰石系粉原料および熱源となる固体燃料系粉原料を外装・付着できる長さ、すなわち第二ドラムミキサー5Bの長さは、装入口から排出口に到達するまでの擬似粒子の滞留時間が、10〜90秒範囲になるような外装領域に相当する寸法に設定される。
【0028】
この場合において、第一ドラムミキサー5Aの装入口から鉄鉱石1とSiO2 含有原料2(珪石、蛇紋岩、Niスラグ等のSiO2 を比較的に多く含有する原料)とを装入する。第一ドラムミキサー5Aの装入口から排出口に到達するまでの過程で造粒と崩壊を繰り返しながら粗粒の鉄鉱石1を核として、その周囲に細粒の鉄鉱石やSiO2 含有原料2を付着させて擬似粒子が造粒される。その後、該擬似粒子が第二ドラムミキサー5Bの装入口の装入される時に、石灰石系粉原料3と熱源となる固体燃料系粉原料4を、第二ドラムミキサー5Bの装入口に供給する。これにより第二ドラムミキサー5B内で擬似粒子の周囲に石灰石系粉原料3および固体燃料系粉原料4を外装・付着させる造粒が行われる。
【0029】
図11(B)では、既存ドラムミキサーが2分割タイプである場合の本発明の適用例を示したもので、後半部分のドラムミキサー5Bの長さが、外装時間が90秒に相当する長さより長い場合は、図10の例と同じく後半部分のドラムミキサー5Bの排出側からベルトコンベア6によって外装領域に石灰石系粉原料と熱源となる固体燃料系粉原料を供給、添加する。
【0030】
また、図12は、滞留時間が10〜90秒範囲となる下流側途中に設定した外装領域において、石灰石系粉原料を添加した後、固体燃料系粉原料を添加し、排出口に至る間に焼結原料の擬似粒子の外装部に、石灰石系粉原料、固体燃料系粉原料の順で、付着・形成することを特徴とする焼結用原料の製造方法(方法C)の具体例であって、図12(A)は、単一のドラムミキサー5の排出側から外装領域にベルトコンベア6A によって石灰石系粉原料、ベルトコンベア6Bによって熱源となる固体燃料系粉原料を供給、添加する形態を示す。さらに、図12(B)は、2分割タイプである場合の具体例を示すもので、10〜90秒範囲になるような外装領域に相当する寸法に設定されたドラムミキサー5Bの装入側で石灰石系粉原料を供給、添加し、ドラムミキサー5Bの排出側から外装領域にベルトコンベア6によって、熱源となる固体燃料系粉原料を供給、添加する形態を示す。外装領域に添加することにより、擬似粒子の外装部に、石灰石系粉原料に続いて固体燃料系粉原料が付着・形成されることになる。この添加形態では、石灰石系粉原料の添加後、10秒以上の時間差を有す位置で固体燃料系粉原料を添加することにより、擬似粒子の外装部に、石灰石系粉原料付着層が形成された後、固体燃料系粉原料が、さらに付着・形成されることになる。
【0031】
本発明の(方法A)または(方法B)によれば、粗粒の鉄鉱石1を核として、その周囲に細粒の鉄鉱石やSiO2 含有原料2が付着し、さらにその周囲に石灰石系粉原料3と熱源である固体燃料系粉原料4(コークス)を外装部に付着・形成させることができる。さらに本発明の(方法C)によれば、石灰石系粉原料3と熱源である固体燃料系粉原料4(コークス)を外装部に付着・形成させる際に、熱源となる固体燃料系粉原料を最外装部に付着・形成させることができる。
【0032】
これにより、本発明になる、ドラムミキサーの装入口から石灰石系粉原料および固体燃料系粉原料を除く焼結原料を装入して造粒すると共に該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜90秒範囲となる下流側途中に設定した領域で石灰石系粉原料および固体燃料系粉原料を添加し、排出口に至る間に石灰石系粉原料と固体燃料系粉原料を焼結原料の外装部に付着・形成することを特徴とする焼結用原料の製造方法では、焼結用原料の焼結過程でCaOとSiO2 の反応が遅れ、冷間強度の低いカルシウムシリケート(CS)の生成が抑制され、塊表面に強度の高いカルシウムフェライト(CF)を、塊内部に向かっては被還元性の高いヘマタイト(He)が選択的に生成され、微細気孔が多く、被還元性に優れ冷間強度の高い焼結鉱が安定して製造可能になるのである。
【0033】
また、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から石灰石系粉原料および固体燃料系粉原料を除く焼結原料を装入して造粒すると共に該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜90秒範囲となる下流側途中に設定した領域において、石灰石系粉原料を添加した後、固体燃料系粉原料を添加し、排出口に至る間に焼結原料の外装部に、石灰石系粉原料、固体燃料系粉原料の順で、付着・形成することを特徴とする焼結用原料の製造方法では、前記のごとく塊内部に向かっては被還元性の高いヘマタイト(He)が選択的に生成され、微細気孔が多く、被還元性に優れ冷間強度の高い焼結鉱が安定して製造可能となる他、熱源となる固体燃料系粉原料を最外装部に付着・形成させることができ、添加した固体燃料系粉原料の燃焼性の向上を図ることができる。
【0034】
【実施例】
表2に示す配合割合の焼結原料を用いて、本発明の造粒フロー(方法A)にて造粒した擬似粒子をドワイトロイド焼結機に輸送し、パレット上に装入した。比較のため鉄鉱石、SiO2 含有原料、石灰石系原料、コークス粉を同時に混合する処理方法にて造拉した擬似粒子をドワイトロイド焼結機に輸送し、パレット上に装入する操業を行った。その後、パレット上で焼結を行い、鉱物組成、比表面積、被還元性を測定した。本発明法および従来法での測定結果を表3に示した。
【0035】
【表2】
Figure 0003755452
【0036】
【表3】
Figure 0003755452
【0037】
表3に示すように、本発明の造粒フローを採用することで、鉱物組成では被還元性の高いヘマタイト(He)が増加し、被還元性が低いカルシウムシリケート(CS)が減少し、また、図13に示すように、ヘマタイト(He)に由来する微細気孔の増加によって、従来法に比べて被還元性は5%向上した。
また、本発明の造粒フロー(方法B)を用いて製造した擬似粒子を同様に、ドワイトロイド焼結機に供給し、焼結を行った結果も同様であった。
【0038】
また、本発明および従来法による擬似粒子の焼結体の断面をEPMAにより測定した結果を図14に示す。従来法ではCa(黒い部分)が全体に分布しているに対し、本発明法では外装部分に限ってみられ、本発明法による石灰石の外装化適用により、焼結鉱の塊内部にへマタイトが残り、その周囲にカルシウムフェライトが生成していることが確認でき、前記図4に示すような塊表面に強度の高いカルシウムフェライト(CF)を、塊内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成した焼結構造が得られたことが確認できた。
【0039】
また、本発明の造粒フロー(方法C)を用いて製造した擬似粒子を同様に、ドワイトロイド焼結機に供給し、焼結を行った結果もEPMAによる測定結果も同様であった。
図15に、被還元性(JIS−RI)、歩留、生産率を測定した結果を示す。本発明法では、従来法に比較して被還元性JIS−RIで約5%の増加、歩留で 0.5%、生産率で約18%の向上が得られた。
【0040】
【発明の効果】
本発明の焼結原料の製造方法によれば、擬似粒子がドラムミキサーの排出口に到達するまでの下流側途中に設定した外装領域で石灰石系粉原料および熱源となる固体燃料系粉原料を添加することにより、石灰石系粉原料および熱源となる固体燃料系粉原料を擬似粒子の外装部分に付着・形成した焼結用擬似粒子原料を製造することができる。このため、ドワイトロイド焼結機による焼結過程で、冷間強度の低いカルシウムシリケート(CS)の生成が抑制され、塊表面に強度の高いカルシウムフェライト(CF)を、塊内部に向かっては被還元性の高いヘマタイト(He)が選択的に生成され、微細気孔が多く、被還元性に優れ冷間強度の高い焼結鉱が生産性よく製造できる。
【図面の簡単な説明】
【図1】従来例に係る焼結原料の混合、造粒の系統図である。
【図2】高炉における焼結鉱の被還元性とガス利用率との関係図である。
【図3】高炉におけるガス利用率と燃料比との関係図である。
【図4】望ましい焼結鉱の組織構造を説明する図である。
【図5】従来例に係る擬似粒子構造と焼結鉱の組織構造を説明する図である。
【図6】石灰石系粉原料と固体燃料系粉原料の外装実験方法を説明する図である。
【図7】外装時間と焼結鉱の被還元性の関係を示す特性図である。
【図8】外装時間を変化させた場合の擬似粒子中のCaとFeの分布状況を示す図である。
【図9】本発明例の実施形態を概略的に説明する図である。
【図10】本発明における実施形態を示す図である。
【図11】本発明における別の実施形態を示す図である。
【図12】本発明における別の実施形態を示す図である。
【図13】本発明に係る焼結鉱中の気孔分布状況を従来例と比較して示す図である。
【図14】本発明に係る焼結鉱中に塊中心にヘマタイトが、周辺にカルシウムフェライトが生成している効果を示す図である。
【図15】本発明に係る被還元性、歩留、生産率を従来例と比較して示す図である。
【符号の説明】
1 鉄鉱石
2 SiO2 含有原料
3 石灰石系粉原料
4 固体燃料系粉原料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a raw material for sintering used in producing a blast furnace sintered ore using a downward suction dwytroid type sintering machine.
[0002]
[Prior art]
Sinter ore used as a blast furnace raw material is generally manufactured through the following processing method of the sintered raw material. As shown in FIG. 1, first, iron ore 1 having a particle size of 10 mm or less, and SiO composed of silica, serpentine, nickel slag, or the like. 2 A drum mixer 5 is used to add an appropriate amount of water to the containing raw material 2, the limestone powder raw material 3 containing CaO such as limestone, and the solid fuel powder raw material 4 serving as a heat source such as powdered coke or anthracite. Then, they are mixed and granulated to form a granulated product called pseudo particles. The blended raw material consisting of this granulated material is charged onto a pallet of a Dwytroid type sintering machine so as to have an appropriate thickness, for example, 500 to 700 mm, and ignites the solid fuel in the surface layer portion. The solid fuel is combusted while sucking air toward it, and the sintered raw material blended by the combustion heat is sintered to form a sintered cake. This sintered cake is crushed and sized to obtain a sintered ore having a certain particle size or more. On the other hand, one having a particle size smaller than that is returned to ore and reused as a sintering raw material.
[0003]
The reducibility of the product sintered ore produced in this way is a factor that greatly affects the operation of the blast furnace, as pointed out in the past. Usually, the reducibility of sintered ore is defined by JISM8713, and here, the reducibility of sintered ore is described as JIS-RI.
As shown in FIG. 2, the reducibility of sintered ore (JIS-RI) and the gas utilization rate in the blast furnace (η co )), And, as shown in FIG. 3, the gas utilization rate (η in the blast furnace) co ) And the fuel ratio has a negative correlation. For this reason, the reducibility (JIS-RI) of sintered ore is based on the gas utilization rate (η co The fuel ratio in the blast furnace decreases as the fuel ratio is improved and the reducibility of the sintered ore is improved.
[0004]
Gas utilization rate (η co ) And fuel ratio are defined as follows.
Gas utilization rate (η co ) = CO 2 (%) / [CO (%) + CO 2 (%)]
Where CO 2 Both (%) and CO (%) are volume% in the top gas of the blast furnace.
Fuel ratio = (coal + coke) consumption (kg) / pig iron (1 ton)
Furthermore, the cold strength of the manufactured product sintered ore is also an important factor in ensuring air permeability in the blast furnace, and each blast furnace is operated with a minimum standard for cold strength. Yes. Therefore, it can be said that the desired sintered ore for the blast furnace is excellent in reducibility and has high cold strength.
Table 1 shows calcium ferrite (CF), the main mineral structure that forms sintered ore: nCaO · Fe 2 O Three Hematite (He): Fe 2 O Three , Calcium silicate (CS): CaO · SiO 2 , Magnetite (Mg): Fe Three O Four Table 1 shows the four reducibility and tensile strengths. As shown in Table 1, hematite (He) has a high reducibility, and calcium ferrite (CF) has a high tensile strength.
[0005]
[Table 1]
Figure 0003755452
[0006]
As shown in FIG. 4, the desirable sintered ore structure targeted by the present invention is calcium ferrite (CF) having high strength on the surface of the lump, and hematite (He) having high reducibility toward the inside of the lump. Calcium silicate (CS) that is selectively produced and has low reducibility and strength should be avoided as much as possible.
However, conventionally, as described above, iron ore, SiO 2 Since the containing raw material, the limestone powder raw material, and the solid fuel powder raw material are mixed and granulated simultaneously, as shown in FIG. In the sintered ore structure obtained by sintering, four mineral structures of hematite (He), calcium ferrite (CF), calcium silicate (CS), and magnetite (Mg) are mixed.
[0007]
Thus, methods for generating a large amount of calcium ferrite (CF) and hematite (He) have been attempted so far. For example, since calcium silicate (CS) is often produced when sintered at a high temperature, JP-A 63-149331 is a heat source after granulating by adding a binder or limestone to powdered iron ore. A technique has been proposed in which the coke flammability is improved by coating powder coke on the surface, and the reducibility is improved by sintering at low temperature.
[0008]
However, in the conventional method proposed in Japanese Patent Laid-Open No. 63-149331, CaO and SiO in an iron-based raw material are used. 2 And SiO 2 Since the system raw materials are close to each other, a large amount of calcium silicate (CS) is inevitably generated, and the structure mainly composed of calcium ferrite (CF) and hematite (He) is not always obtained.
[0009]
Japanese Patent Application Laid-Open No. 11-241124 discloses iron ore powder, return ore, part or all of quicklime and limestone, and SiO. 2 After mixing and granulating a part or whole amount of the source material with a primary mixer, the powder coke cut out from another system and the kneading source are added to the mixed and granulated material and granulated with a secondary mixer. Low SiO, characterized by sintering a raw material in which a layer of powdered coke and a fossil source is formed on the surface layer of the grain particles 2 A method for producing a sinter is disclosed.
[0010]
However, in the technique disclosed in Japanese Patent Application Laid-Open No. 11-241124, low SiO 2 is provided on the exterior of the granulated particles (that is, equivalent to the pseudo particles of the present invention). 2 As shown in Table 1, calcium silicate (CS) having the lowest tensile strength among the constituent minerals of sintered ore is formed, and the shutter has a cold strength. Strength or tumbler strength decreases. Furthermore, since raw materials partially containing limestone are contained in the granulated particles, not only highly reducible hematite (He) but also reducibility is inferior to hematite (He) inside the sintered ore. There is a problem that calcium ferrite (CF) and calcium silicate (CS) having remarkably poor reducibility are formed, and the effect of dramatically improving reducibility cannot be obtained.
[0011]
JP-A-61-163220 discloses that a sintering raw material not mixed with powder coke but mixed with pellet feed is conditioned and mixed with a primary mixer, and then powder coke is added to the conditioned granulated product. A pretreatment method of a sintering raw material characterized by rolling granulation with a secondary mixer is disclosed.
However, in the technique disclosed in Japanese Patent Application Laid-Open No. 61-163220, since raw materials containing limestone are contained in pseudo particles, not only highly reducible hematite (He) is contained in the sintered ore. Calcium ferrite (CF), which is less reducible than hematite (He), and calcium silicate (CS), which is significantly less reducible, are formed, and a dramatic improvement in reducibility cannot be obtained. However, the calcium silicate (CS) having the lowest tensile strength among the constituent minerals of the sintered ore is formed outside the sintered ore where the cold strength should be ensured. There is a problem that a certain shutter strength or tumbler strength is lowered.
[0012]
As disclosed in Japanese Patent Application Laid-Open Nos. 61-163220 and 11-241124, a pretreatment method for a sintering raw material in which a primary mixer and a secondary mixer are held and mixed and granulated. Or in the manufacturing method of a sintering raw material, basically mixing and granulation which mainly mix a sintering raw material with a primary mixer are performed, and granulation is then performed with a secondary mixer. In this way, when a primary mixer and a secondary mixer are provided (a total of two mixers are included), generally, the mixing and granulation time of the sintering raw material in the primary mixer is about 120 seconds. Usually, the granulation time in the secondary mixer is about 180 seconds.
[0013]
[Problems to be solved by the invention]
In order to solve the above-mentioned conventional problems, the present invention does not require an enormous amount of equipment as a pretreatment of a process for producing sintered ore, and iron ore and SiO. 2 The raw material is separated from the limestone raw material and the solid fuel raw material, and gradually becomes pseudo particles, so that calcium ferrite (CF) with high strength is applied to the surface of the lump, while it is reduced toward the inside of the lump. Of a raw material for sintering capable of producing a sintered ore having a structure in which high-performance hematite (He) is selectively produced, improving the cold strength, and improving the reducibility of the sintered ore The object is to provide a manufacturing method.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 is directed to a pretreatment for a process for producing a blast furnace sintered ore by using a downward suction droidoid sintering machine. 2 Sintering excluding limestone powder raw material and solid fuel powder raw material from the inlet of the drum mixer when granulating sintering raw material consisting of contained raw material, limestone powder raw material and solid fuel powder raw material using a drum mixer Limestone powder raw material and solid in a region set in the middle of the downstream side where the raw material is charged and granulated and the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 90 seconds A method for producing a raw material for sintering, characterized in that a fuel-based powder raw material is added and a limestone powder raw material and a solid fuel-based powder raw material are adhered to and formed on the exterior of the sintered raw material before reaching the discharge port. .
[0015]
The present invention according to claim 2 is a pretreatment of a process for producing a blast furnace sintered ore using a downward suction droidoid type sintering machine. 2 Sintering excluding limestone powder raw material and solid fuel powder raw material from the inlet of the drum mixer when granulating sintering raw material consisting of contained raw material, limestone powder raw material and solid fuel powder raw material using a drum mixer In the region set in the middle of the downstream side where the raw material is charged and granulated and the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 90 seconds, the limestone powder raw material is After the addition, the solid fuel-based powder raw material is added, and the limestone powder raw material and the solid fuel-based powder raw material are adhered and formed in this order on the exterior of the sintered raw material before reaching the discharge port. It is a manufacturing method of the raw material for sintering.
[0016]
According to a third aspect of the present invention, the drum mixer is a drum mixer in which the drum mixer is divided into a plurality of parts, and the residence time until the final drum mixer reaches from the loading port to the discharge port is set in the range of 10 to 90 seconds. 3. The method for producing a raw material for sintering according to claim 1, wherein the length is a length.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the background to the completion of the present invention and the outline of specific implementation of the present invention will be described in detail with reference to the drawings. As a result of various studies by the present inventors, SiO 2 Iron ore and SiO 2 Separate and granulate the contained raw material from the limestone powder raw material and the solid fuel powder raw material, and add the limestone powder raw material and the solid fuel powder raw material in the latter half of the granulation to further granulate The limestone powder raw material and the solid fuel powder raw material are adhered to and formed on the exterior of the sintered raw material, and CaO and SiO 2 This suppresses the formation of calcium silicate (CS) having poor reducibility and low cold strength. As a result, a high-strength calcium ferrite (CF) is formed on the surface of the sinter, and a sinter that selectively generates hematite (He) having high reducibility toward the inside of the sinter is formed. I found it.
[0018]
However, setting of the time to add the limestone powder raw material and the solid fuel powder raw material to adhere to and form the exterior of the sintered raw material, that is, the limestone powder raw material and the solid with respect to the sintered raw material being granulated After the fuel-based powder raw material is added, the residence time after the addition until the sintered raw material reaches the discharge port of the drum mixer, the so-called limestone powder raw material and the solid fuel-based powder raw material are attached to the exterior of the sintered raw material -It has been found that the effect varies greatly depending on the setting of the granulation time after addition for forming (hereinafter simply referred to as exterior time).
[0019]
And as shown in FIG. 6, the granulation time of the sintering raw material excluding the limestone powder raw material and the solid fuel powder raw material is constant, and the exterior time of the limestone powder raw material and the solid fuel powder raw material is from 60 seconds to 360. Experiments with varying seconds were performed.
As a result, as shown in FIG. 7, it can be seen that the exterior time becomes longer, the fine pores of 0.5 mm or less effective for improving the reducibility are reduced, and the reducibility is lowered, and the lime exterior time is 90 seconds. The following was found desirable: From another experiment, when the exterior time is less than 10 seconds, the added limestone powder raw material and the solid fuel powder raw material segregate in a part of the raw material due to insufficient exterior time, and a uniform sintered state is obtained. Thus, the effect of the present invention was not exhibited.
[0020]
Here, the exterior region where the exterior time is 10 seconds to 90 seconds corresponds to 2 to 36 rotations in terms of the number of rolling of the sintering raw material in the drum mixer.
FIG. 8 shows the results of investigating the distribution of Ca and Fe in the pseudo particles of the sintering raw material by an electron beam microanalyzer (hereinafter simply referred to as EPMA). From this, when an appropriate exterior time (60 seconds in this example) is taken, it can be confirmed that the distribution of Ca becomes an outer ring shape and the exteriorization is achieved. On the other hand, when the exterior time is increased, the inside of the drum mixer is increased. As a result of the breakage of the particles and the incorporation of limestone into the pseudo-particles, it was confirmed that Ca was distributed throughout and no change from the conventional method was observed.
[0021]
In other words, in the drum mixer, not only granulation but also the destruction of the pseudo particles proceed at the same time, so if the exterior time is taken too long, the limestone powder material and the solid fuel powder material added for the exterior are removed. It is taken into the interior due to the destruction of the pseudo-particles, and both the inner and outer surfaces are present. Calcium ferrite (CF) having high strength is present on the lump surface, while hematite (He) having high reducibility toward the lump inside. It was confirmed that it was not possible to obtain a sintered ore with a structure that selectively produced a), and that it was important to select an appropriate exterior time.
[0022]
In addition, as described above, if the exterior time is too short, the added limestone powder material and solid fuel powder material segregate in the sintering material, and uneven burning on the sintering machine may occur. Cause. Therefore, as a result of investigation by the present inventor, it was found that the exterior time is required to be 10 seconds or longer in order to prevent segregation. That is, the exterior time is under strict conditions, and there is a drawback that the interior is simply made by addition in the latter half.
[0023]
By satisfying the condition of the exterior time in the present invention, the limestone powder raw material and the solid fuel powder raw material will be externalized for the first time without being taken into the interior. 2 It is achieved that the raw material for sintering is separated from the limestone powder raw material and is free of limestone. As a result, CaO and SiO 2 It is possible to suppress the production of calcium silicate (CS) having a low reducibility and a low cold strength.
[0024]
In the present invention, a calcium ferrite (CF) melt is generated at the interface between the externalized limestone powder raw material and iron ore, and sufficient cold strength is exhibited by covering the periphery of the iron ore. is there. By sintering using this raw material for sintering, high-strength calcium ferrite (CF) is selectively produced on the lump surface, and hematite (He) having high reducibility is selectively produced toward the inside of the lump. A ore will be formed.
[0025]
An example of granulation flow (Method A) according to the present invention is shown in FIGS.
As shown in FIG. 9, from the charging side of the drum mixer, limestone powder raw material 3 and solid fuel-based powder raw material 4, limestone, and sintered raw material excluding powder coke are charged, and the exterior time is controlled. Therefore, the limestone and powder coke are added from the discharge side of the drum mixer. FIG. 10 shows a specific example thereof, in which the residence time until the sintering raw material reaches the discharge port is in the range of 10 to 90 seconds. The front end position of the belt conveyor 6 disposed so as to be movable forward and backward in the longitudinal direction in the drum mixer 5 from the discharge port is adjusted to an intermediate position of the exterior region corresponding to 60 seconds in the range of 10 seconds to 90 seconds, for example.
[0026]
Then, the limestone powder raw material 3 (for example, powdered limestone) and the solid fuel-based powder raw material 4 (for example, powder coke) are added to a predetermined area (here, intermediate position of the exterior area) via the belt conveyor 6, Then, pseudo particles having an exterior portion in which the limestone powder raw material 3 and the solid fuel powder raw material 4 are adhered and formed around the pseudo particles formed by granulation before reaching the exterior region are granulated. The limestone powder raw material 3 and the solid fuel powder raw material 4 can easily adhere to the exterior portion by covering the outer surface with an average particle size of 1.5 mm or less, preferably 1.0 mm or less. Method A is a case where a single drum mixer is used.
[0027]
FIG. 11 shows a granulation flow example (Method B) for producing another desirable pseudo-particle structure of the present invention. The example of granulation flow (Method B) is an example in which the drum mixer 5 shown in FIG. 10 is divided into a plurality of parts in the longitudinal direction, and in this example, a two-split type is shown. In FIG. 11 (A), the first drum mixer 5A, in which a sintered raw material excluding a limestone powder raw material and a solid fuel powder raw material is charged and granulated to obtain pseudo particles, is granulated by the first drum mixer 5A. A second drum mixer 5B for granulating pseudo particles having an exterior portion in which the limestone powder raw material 3 and the solid fuel powder raw material 4 are attached around the pseudo particles is disposed in series. The first drum mixer 5A is set to a length that enables pseudo particles to be granulated, and the second drum mixer 5B can externally attach and adhere a limestone powder raw material and a solid fuel powder raw material serving as a heat source to the outer periphery of the pseudo particles. The length, that is, the length of the second drum mixer 5B is set to a dimension corresponding to the exterior region such that the residence time of the pseudo particles from the loading port to the discharge port is in the range of 10 to 90 seconds. .
[0028]
In this case, the iron ore 1 and the SiO 2 from the inlet of the first drum mixer 5A. 2 Containing raw material 2 (SiO such as silica, serpentine, Ni slag, etc. 2 A raw material containing a relatively large amount). While repeating granulation and disintegration in the process from the inlet to the outlet of the first drum mixer 5A, the coarse iron ore 1 is used as a core, and fine iron ore and SiO around it. 2 The pseudo raw particles are granulated by adhering the containing raw material 2. Thereafter, when the pseudo particles are charged into the inlet of the second drum mixer 5B, the limestone powder raw material 3 and the solid fuel powder raw material 4 serving as a heat source are supplied to the inlet of the second drum mixer 5B. Thus, granulation is performed in which the limestone powder raw material 3 and the solid fuel powder raw material 4 are packaged and adhered around the pseudo particles in the second drum mixer 5B.
[0029]
FIG. 11B shows an application example of the present invention in the case where the existing drum mixer is a two-split type. The length of the drum mixer 5B in the latter half is longer than the length corresponding to the exterior time of 90 seconds. When the length is long, the limestone powder raw material and the solid fuel powder raw material serving as a heat source are supplied and added to the exterior region by the belt conveyor 6 from the discharge side of the drum mixer 5B in the latter half portion as in the example of FIG.
[0030]
In addition, FIG. 12 shows that in the exterior region set in the middle of the downstream side where the residence time is in the range of 10 to 90 seconds, after adding the limestone-based powder material, the solid fuel-based powder material is added to reach the discharge port. This is a specific example of a method for producing a sintering raw material (Method C) characterized by adhering and forming a limestone-based powder raw material and a solid fuel-based powder raw material in this order on the exterior of the sintered raw material pseudo particles. FIG. 12A shows a form in which a limestone powder raw material is supplied to the exterior region from the discharge side of the single drum mixer 5 by the belt conveyor 6A and a solid fuel powder raw material to be a heat source is added by the belt conveyor 6B. Show. Furthermore, FIG. 12B shows a specific example in the case of the two-split type, on the charging side of the drum mixer 5B set to a dimension corresponding to the exterior region that is in the range of 10 to 90 seconds. The form which supplies and adds a limestone type powder raw material, and supplies and adds the solid fuel type powder raw material used as a heat source by the belt conveyor 6 to the exterior area | region from the discharge | emission side of the drum mixer 5B is shown. By adding to the exterior region, the solid fuel-based powder raw material adheres to and is formed on the exterior portion of the pseudo particles following the limestone-based powder raw material. In this addition form, after the addition of the limestone powder raw material, the limestone powder raw material adhesion layer is formed on the exterior part of the pseudo particle by adding the solid fuel powder raw material at a position having a time difference of 10 seconds or more. After that, the solid fuel-based powder raw material is further adhered and formed.
[0031]
According to (Method A) or (Method B) of the present invention, coarse iron ore 1 is used as a core, and fine iron ore or SiO is formed around it. 2 The containing raw material 2 adheres, and the limestone-based powder raw material 3 and the solid fuel-based powder raw material 4 (coke) as a heat source can be adhered and formed on the exterior portion. Furthermore, according to the (Method C) of the present invention, when the limestone powder raw material 3 and the solid fuel powder raw material 4 (coke) as a heat source are adhered and formed on the exterior part, the solid fuel powder raw material as a heat source is added. It can be attached and formed on the outermost part.
[0032]
Thus, the sintered raw material excluding the limestone powder raw material and the solid fuel powder raw material is charged and granulated from the inlet of the drum mixer according to the present invention, and the sintered raw material is supplied to the discharge port of the drum mixer. Limestone powder raw material and solid fuel powder raw material are added in a region set in the middle of the downstream side where the residence time until reaching 10 to 90 seconds is reached, and the limestone powder raw material and the solid fuel system are delivered to the discharge port In the method of manufacturing a raw material for sintering, which is characterized by adhering and forming a powder raw material on an exterior portion of the sintered raw material, CaO and SiO in the sintering process of the raw material for sintering 2 The production of calcium silicate (CS) with low cold strength is suppressed, calcium ferrite (CF) with high strength is applied to the lump surface, and hematite (He) with high reducibility toward the inside of the lump. Sintered ore that is selectively produced, has many fine pores, is excellent in reducibility, and has high cold strength can be produced stably.
[0033]
In addition, as a pretreatment of a process for producing a blast furnace sinter using a downward suction droidoid sintering machine, iron ore, SiO 2 Sintering excluding limestone powder raw material and solid fuel powder raw material from the inlet of the drum mixer when granulating sintering raw material consisting of contained raw material, limestone powder raw material and solid fuel powder raw material using a drum mixer In the region set in the middle of the downstream side where the raw material is charged and granulated and the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 90 seconds, the limestone powder raw material is After the addition, the solid fuel-based powder raw material is added, and the limestone powder raw material and the solid fuel-based powder raw material are adhered and formed in this order on the exterior of the sintered raw material before reaching the discharge port. In the method for producing a raw material for sintering, as described above, hematite (He) having high reducibility is selectively generated toward the inside of the lump, and there are many fine pores, excellent reducibility, and high cold strength. Stable production is possible Other, solid fuel-based powder material comprising a heat source can be attached, formed on Saigaiso portion, it is possible to improve the combustibility of the added solid fuel-based powder material.
[0034]
【Example】
Using the sintering raw materials having the blending ratios shown in Table 2, the pseudo particles granulated by the granulation flow (Method A) of the present invention were transported to a Dwightroid sintering machine and charged on a pallet. For comparison, iron ore, SiO 2 Pseudoparticles produced by the processing method in which the containing raw material, the limestone raw material, and the coke powder were mixed at the same time were transported to a dwaritroid sintering machine and charged on a pallet. Thereafter, sintering was performed on a pallet, and the mineral composition, specific surface area, and reducibility were measured. Table 3 shows the measurement results of the method of the present invention and the conventional method.
[0035]
[Table 2]
Figure 0003755452
[0036]
[Table 3]
Figure 0003755452
[0037]
As shown in Table 3, by adopting the granulation flow of the present invention, hematite (He) with high reducibility increases in the mineral composition, calcium silicate (CS) with low reducibility decreases, and As shown in FIG. 13, the reducibility was improved by 5% compared to the conventional method due to the increase in fine pores derived from hematite (He).
Similarly, the pseudo particles produced by using the granulation flow (Method B) of the present invention were similarly supplied to a Dwytroid sintering machine and sintered.
[0038]
Moreover, the result of having measured the cross section of the sintered body of the pseudo particle by this invention and the conventional method by EPMA is shown in FIG. In the conventional method, Ca (black portion) is distributed throughout, but in the method of the present invention, it can be seen only in the exterior portion. By applying the exterior of limestone by the method of the present invention, hematite is formed inside the sintered ore mass. It can be confirmed that calcium ferrite is formed around the surface, and calcium ferrite (CF) having high strength is formed on the surface of the lump as shown in FIG. 4, and hematite having high reducibility is formed toward the inside of the lump. It was confirmed that a sintered structure in which (He) was selectively generated was obtained.
[0039]
Similarly, the pseudoparticles produced using the granulation flow (Method C) of the present invention were similarly supplied to a Dwroid sinter and the result of sintering was the same as that measured by EPMA.
FIG. 15 shows the results of measurement of reducibility (JIS-RI), yield, and production rate. In the method of the present invention, an increase of about 5% in the reducible JIS-RI, 0.5% in the yield, and about 18% in the production rate were obtained as compared with the conventional method.
[0040]
【The invention's effect】
According to the method for producing a sintered raw material of the present invention, a limestone powder raw material and a solid fuel powder raw material serving as a heat source are added in an exterior region set in the middle of the downstream until the pseudo particles reach the discharge port of the drum mixer. By doing so, it is possible to manufacture a pseudo-particle raw material for sintering in which a limestone-based powder raw material and a solid fuel-based powder raw material serving as a heat source are attached to and formed on the exterior portion of the pseudo particles. For this reason, the production of calcium silicate (CS) having a low cold strength is suppressed during the sintering process by the Dwydroid sintering machine, and high strength calcium ferrite (CF) is applied to the lump surface toward the inside of the lump. Highly reducible hematite (He) is selectively produced, and sintered ore with many fine pores, excellent reducibility and high cold strength can be produced with high productivity.
[Brief description of the drawings]
FIG. 1 is a system diagram of mixing and granulation of sintering raw materials according to a conventional example.
FIG. 2 is a graph showing the relationship between the reducibility of sintered ore and gas utilization in a blast furnace.
FIG. 3 is a relationship diagram between a gas utilization rate and a fuel ratio in a blast furnace.
FIG. 4 is a diagram for explaining a desirable structure of sintered ore.
FIG. 5 is a diagram for explaining a pseudo particle structure and a structure structure of a sintered ore according to a conventional example.
FIG. 6 is a diagram illustrating an exterior experiment method for a limestone powder material and a solid fuel powder material.
FIG. 7 is a characteristic diagram showing the relationship between the exterior time and the reducibility of sintered ore.
FIG. 8 is a diagram showing a distribution state of Ca and Fe in pseudo particles when the exterior time is changed.
FIG. 9 is a diagram schematically illustrating an embodiment of the present invention.
FIG. 10 is a diagram showing an embodiment in the present invention.
FIG. 11 is a diagram showing another embodiment of the present invention.
FIG. 12 is a diagram showing another embodiment of the present invention.
FIG. 13 is a diagram showing a pore distribution state in a sintered ore according to the present invention in comparison with a conventional example.
FIG. 14 is a diagram showing the effect of forming hematite at the center of the lump and calcium ferrite at the periphery in the sintered ore according to the present invention.
FIG. 15 is a diagram showing reducibility, yield, and production rate according to the present invention in comparison with a conventional example.
[Explanation of symbols]
1 Iron ore
2 SiO 2 Contained raw materials
3 Limestone powder raw material
4 Solid fuel-based powder raw material

Claims (3)

下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から石灰石系粉原料および固体燃料系粉原料を除く焼結原料を装入して造粒すると共に該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜90秒範囲となる下流側途中に設定した領域で石灰石系粉原料および固体燃料系粉原料を添加し、排出口に至る間に石灰石系粉原料と固体燃料系粉原料を焼結原料の外装部に付着・形成することを特徴とする焼結用原料の製造方法。As a pre-treatment of the process of producing blast furnace sinter using a downward suction droidoid sintering machine, a sintering raw material consisting of iron ore, SiO 2 -containing raw material, limestone powder raw material and solid fuel powder raw material is used. When granulating using a drum mixer, a sintered raw material excluding a limestone powder raw material and a solid fuel powder raw material is charged from the inlet of the drum mixer and granulated. The limestone powder raw material and the solid fuel powder raw material are added in the region set in the middle of the downstream side where the residence time until reaching the discharge port is in the range of 10 to 90 seconds. A method for producing a raw material for sintering, characterized in that a solid fuel-based powder raw material is attached to and formed on an exterior part of a sintered raw material. 下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から石灰石系粉原料および固体燃料系粉原料を除く焼結原料を装入して造粒すると共に該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜90秒範囲となる下流側途中に設定した領域において、石灰石系粉原料を添加した後、固体燃料系粉原料を添加し、排出口に至る間に焼結原料の外装部に、石灰石系粉原料、固体燃料系粉原料の順で、付着・形成することを特徴とする焼結用原料の製造方法。As a pre-treatment of the process of producing blast furnace sinter using a downward suction droidoid sintering machine, a sintering raw material consisting of iron ore, SiO 2 -containing raw material, limestone powder raw material and solid fuel powder raw material is used. When granulating using a drum mixer, a sintered raw material excluding a limestone powder raw material and a solid fuel powder raw material is charged from the inlet of the drum mixer and granulated. In the region set in the middle of the downstream side where the residence time until reaching the discharge port is in the range of 10 to 90 seconds, after adding the limestone powder raw material, add the solid fuel powder raw material, A method for producing a raw material for sintering, characterized by adhering and forming a limestone powder raw material and a solid fuel powder raw material in this order on the exterior of the sintered raw material. 前記ドラムミキサーを複数に分割したドラムミキサーとして、最終のドラムミキサーを装入口から排出口に到達するまでの滞留時間が10〜90秒範囲に設定されたドラムミキサー長さとしたことを特徴とする請求項1または2記載の焼結用原料の製造方法。The drum mixer is characterized in that the drum mixer is divided into a plurality of drum mixers, and the residence time until the final drum mixer reaches from the loading port to the discharge port is set to a range of 10 to 90 seconds. Item 3. A method for producing a sintering raw material according to Item 1 or 2.
JP2001347169A 2001-08-23 2001-11-13 Method for manufacturing raw materials for sintering Expired - Lifetime JP3755452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001347169A JP3755452B2 (en) 2001-08-23 2001-11-13 Method for manufacturing raw materials for sintering

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001253192 2001-08-23
JP2001-253192 2001-08-23
JP2001347169A JP3755452B2 (en) 2001-08-23 2001-11-13 Method for manufacturing raw materials for sintering

Publications (2)

Publication Number Publication Date
JP2003138319A JP2003138319A (en) 2003-05-14
JP3755452B2 true JP3755452B2 (en) 2006-03-15

Family

ID=26620872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001347169A Expired - Lifetime JP3755452B2 (en) 2001-08-23 2001-11-13 Method for manufacturing raw materials for sintering

Country Status (1)

Country Link
JP (1) JP3755452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027389A1 (en) * 2015-03-18 2016-02-25 Jfeスチール株式会社 Continuous production method for sintered ores, and production equipment line for sintered ores

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT412401B (en) * 2003-07-16 2005-02-25 Voest Alpine Ind Anlagen METHOD FOR PRODUCING ERZ GREEN AGGLOMERATES CONTAINING A FINE PART
AT413543B (en) * 2004-03-03 2006-03-15 Voest Alpine Ind Anlagen PROCESS FOR PRODUCING A SINTERING MIXTURE
JP2006063444A (en) * 2004-07-30 2006-03-09 Jfe Steel Kk Sintered ore for blast furnace
JP2006063375A (en) * 2004-08-26 2006-03-09 Jfe Steel Kk Method for manufacturing raw material to be sintered
JP4840524B2 (en) * 2009-07-10 2011-12-21 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5146573B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5821362B2 (en) * 2010-07-30 2015-11-24 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5146572B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP6353749B2 (en) * 2014-03-31 2018-07-04 新日鐵住金株式会社 Method for producing sintered ore
JP6477167B2 (en) * 2015-03-31 2019-03-06 新日鐵住金株式会社 Method for producing sintered ore
CN114350940A (en) * 2021-12-25 2022-04-15 深圳市考拉生态科技有限公司 Method for producing alkaline iron ore concentrate by reducing weakly magnetic iron ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027389A1 (en) * 2015-03-18 2016-02-25 Jfeスチール株式会社 Continuous production method for sintered ores, and production equipment line for sintered ores
JP5871107B1 (en) * 2015-03-18 2016-03-01 Jfeスチール株式会社 Sintered ore continuous manufacturing method and sintered ore manufacturing equipment line

Also Published As

Publication number Publication date
JP2003138319A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP3755452B2 (en) Method for manufacturing raw materials for sintering
JP3656632B2 (en) Pseudoparticle raw material for sintering and method for producing pseudoparticle raw material for sintering
JP6102463B2 (en) Method for producing sintered ore
EP3266884B1 (en) Quasiparticles for sintering and method of producing same
JP2006265569A (en) Method for producing sintered ore and pseudo-grain for producing sintered ore
JP4228678B2 (en) Method for manufacturing raw materials for sintering
WO2012015063A1 (en) Method for producing starting material for sintering
JP2005171388A (en) Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
JP3794332B2 (en) Granulation method of sintering raw material
JP3945323B2 (en) Granulation method of sintering raw material
JP4379097B2 (en) Pseudoparticles for sintering and method for producing the same
CN107674971B (en) Raw material treatment method
JP3675105B2 (en) Sintering raw material processing method
JP4175158B2 (en) Method for manufacturing raw materials for sintering
JPH02225627A (en) Production of sintered ore
JP4797388B2 (en) Method for producing semi-reduced sintered ore
JP4599736B2 (en) Granulation method of sintering raw material
JP3531409B2 (en) Granular raw materials for high grade sinter production
JP2000328148A (en) Method for charging raw material for sintering using magnetic force
JP2000290734A (en) Pretreatment of sintering raw material
JP4635559B2 (en) Method for manufacturing raw materials for sintering
JP2004027245A (en) Method for pelletizing sintering material
JP2009114537A (en) Method for producing low slag-based sintered ore
JP2005248271A (en) Method for granulating sintering raw material
JP2007291455A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3755452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term