JP3754309B2 - Steam turbine power generation equipment - Google Patents

Steam turbine power generation equipment Download PDF

Info

Publication number
JP3754309B2
JP3754309B2 JP2001061502A JP2001061502A JP3754309B2 JP 3754309 B2 JP3754309 B2 JP 3754309B2 JP 2001061502 A JP2001061502 A JP 2001061502A JP 2001061502 A JP2001061502 A JP 2001061502A JP 3754309 B2 JP3754309 B2 JP 3754309B2
Authority
JP
Japan
Prior art keywords
condenser
steam
steam turbine
side plate
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001061502A
Other languages
Japanese (ja)
Other versions
JP2002256815A (en
Inventor
克彦 田島
良文 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001061502A priority Critical patent/JP3754309B2/en
Publication of JP2002256815A publication Critical patent/JP2002256815A/en
Application granted granted Critical
Publication of JP3754309B2 publication Critical patent/JP3754309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気タービン発電設備、あるいは蒸気タービンとガスタービンを組み合わせたコンバインドサイクル発電設備(以下、前記2つの設備を含めて蒸気タービン発電設備と称する)に係り、特に、主蒸気配管の蒸気タービンへの連絡経路およびその支持構造に関する。
【0002】
【従来の技術】
発電事業用の蒸気タービンは、一般に復水器の上方で、鉄骨または鉄筋コンクリート製の架台によって支持され、架台の開口を通じて復水器上部と連絡し、復水器に排気する。また、ボイラから供給される蒸気は、蒸気タービンのノズルに連結される主蒸気配管を通じて、蒸気タービンに流入する。また、一般的には温度・圧力の異なる蒸気が、それぞれ個々の主蒸気配管から個々のタービンノズルを通して供給される。なお、タービンノズルは、蒸気タービンと復水器を連結する連結胴外に設けられている。
【0003】
また、発電事業用の蒸気タービンは、一般に建屋の中に設置される。建屋内での蒸気タービンの配置方式には、ボイラに対してタービンの軸を平行に配置する方式と、直角に配置する方式の2通りに分類することができる。特にガスタービンと蒸気タービンを併用して一つの発電機を駆動する一軸型と呼ばれるコンバインドサイクル発電プラントにおいては、一般に複数の軸を並列に配置するため、後者の方式が採用される。
【0004】
なお、蒸気タービン発電設備に関する従来技術は、例えば特開昭61−215406号公報に記載されている。
【0005】
【発明が解決しようとする課題】
発電事業用の蒸気タービンは、一般に温度・圧力の異なる蒸気が、それぞれ別々の主蒸気配管から別々のタービンノズルを通して供給されるため、蒸気タービンの廻りは、配管が複雑に引回されている。また、主蒸気配管には、タービンへの蒸気の流入量を制御するための弁が設置されるため、その操作や点検作業のスペース確保が必要であるが、配管が多く、十分なスペースを確保することが困難である。さらに、配管経路の複雑さおよび作業スペースの狭さは、発電所建設工事における作業効率の悪化から、建設工程の長期化および建設コストの増加に繋がるだけでなく、安全性の面からも好ましくない。
【0006】
ところで、既述のように、タービンの軸方向をボイラに対して直角に配置する方式は、建屋の奥行寸法が大きく、建設コストが高くなるため、タービン軸長を短くすることが望まれる。蒸気タービンの軸長は、同形式・同出力のタービンで比較した場合には、蒸気条件や熱効率によって規定されるところが大であるが、タービン翼の長さや形状の変更等により、構造的にタービン軸長を短くしても、蒸気量の関係から、蒸気タービンと復水器の連結部である連結胴の必要断面積はほとんど変わらない。したがって、タービン軸長を短くすると、タービン軸長に対して相対的に連結胴が大きくなり、従来のように、主蒸気配管をタービン下方より連結するための、タービンノズルのスペースを連結胴外に設置することが困難である。
【0007】
前記のように、タービン軸長が短く、主蒸気配管をタービン下方より連結することが困難な場合、主蒸気配管の一部を、連結胴と干渉しないように、タービン上方より連結する手段があるが、通常、タービン下方からの連結であれば、タービン設置床面下の梁から主蒸気配管や主弁を支持することが可能であるのに対し、タービン上方からの連結では、タービン設置床面上から主蒸気配管や主弁を支持しなければならず、支持構造が複雑になるとともに、タービン保守作業が煩雑になり、さらにタービン設置床面上を配管が引き回されることから、タービン保守スペースが狭くなり、また、外観上も好ましくない。
【0008】
本発明の課題は、蒸気タービン廻りの配管を簡素化し、スペース的な余裕を生じさせて建設工事および保守点検作業の効率と安全性を向上させることの蒸気タービン発電設備を提供することにある。
【0009】
【課題を解決するための手段】
前記課題は、蒸気タービンと蒸気発生装置と復水器とを備えた蒸気タービン発電設備において、前記蒸気発生装置から蒸気タービンに駆動用蒸気を送気する主蒸気配管を、復水器の側板、あるいは復水器と蒸気タービン間を連結する連結胴の側板を貫通して、前記復水器あるいは連結胴の中からタービンノズルに接続することによって達成される。
【0010】
【発明の実施の形態】
本発明による実施例の1を図1に示す。
【0011】
図1によれば、復水器(復水器上部胴を符号3で示す。また、復水器下部胴を符号4で示す。)は蒸気タービン1の下方に設置され、主蒸気配管5は蒸気タービン1の軸直角方向から復水器上部胴3の側板を貫通し、復水器上部胴3の内側から連結胴2内を通って、連結胴2内に設置されているタービンノズル6に連結する。タービン1の排気条件を悪化させないためには、内包する主蒸気配管5の断面積分だけ、連結胴2の断面積を拡大する必要が生じるが、連結胴2の一辺の長さは主蒸気配管5の径に対して十分長いため、断面積の拡大に必要な連結胴2の寸法変更は小さく、結果として、主蒸気配管5の一部を連結胴2内に収納したことにより、蒸気タービン廻りのスペースは増大する。このことを模式的に表したものが図2および図3である。図2および図3に示す蒸気タービンは、近年の発電事業用コンバインドサイクルプラントに採用実績の多い、混圧単流排気式の蒸気タービンであり、図2は従来の主蒸気配管の連結方式、図3は本発明の実施例の2で、主蒸気配管のうちの低圧主蒸気管10を、復水器上部胴3の内部から連結胴2を介して蒸気タービン1側のノズルに連結している。
【0012】
図2と比較すれば、図3に示す本発明の実施例の2は、復水器上部胴3の内部から低圧主蒸気配管10をタービンノズルに連結することで、タービン廻りのスペースが増大していることが分かる。このように、低圧主蒸気管10を復水器上部胴3内に収納することにより、蒸気タービン廻りの配管を簡素化でき、スペース的な余裕が生じ、建設工事および保守点検作業の効率と安全性を向上させることができる。
【0013】
一方、タービン軸長が短い場合、全ての主蒸気配管をタービン1の下方から連結することは、タービン軸長が短いためにスペースの確保が困難であることから、従来は、一部の主蒸気配管をタービン上方、もしくはタービン側方から連結しており、そのために、タービン設置床面上から主蒸気配管や主弁を支持しなければならず、配管の支持構造が複雑になるとともに、タービン保守作業が煩雑になり、さらにタービン設置床面上を配管が引き回されることから、タービン保守スペースが狭くなり、また外観も損なわれる。
【0014】
これに対し、図4に示す本発明の実施例の3では、低圧主蒸気管10を、復水器上部胴3の内部から連結胴2を介して蒸気タービン1側のノズルに連結することにより、タービン軸長が短い場合でも、前記した従来技術の問題点を解決することができる。
【0015】
なお、主蒸気配管が復水器を貫通する場合、その貫通部は、復水器内の真空度を保つために十分な密閉構造としなければならない。しかしながら、蒸気タービンおよび主蒸気配管には、高温の蒸気に熱せられることによる熱伸びが生じる。一方、復水器は、通常、底部をコンクリート基礎に固定しているので、熱伸びは上方のタービン側に向かって発生する。したがって、主蒸気配管の復水器貫通部を固定すると、主蒸気配管自身の熱伸びと、蒸気タービンおよび復水器の熱伸びにより、復水器貫通部およびタービンノズル部に大きな熱応力が生じ、配管や復水器に強度上の問題が生じる。そのため、従来、蒸気タービンから蒸気を取り出す抽気管の場合には、蒸気タービンからの取出し部に伸縮継手を設置することで、熱伸びの影響を吸収し、復水器側板貫通部は、溶接によって固定している。しかしながら、主蒸気配管は、抽気管とは反対に、蒸気をタービンに供給するための配管であるため、抽気管のようにタービンとの取合部に伸縮継手を用いると、伸縮継手部に溜まったドレンがタービンに流入し、タービン翼のエロージョン等による損傷を引き起こす原因となるため好ましくない。
【0016】
そこで、本発明の実施例の4では、図5に示すように、主蒸気配管の復水器胴部貫通構造として、伸縮自在なベローズ13と、ベローズ13を内挿するスリーブ12と、ベローズ13をスリーブ12に連結する第1の支持部材14と、ベローズ13を主蒸気配管5に連結する第2の支持部材15から構成される伸縮継手により、復水器上部胴側板16と主蒸気配管5を連結する。
【0017】
図5に示す本発明の実施例によれば、主蒸気配管5や蒸気タービンおよび復水器の熱伸びを伸縮自在なベローズ13が吸収するため、大きな熱応力を発生することがない。図6にベローズ13が熱伸びを吸収する様子を示す。
【0018】
また、図5に示す本発明の実施例によれば、スリーブ12は復水器上部胴側板16に溶接されており、スリーブ12とベローズ13、およびベローズ13と主蒸気配管5は、それぞれ前記第1および第2の支持部材14、15を介して溶接されているため、復水器の密閉性を損なうことがない。
【0019】
さらに、図5に示す本発明の実施例によれば、前記伸縮継手は、主蒸気配管5とベローズ13と第2の支持部材15によって構成される空隙(ベローズ13の内側)が、復水器外部に対して開かれている。前記伸縮継手の構造は、図7に示すように、主蒸気配管5とベローズ13と第2の支持部材15によって構成される空隙を、復水器内部に対して開いた構造とすることも可能であるが、この場合、前記空隙は復水器内雰囲気となり、ドレンが溜まりやすく、腐食の発生が懸念される。そこで、図5に示す本発明の実施例では、主蒸気配管5とベローズ13と第2の支持部材15によって構成される空隙を、復水器外部に対して開いた構造とすることで、前記空隙を大気雰囲気とし、ドレンが溜まるのを防止している。
【0020】
さらに、スリーブ12を復水器内側に向かって下り勾配を付けるようにすれば、スリーブ12内にドレンが溜まるのを防止することができる。
【0021】
次に、図8として本発明の実施例の5を示す。
【0022】
図8に示す本発明の実施例では、主蒸気配管5は、復水器上部胴3の側板を貫通し、復水器上部胴3内で曲り部を構成した後、タービンノズル6にに接続される。これにより、主蒸気配管5や蒸気タービンおよび復水器が熱伸びした場合、主蒸気配管5の曲り部がたわむことで、前記熱伸びを吸収することができる。
【0023】
次に、図9として本発明の実施例の6を示す。
【0024】
図9に示す本発明の実施例では、主蒸気配管5は、復水器上部胴3内で、復水器上部胴3の筐体により、蒸気タービンの軸直角方向にレストレント支持される。すなわち、主蒸気配管5の蒸気タービン軸直角方向の熱伸びだけを制限し、その他の方向への熱伸びや主蒸気配管5の捻転等に対しては、何等拘束を与えない支持方式である。これは、主蒸気配管5の熱伸びやコールドスプリングによって、蒸気タービンに無用な力やモーメントが加わらない用にするためである。
【0025】
なお、図示実施例においては、主蒸気配管5を、復水器の側板を貫通させて、復水器の中からタービンノズル6に接続した場合について例示したが、連結胴2の一部がタービン設置床19の下面よりも下側に出ている場合、主蒸気配管5を、連結胴2の側板を貫通させて、連結胴2の中からタービンノズル6に接続しても同様の効果を得ることができる。
【0026】
【発明の効果】
本発明によれば、主蒸気配管の一部が復水器内に収納されるので、蒸気タービン廻りの配管を簡素化でき、スペース的な余裕が生じ、建設工事および保守点検作業の効率と安全性を向上させることができる。
【図面の簡単な説明】
【図1】本発明による蒸気タービン発電設備の第1の実施例を示す構造図である。
【図2】従来の蒸気タービン発電設備の構造図である。
【図3】本発明の第2の実施例を示す構造図である。
【図4】本発明の第3の実施例を示す構造図である。
【図5】本発明の第4の実施例を示す構造図である。
【図6】本発明の第4の実施例の作用説明図である。
【図7】本発明の第4の実施例との比較図である。
【図8】本発明の第5の実施例を示す構造図である。
【図9】本発明の第6の実施例を示す構造図である。
【符号の説明】
1…蒸気タービン、2…連結胴、3…復水器上部胴、4…復水器下部胴、5…主蒸気配管、6…タービンノズル、7…発電機、8…高圧主蒸気配管、9…高温再熱蒸気配管、10…低圧主蒸気配管、11…低温再熱蒸気配管、12…スリーブ、13…ベローズ、14…第1の支持部材、15…第2の支持部材、16…復水器上部胴側板、17…タービン排気蒸気、18…レストレント、19…タービン設置床。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam turbine power generation facility or a combined cycle power generation facility combining a steam turbine and a gas turbine (hereinafter referred to as a steam turbine power generation facility including the two facilities), and more particularly, a steam turbine having a main steam pipe. It is related with the connection route to and the supporting structure.
[0002]
[Prior art]
A steam turbine for power generation business is generally supported by a steel frame or reinforced concrete frame above the condenser, communicates with the upper part of the condenser through an opening of the frame, and exhausts to the condenser. Moreover, the steam supplied from the boiler flows into the steam turbine through a main steam pipe connected to the nozzle of the steam turbine. In general, steam having different temperatures and pressures is supplied from individual main steam pipes through individual turbine nozzles. The turbine nozzle is provided outside the connecting cylinder that connects the steam turbine and the condenser.
[0003]
A steam turbine for power generation business is generally installed in a building. The arrangement method of the steam turbine in the building can be classified into two types: a method in which the axis of the turbine is arranged in parallel to the boiler, and a method in which the shaft is arranged at a right angle. In particular, in a combined cycle power plant called a single shaft type in which a single generator is driven by using a gas turbine and a steam turbine in combination, the latter method is generally employed in order to arrange a plurality of shafts in parallel.
[0004]
The prior art relating to steam turbine power generation equipment is described in, for example, Japanese Patent Application Laid-Open No. 61-215406.
[0005]
[Problems to be solved by the invention]
In steam turbines for power generation business, generally, steam having different temperatures and pressures is supplied from separate main steam pipes through separate turbine nozzles, so that the pipes are complicatedly routed around the steam turbine. The main steam pipe is equipped with a valve to control the amount of steam flowing into the turbine, so it is necessary to secure space for operation and inspection work. Difficult to do. Furthermore, the complexity of the piping route and the narrow working space not only lead to a prolonged construction process and an increase in construction cost due to deterioration of work efficiency in power plant construction work, but also from the viewpoint of safety. .
[0006]
By the way, as described above, the method of arranging the axial direction of the turbine at right angles to the boiler increases the depth of the building and increases the construction cost. Therefore, it is desired to shorten the turbine shaft length. The axial length of a steam turbine is largely determined by the steam conditions and thermal efficiency when compared with a turbine of the same type and output, but structurally the turbine length is changed by changing the length and shape of the turbine blades. Even if the shaft length is shortened, the required cross-sectional area of the connecting cylinder, which is the connecting part of the steam turbine and the condenser, is almost the same due to the amount of steam. Therefore, when the turbine shaft length is shortened, the connecting cylinder becomes relatively large with respect to the turbine shaft length, and the space of the turbine nozzle for connecting the main steam pipe from the lower side of the turbine as in the conventional case is placed outside the connecting cylinder. It is difficult to install.
[0007]
As described above, when the turbine shaft length is short and it is difficult to connect the main steam pipe from below the turbine, there is means for connecting a part of the main steam pipe from above the turbine so as not to interfere with the connecting cylinder. However, if the connection is from the bottom of the turbine, it is possible to support the main steam pipe and the main valve from the beam below the turbine installation floor, whereas the connection from the top of the turbine Since the main steam pipe and main valve must be supported from above, the support structure becomes complicated, the turbine maintenance work becomes complicated, and the pipe is routed on the floor where the turbine is installed. The space is narrow, and the appearance is not preferable.
[0008]
An object of the present invention is to provide a steam turbine power generation facility that simplifies piping around a steam turbine and provides a space margin to improve the efficiency and safety of construction work and maintenance inspection work.
[0009]
[Means for Solving the Problems]
In the steam turbine power generation facility provided with a steam turbine, a steam generator, and a condenser, the subject includes a main steam pipe for sending driving steam from the steam generator to the steam turbine, a side plate of the condenser, Alternatively, it is achieved by passing through the side plate of the connecting cylinder connecting the condenser and the steam turbine and connecting to the turbine nozzle from the condenser or connecting cylinder.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment according to the present invention is shown in FIG.
[0011]
According to FIG. 1, the condenser (the condenser upper trunk is indicated by reference numeral 3 and the condenser lower trunk is indicated by reference numeral 4) is installed below the steam turbine 1, and the main steam pipe 5 is A turbine nozzle 6 installed in the connecting cylinder 2 passes through the side plate of the condenser upper cylinder 3 from the direction perpendicular to the axis of the steam turbine 1 and passes through the connecting cylinder 2 from the inside of the condenser upper cylinder 3. Link. In order not to deteriorate the exhaust conditions of the turbine 1, it is necessary to enlarge the cross-sectional area of the connecting cylinder 2 by the cross-sectional integral of the main steam pipe 5 included, but the length of one side of the connecting cylinder 2 is the main steam pipe 5. Therefore, the change in the dimensions of the connecting cylinder 2 required to increase the cross-sectional area is small. As a result, a part of the main steam pipe 5 is accommodated in the connecting cylinder 2 so that Space increases. This is schematically shown in FIGS. 2 and 3. FIG. The steam turbine shown in FIGS. 2 and 3 is a mixed-pressure single-flow exhaust steam turbine that has been widely used in combined cycle plants for power generation business in recent years. FIG. 2 shows a conventional main steam pipe connection system, 3 is an embodiment 2 of the present invention, in which the low-pressure main steam pipe 10 in the main steam pipe is connected from the inside of the condenser upper body 3 to the nozzle on the steam turbine 1 side via the connection body 2. .
[0012]
Compared with FIG. 2, the embodiment 2 of the present invention shown in FIG. 3 is such that the space around the turbine is increased by connecting the low-pressure main steam pipe 10 from the inside of the condenser upper body 3 to the turbine nozzle. I understand that By storing the low-pressure main steam pipe 10 in the condenser upper shell 3 in this way, piping around the steam turbine can be simplified, space is provided, and the efficiency and safety of construction work and maintenance / inspection work. Can be improved.
[0013]
On the other hand, when the turbine shaft length is short, connecting all the main steam pipes from below the turbine 1 makes it difficult to secure a space because the turbine shaft length is short. Piping is connected from the upper side of the turbine or from the side of the turbine. For this reason, the main steam piping and the main valve must be supported from the floor of the turbine installation. Since the work becomes complicated and the piping is routed on the floor where the turbine is installed, the turbine maintenance space is reduced and the appearance is also impaired.
[0014]
On the other hand, in the third embodiment of the present invention shown in FIG. 4, the low pressure main steam pipe 10 is connected from the inside of the condenser upper body 3 to the nozzle on the steam turbine 1 side via the connection body 2. Even when the turbine shaft length is short, the above-mentioned problems of the prior art can be solved.
[0015]
In addition, when the main steam pipe passes through the condenser, the penetrating part must have a sufficient sealing structure to maintain the degree of vacuum in the condenser. However, the steam turbine and the main steam pipe are subject to thermal elongation due to being heated to high-temperature steam. On the other hand, since a condenser usually has a bottom fixed to a concrete foundation, thermal elongation occurs toward the upper turbine side. Therefore, when the condenser penetration part of the main steam pipe is fixed, a large thermal stress is generated in the condenser penetration part and the turbine nozzle part due to the thermal elongation of the main steam pipe itself and the thermal elongation of the steam turbine and the condenser. , Strength problems occur in piping and condensers. For this reason, conventionally, in the case of an extraction pipe for extracting steam from a steam turbine, an expansion joint is installed in the extraction part from the steam turbine to absorb the effect of thermal expansion, and the condenser side plate penetration is It is fixed. However, the main steam pipe is a pipe for supplying steam to the turbine, contrary to the extraction pipe, and if an expansion joint is used at the joint with the turbine like the extraction pipe, the main steam pipe is accumulated in the expansion joint. This is not preferable because drainage flows into the turbine and causes damage due to erosion of the turbine blades.
[0016]
Therefore, in Example 4 of the present invention, as shown in FIG. 5, as a condenser trunk portion penetration structure of the main steam pipe, a telescopic bellows 13, a sleeve 12 for interposing the bellows 13, and a bellows 13 The condenser upper trunk side plate 16 and the main steam pipe 5 are formed by an expansion joint comprising a first support member 14 for connecting the sleeve 12 to the sleeve 12 and a second support member 15 for connecting the bellows 13 to the main steam pipe 5. Are connected.
[0017]
According to the embodiment of the present invention shown in FIG. 5, the thermal expansion of the main steam pipe 5, the steam turbine and the condenser is absorbed by the expandable bellows 13, so that no large thermal stress is generated. FIG. 6 shows how the bellows 13 absorbs thermal elongation.
[0018]
Further, according to the embodiment of the present invention shown in FIG. 5, the sleeve 12 is welded to the condenser upper trunk side plate 16, and the sleeve 12 and the bellows 13, and the bellows 13 and the main steam pipe 5 are Since it welds via the 1st and 2nd support members 14 and 15, the sealing property of a condenser is not impaired.
[0019]
Further, according to the embodiment of the present invention shown in FIG. 5, the expansion joint has a gap (inside the bellows 13) formed by the main steam pipe 5, the bellows 13 and the second support member 15. Open to the outside. As shown in FIG. 7, the expansion joint has a structure in which a gap formed by the main steam pipe 5, the bellows 13, and the second support member 15 is open to the condenser. However, in this case, the air gap becomes an atmosphere in the condenser, drainage is likely to accumulate, and there is a concern about the occurrence of corrosion. Therefore, in the embodiment of the present invention shown in FIG. 5, the gap formed by the main steam pipe 5, the bellows 13, and the second support member 15 is configured to be open to the outside of the condenser. The air gap is made an atmospheric atmosphere to prevent drainage from accumulating.
[0020]
Furthermore, if the sleeve 12 is inclined downward toward the inside of the condenser, it is possible to prevent the drain from accumulating in the sleeve 12.
[0021]
Next, FIG. 8 shows Example 5 of the present invention.
[0022]
In the embodiment of the present invention shown in FIG. 8, the main steam pipe 5 penetrates the side plate of the condenser upper body 3, forms a bent portion in the condenser upper body 3, and then connects to the turbine nozzle 6. Is done. Thereby, when the main steam pipe 5, the steam turbine, and the condenser are thermally stretched, the bent portion of the main steam pipe 5 is bent so that the thermal stretch can be absorbed.
[0023]
Next, FIG. 9 shows Embodiment 6 of the present invention.
[0024]
In the embodiment of the present invention shown in FIG. 9, the main steam pipe 5 is supported by the casing of the condenser upper body 3 in the condenser upper body 3 in a direction perpendicular to the axis of the steam turbine. That is, this is a support system that restricts only the thermal expansion of the main steam pipe 5 in the direction perpendicular to the steam turbine axis and does not impose any restrictions on the thermal expansion in the other direction, the torsion of the main steam pipe 5, and the like. This is to prevent unnecessary force or moment from being applied to the steam turbine due to thermal expansion of the main steam pipe 5 or a cold spring.
[0025]
In the illustrated embodiment, the case where the main steam pipe 5 is connected to the turbine nozzle 6 from the condenser through the side plate of the condenser is illustrated, but a part of the connecting cylinder 2 is a turbine. In the case where the main steam pipe 5 protrudes below the lower surface of the installation floor 19, the same effect can be obtained by connecting the main steam pipe 5 to the turbine nozzle 6 from the connection cylinder 2 through the side plate of the connection cylinder 2. be able to.
[0026]
【The invention's effect】
According to the present invention, a part of the main steam pipe is housed in the condenser, so that the pipe around the steam turbine can be simplified, a space is provided, and the efficiency and safety of construction work and maintenance inspection work are achieved. Can be improved.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing a first embodiment of a steam turbine power generation facility according to the present invention.
FIG. 2 is a structural diagram of a conventional steam turbine power generation facility.
FIG. 3 is a structural diagram showing a second embodiment of the present invention.
FIG. 4 is a structural diagram showing a third embodiment of the present invention.
FIG. 5 is a structural diagram showing a fourth embodiment of the present invention.
FIG. 6 is a diagram illustrating the operation of the fourth embodiment of the present invention.
FIG. 7 is a comparison diagram with a fourth embodiment of the present invention.
FIG. 8 is a structural diagram showing a fifth embodiment of the present invention.
FIG. 9 is a structural diagram showing a sixth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Steam turbine, 2 ... Connection cylinder, 3 ... Condenser upper body, 4 ... Condenser lower body, 5 ... Main steam piping, 6 ... Turbine nozzle, 7 ... Generator, 8 ... High pressure main steam piping, 9 ... high temperature reheat steam pipe, 10 ... low pressure main steam pipe, 11 ... low temperature reheat steam pipe, 12 ... sleeve, 13 ... bellows, 14 ... first support member, 15 ... second support member, 16 ... condensate Upper shell side plate, 17 ... turbine exhaust steam, 18 ... restrent, 19 ... turbine installation floor.

Claims (6)

架台上に設置された蒸気タービンと、蒸気タービンに駆動用蒸気を供給する蒸気発生装置と、蒸気タービンの下方に設置され、蒸気タービンからの排気が流入する復水器とを備えた蒸気タービン発電設備において、
前記蒸気発生装置から蒸気タービンに駆動用蒸気を送気する主蒸気配管を、復水器の側板、あるいは復水器と蒸気タービン間を連結する連結胴の側板を貫通して、前記復水器あるいは連結胴の中からタービンノズルに接続したことを特徴とする蒸気タービン発電設備。
Steam turbine power generation comprising a steam turbine installed on a gantry, a steam generator for supplying driving steam to the steam turbine, and a condenser installed below the steam turbine and into which exhaust from the steam turbine flows In equipment,
A main steam pipe for sending driving steam from the steam generator to the steam turbine passes through a side plate of a condenser or a side plate of a connecting cylinder connecting the condenser and the steam turbine, and the condenser Or the steam turbine power generation equipment characterized by having connected to the turbine nozzle from the inside of a connection cylinder.
請求項1において、復水器側板あるいは連結胴側板における主蒸気配管の貫通部は、伸縮自在のベローズと、前記ベローズを内挿するスリーブと、前記ベローズを前記スリーブに連結する第1の支持部材と、前記ベローズを前記主蒸気配管に連結する第2の支持部材とを備え、前記スリーブの外周を復水器側板貫通部あるいは連結胴側板貫通部に連結する伸縮継手により、前記復水器側板あるいは連結胴側板と主蒸気配管を連結したことを特徴とする蒸気タービン発電設備。In Claim 1, The penetration part of the main steam piping in a condenser side plate or a connection trunk | drum side plate is a telescopic bellows, the sleeve which inserts the said bellows, and the 1st supporting member which connects the said bellows to the said sleeve. And a second support member that connects the bellows to the main steam pipe, and the condenser side plate by an expansion joint that connects the outer periphery of the sleeve to the condenser side plate penetration portion or the connection barrel side plate penetration portion. Alternatively, a steam turbine power generation facility characterized in that a connecting cylinder side plate and a main steam pipe are connected. 請求項2において、伸縮継手は、主蒸気配管とベローズと第2の支持部材によって構築される空隙が、復水器外部あるいは連結胴外部に対して開放されていることを特徴とする蒸気タービン発電設備。3. The steam turbine power generator according to claim 2, wherein the expansion joint has a gap formed by the main steam pipe, the bellows, and the second support member open to the outside of the condenser or the outside of the connecting cylinder. Facility. 請求項2または3において、スリーブは復水器内側あるいは連結胴内側に向かって下り勾配をつけて、復水器側板あるいは連結胴側板に連結されていることを特徴とする蒸気タービン発電設備。4. The steam turbine power generation facility according to claim 2, wherein the sleeve is connected to the condenser side plate or the connection cylinder side plate with a downward slope toward the inside of the condenser or the connection cylinder inside. 請求項1〜4のいずれか1項において、主蒸気配管は、略水平方向より復水器側板あるいは連結胴側板を貫通し、復水器内あるいは連結胴内で曲り部を形成した後、タービンノズルに接続したことを特徴とする蒸気タービン発電設備。5. The main steam pipe according to claim 1, wherein the main steam pipe penetrates the condenser side plate or the connecting cylinder side plate from a substantially horizontal direction and forms a bent portion in the condenser or the connecting cylinder, and then the turbine. A steam turbine power generation facility characterized by being connected to a nozzle. 請求項1〜5のいずれか1項において、主蒸気配管は、復水器内あるいは連結胴内において、蒸気タービンの略軸直角方向の移動を制限するレストレントにより支持されていることを特徴とする蒸気タービン発電設備。6. The main steam pipe according to claim 1, wherein the main steam pipe is supported by a restraint that restricts movement of the steam turbine in a direction substantially perpendicular to the axis in the condenser or the connecting cylinder. Steam turbine power generation equipment.
JP2001061502A 2001-03-06 2001-03-06 Steam turbine power generation equipment Expired - Lifetime JP3754309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001061502A JP3754309B2 (en) 2001-03-06 2001-03-06 Steam turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001061502A JP3754309B2 (en) 2001-03-06 2001-03-06 Steam turbine power generation equipment

Publications (2)

Publication Number Publication Date
JP2002256815A JP2002256815A (en) 2002-09-11
JP3754309B2 true JP3754309B2 (en) 2006-03-08

Family

ID=18920787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001061502A Expired - Lifetime JP3754309B2 (en) 2001-03-06 2001-03-06 Steam turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP3754309B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178341B2 (en) * 2004-06-17 2007-02-20 Siemens Power Generation, Inc. Multi-zone tubing assembly for a transition piece of a gas turbine
JP2008255967A (en) * 2007-04-09 2008-10-23 Fuji Electric Systems Co Ltd Steam turbine device
JP6275765B2 (en) * 2016-03-28 2018-02-07 三菱重工業株式会社 Marine steam turbine module structure
JP6996973B2 (en) * 2017-12-28 2022-01-17 三菱パワー株式会社 A partition wall penetrating structure of the reaction vessel and a boiler having this structure

Also Published As

Publication number Publication date
JP2002256815A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US20030000218A1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US8201410B2 (en) High-temperature steam turbine power plant
US20110268580A1 (en) Axially segmented guide vane mount for a gas turbine
JP4619958B2 (en) Steam turbine control valve and steam turbine power plant
US20030061796A1 (en) Power generating plant
JP3754309B2 (en) Steam turbine power generation equipment
JP2000220411A (en) Thermal power plant
JP2006104951A (en) Steam turbine
US20060201155A1 (en) Steam turbine
US20160281543A1 (en) Combined cycle power plant
JPS588997A (en) Waste heat collecting heat exchanger
JP3238383B2 (en) Condenser integrated low pressure turbine
US5495714A (en) Condenser envelope made of concrete for a structurally independent low pressure module
EP2644868B1 (en) Gas turbine and gas turbine power facilities
JP4076014B2 (en) Waste heat recovery boiler and its installation method
KR200167979Y1 (en) Reinforcement beam structure for supporting the inner thermal insulating material of the heat recovery steam generetor
JP2575555B2 (en) Condenser
CN202300540U (en) Novel turbo generator unit structure system
JP6514490B2 (en) Internally reinforced high-life waste heat recovery boiler equipment
JPH11264501A (en) Waste heat recovery boiler
JPH06294305A (en) Exhaust heat recovery boiler
JP2008255967A (en) Steam turbine device
JP2653570B2 (en) Exhaust heat recovery boiler header support device
KR200167978Y1 (en) Complex heat recovery steam generator
JP2002038906A (en) Steam turbine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R151 Written notification of patent or utility model registration

Ref document number: 3754309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term