JP3753851B2 - Boiler fuel supply change control device - Google Patents

Boiler fuel supply change control device Download PDF

Info

Publication number
JP3753851B2
JP3753851B2 JP34060897A JP34060897A JP3753851B2 JP 3753851 B2 JP3753851 B2 JP 3753851B2 JP 34060897 A JP34060897 A JP 34060897A JP 34060897 A JP34060897 A JP 34060897A JP 3753851 B2 JP3753851 B2 JP 3753851B2
Authority
JP
Japan
Prior art keywords
combustion
fuel supply
supply amount
amount
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34060897A
Other languages
Japanese (ja)
Other versions
JPH11159751A (en
Inventor
則俊 大地
Original Assignee
株式会社サムソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムソン filed Critical 株式会社サムソン
Priority to JP34060897A priority Critical patent/JP3753851B2/en
Publication of JPH11159751A publication Critical patent/JPH11159751A/en
Application granted granted Critical
Publication of JP3753851B2 publication Critical patent/JP3753851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃焼量を段階的に調節しているボイラの燃料供給量変更制御装置に関するものである。
【0002】
【従来の技術】
高燃焼・低燃焼・停止の3位置で燃焼制御を行っているボイラの場合、燃料供給量に合わせて燃焼用空気の供給量も調節する必要がある。風量を調節する手段として、インバータ装置等の回転数制御手段を送風機に接続しておき、送風機の回転数を制御することで燃焼用空気の供給量を調節することが行われている。
送風機回転数の変更は燃料供給量を変更する場合に比べて時間が長くかかり、空気供給量の変更と燃料供給量の変更の出力を同時に行うと、空気と燃料のバランスが崩れる。そのため、先に送風機の回転数を変更する出力を行い、インバータより出力される周波数を検出するなどして送風機の回転数を検出しておき、送風機の回転数が所定の値となった時に燃料供給量を変更する出力が行われている。
【0003】
しかし、空気の密度は温度によって変化しており、ボイラ室の室温つまり燃焼用空気の温度が変動すると送風機の回転数は同じであっても供給される酸素量は変動する。燃料供給量変更時はもともと燃焼が不安定となりやすいうえ、ボイラ室の室温の変化によって燃料供給量を変更する時の酸素供給量が変動し、燃焼用空気の不足や過多が発生すると、燃焼のバランスが崩れて黒煙または白煙が発生し、ボイラの煤詰まりの原因となるという問題があった。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、送風機の回転数を制御しているボイラにおいて、燃料供給量の変更時に燃焼が不安定となることを防ぐことにある。
【0005】
【課題を解決するための手段】
燃料供給量を段階的に調節することで燃焼量を段階的に調節する燃焼装置を持ったボイラであって、燃焼用空気を送る送風機に回転数を制御する回転数制御手段を接続し、回転数制御手段によって送風機の回転数を制御することで、燃焼量に合わせて給気量の調節を行っており、送風機の回転数が燃料供給量変更用の設定値となった時に燃料供給量の変更を行っているボイラにおいて、燃焼用空気の温度を検出する温度計測装置を設けておき、温度計測装置にて計測された空気温度に基づいて燃料供給量変更用の設定値を変更する補正装置を設ける。
【0006】
【発明の実施の形態】
本発明の一実施例を図面を用いて説明する。図1は本発明の一実施例の構成図である。ボイラ1は上部に燃焼装置2が設けられており、燃料供給配管3を通して送られた燃料と、送風機6から送られる燃焼用空気によって燃焼が行われる。燃焼量の制御は燃料供給量と風量を調節することで行われ、燃料の供給量は燃料供給配管3途中に設けた第1電磁弁4と第2電磁弁5によって制御されており、第1電磁弁4および第2電磁弁5が閉じられている場合は燃焼停止、第1電磁弁4のみが開かれると低燃焼、第1電磁弁4および第2電磁弁5が開かれると高燃焼となる。送風機モータ7には回転数制御手段であるインバータ8を接続しておき、インバータ8から出力される周波数によって送風機モータ7の回転数(回転速度)が変更される。ボイラ室の温度を検出する温度計測装置9、温度計測装置9が接続され設定周波数の変更を行う補正装置12を設け、また、インバータ8から出力されている周波数を検出する周波数検出装置11を設けておく。第1電磁弁4および第2電磁弁5の開閉などの燃焼制御とインバータ8による風量調節は、燃焼装置2、第1電磁弁4、第2電磁弁5、インバータ8、補正装置12、周波数検出装置11にそれぞれ接続されている制御装置10にて行われる。
【0007】
図2は本発明の一実施例での燃焼と風量調節の状況を示したタイムチャートであり、制御装置10によって行われる制御を示している。本実施例では燃焼が停止→低燃焼→高燃焼→低燃焼→停止→低燃焼→高燃焼と変動しており、最初のボイラ室の室温は低温であったのが、その後に上昇したため、燃焼に必要な空気の体積量が増加した場合を想定している。
【0008】
補正装置12には基準温度時での第2電磁弁開閉周波数である基準第2電磁弁開閉周波数を設定しておき、また温度計測装置9にて計測した温度から増減値を計算する計算式を持たせておく。補正装置12は温度計測装置9によって計測されたボイラ室の室温を計算式に代入し、基準第2電磁弁開閉周波数から増減させて算出した第2電磁弁開閉周波数の値を制御装置10へ入力する。最初の燃焼停止時に行われる設定周波数の変更では、気温の上昇していない朝であってボイラの燃焼は行われておらず、ボイラ室の温度が低いため、第2電磁弁開閉周波数は比較的小さい値である第2電磁弁開閉周波数▲2▼が設定されたものとする。
【0009】
燃焼が開始され、燃焼状態が低燃焼であるとき制御装置10はインバータ8へ低燃焼を出力し、インバータ8は低燃焼用周波数を送風機モータ7に出力しており、燃焼装置2へ送られる給気量は低燃焼用風量とされる。低燃焼の場合は第1電磁弁4のみが開かれており、第2電磁弁5は閉じられたままである。燃焼量を低燃焼から高燃焼へ変更する場合、制御装置10はインバータ8への出力を高燃焼に変更し、インバータ8では低燃焼用周波数から高燃焼用周波数へ向けて周波数の変更を行い、送風機モータ7の回転数は徐々に上昇する。インバータ8より出力されている周波数が第2電磁弁開閉周波数▲2▼に達したことを周波数検出装置11が検出すると、制御装置10は第2電磁弁を開き、高燃焼を開始する。高燃焼時に送風機モータ7へ出力される周波数は高燃焼用周波数であり、燃焼装置2へ送られる給気量は高燃焼用風量とされる。
【0010】
その後、燃焼量を高燃焼から低燃焼へ変更する場合も同様であり、インバータ8は高燃焼用周波数から低燃焼用周波数へ向けて周波数を変更し、送風機モータ7の回転数は徐々に低下する。インバータ8より出力されている周波数が第2電磁弁開閉周波数▲2▼に達したことを周波数検出装置11が検出すると、制御装置10は第2電磁弁を閉じ、第1電磁弁4のみが開かれている低燃焼に移行する。
【0011】
燃焼が停止されると、制御装置10より出力される周波数は0となり、送風機モータ7も停止する。補正装置12は燃焼を停止している時に設定周波数の変更を行う。補正装置12は温度計測装置9にて計測されたボイラ室の室温を計算式に代入し、計算によって新たに第2電磁弁開閉周波数を設定し、制御装置10へ出力する。この時のボイラ室の室温は、時間の経過による気温の上昇と、ボイラを燃焼させた際に放出された熱によって上昇したため、第2電磁弁開閉周波数は先ほどの値よりも高い値である第2電磁弁開閉周波数▲1▼に設定されたものとする。
【0012】
次の燃焼は新たに設定された周波数で第2電磁弁の開閉が行われる。燃焼が開始されて低燃焼が行われているとき、インバータ8は低燃焼用周波数の周波数を送風機モータ7に出力する。燃焼量を低燃焼から高燃焼へ変更する場合、制御装置10はインバータ8への出力を高燃焼に変更し、インバータ8では低燃焼用周波数から高燃焼用周波数へ向けて周波数の変更を行う。インバータ8より出力されている周波数が第2電磁弁開閉周波数▲1▼に達したことを周波数検出装置11が検出すると、制御装置10は第2電磁弁を開き、高燃焼を開始する。第2電磁弁開閉周波数▲1▼は第2電磁弁開閉周波数▲2▼より高い値に設定されているため、高燃焼が開始される時の給気量は第2電磁弁開閉周波数▲2▼が設定されていた場合よりも多い量とされる。しかし、ボイラ室の温度上昇によって燃焼用空気における密度が低下していることより、燃料供給量を変更する時に実際に送られる空気量は前回同様最適な量となっている。
【0013】
ボイラ室の室温が燃焼用空気の温度であり、空気の温度が低いと空気の密度が高くなり、温度が高いと密度が低くなるため、同じ給気量であっても空気温度が低温の場合には多くの酸素が供給され、高温の場合は供給される酸素量が低下する。そこで上記のように低温時には周波数を低めに設定することで燃料供給量変更時の給気量を少なくし、高温時には周波数を高めに設定することで燃料供給量変更時の給気量を多くすることで、燃料供給量変更時での酸素供給量を適切な量とすることができるようになる。
【0014】
なお、今回の実施例では一日のうちでのボイラ室の温度変化を例示したが、空気の温度を検出して設定値を変更するものであるので、季節の変動による温度変化にも対応することができる。
【0015】
【発明の効果】
本発明を実施することにより、燃料供給量変更時の燃焼用空気供給量を適切な量とすることができ、燃焼が不安定となることを防ぐことができる。
【図面の簡単な説明】
【図1】本発明の一実施例の構成図
【図2】本発明の一実施例のタイムチャート
【符号の説明】
1 ボイラ
2 燃焼装置
3 燃料供給配管
4 第1電磁弁
5 第2電磁弁
6 送風機
7 送風機モータ
8 インバータ
9 温度計測装置
10 制御装置
11 周波数検出装置
12 補正装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel supply amount change control device for a boiler that adjusts a combustion amount in stages.
[0002]
[Prior art]
In the case of a boiler that performs combustion control at three positions of high combustion, low combustion, and stop, it is necessary to adjust the supply amount of combustion air in accordance with the fuel supply amount. As means for adjusting the air volume, rotation speed control means such as an inverter device is connected to the blower, and the supply amount of combustion air is adjusted by controlling the rotation speed of the blower.
Changing the rotational speed of the blower takes a longer time than changing the fuel supply amount, and if the air supply amount change and the fuel supply amount change output are performed simultaneously, the balance between air and fuel is lost. Therefore, the output of changing the rotation speed of the blower is performed first, and the rotation speed of the blower is detected by detecting the frequency output from the inverter. When the rotation speed of the blower reaches a predetermined value, the fuel is An output that changes the supply amount is performed.
[0003]
However, the density of air changes with temperature, and when the room temperature of the boiler chamber, that is, the temperature of combustion air, fluctuates, the amount of oxygen supplied fluctuates even if the rotational speed of the blower is the same. Combustion tends to become unstable when the fuel supply amount is changed, and the oxygen supply amount changes when the fuel supply amount is changed due to changes in the room temperature of the boiler chamber. There was a problem that the balance was lost and black smoke or white smoke was generated, causing boiler clogging.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prevent the combustion from becoming unstable when the fuel supply amount is changed in a boiler that controls the rotational speed of the blower.
[0005]
[Means for Solving the Problems]
It is a boiler with a combustion device that adjusts the amount of combustion in stages by adjusting the fuel supply amount in stages, and a rotation speed control means that controls the rotation speed is connected to a blower that sends combustion air and rotates. The air supply amount is adjusted according to the combustion amount by controlling the rotational speed of the blower by the number control means. When the rotational speed of the blower reaches the set value for changing the fuel supply amount, the fuel supply amount is adjusted. In a boiler that is being changed, a temperature measuring device that detects the temperature of combustion air is provided, and a correction device that changes the set value for changing the fuel supply amount based on the air temperature measured by the temperature measuring device Is provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. The boiler 1 is provided with a combustion device 2 at the top, and combustion is performed by the fuel sent through the fuel supply pipe 3 and the combustion air sent from the blower 6. The amount of combustion is controlled by adjusting the fuel supply amount and the air volume. The fuel supply amount is controlled by a first electromagnetic valve 4 and a second electromagnetic valve 5 provided in the middle of the fuel supply pipe 3. Combustion stops when the solenoid valve 4 and the second solenoid valve 5 are closed, low combustion when only the first solenoid valve 4 is opened, and high combustion when the first solenoid valve 4 and the second solenoid valve 5 are opened. Become. The blower motor 7 is connected to an inverter 8 serving as a rotational speed control means, and the rotational speed (rotational speed) of the blower motor 7 is changed according to the frequency output from the inverter 8. A temperature measuring device 9 for detecting the temperature of the boiler room, a correcting device 12 for connecting the temperature measuring device 9 to change the set frequency, and a frequency detecting device 11 for detecting the frequency output from the inverter 8 are provided. Keep it. Combustion control such as opening and closing of the first solenoid valve 4 and the second solenoid valve 5 and air volume adjustment by the inverter 8 are performed by the combustion device 2, the first solenoid valve 4, the second solenoid valve 5, the inverter 8, the correction device 12, and the frequency detection. This is performed by the control device 10 connected to each of the devices 11.
[0007]
FIG. 2 is a time chart showing the state of combustion and air volume adjustment in one embodiment of the present invention, and shows the control performed by the control device 10. In this example, the combustion fluctuates as stop → low combustion → high combustion → low combustion → stop → low combustion → high combustion, and the room temperature of the first boiler chamber was low, but then increased, so combustion It is assumed that the volume of air necessary for the operation increases.
[0008]
The correction device 12 has a reference second electromagnetic valve opening / closing frequency that is the second electromagnetic valve opening / closing frequency at the reference temperature, and a calculation formula for calculating an increase / decrease value from the temperature measured by the temperature measuring device 9. Keep it. The correction device 12 substitutes the room temperature of the boiler room measured by the temperature measuring device 9 into the calculation formula, and inputs the value of the second electromagnetic valve opening / closing frequency calculated by increasing / decreasing it from the reference second electromagnetic valve opening / closing frequency to the control device 10. To do. When the set frequency is changed when the combustion is stopped for the first time, the combustion of the boiler is not performed in the morning when the temperature is not rising, and the temperature of the boiler chamber is low. It is assumed that the second electromagnetic valve opening / closing frequency (2), which is a small value, is set.
[0009]
When combustion is started and the combustion state is low combustion, the control device 10 outputs low combustion to the inverter 8, and the inverter 8 outputs a low combustion frequency to the blower motor 7 and is supplied to the combustion device 2. The air volume is a low combustion air volume. In the case of low combustion, only the first solenoid valve 4 is open, and the second solenoid valve 5 remains closed. When changing the combustion amount from low combustion to high combustion, the control device 10 changes the output to the inverter 8 to high combustion, and the inverter 8 changes the frequency from the low combustion frequency to the high combustion frequency, The rotational speed of the blower motor 7 gradually increases. When the frequency detection device 11 detects that the frequency output from the inverter 8 has reached the second electromagnetic valve opening / closing frequency (2), the control device 10 opens the second electromagnetic valve and starts high combustion. The frequency output to the blower motor 7 at the time of high combustion is the high combustion frequency, and the amount of air supplied to the combustion device 2 is the high combustion air volume.
[0010]
Thereafter, the same applies to the case where the combustion amount is changed from high combustion to low combustion. The inverter 8 changes the frequency from the high combustion frequency to the low combustion frequency, and the rotational speed of the blower motor 7 gradually decreases. . When the frequency detection device 11 detects that the frequency output from the inverter 8 has reached the second electromagnetic valve opening / closing frequency (2), the control device 10 closes the second electromagnetic valve and opens only the first electromagnetic valve 4. Transition to low combustion.
[0011]
When the combustion is stopped, the frequency output from the control device 10 becomes 0, and the blower motor 7 is also stopped. The correction device 12 changes the set frequency when the combustion is stopped. The correction device 12 substitutes the room temperature of the boiler room measured by the temperature measurement device 9 into the calculation formula, newly sets the second electromagnetic valve opening / closing frequency by calculation, and outputs it to the control device 10. Since the room temperature of the boiler chamber at this time rose due to the rise in temperature over time and the heat released when the boiler was burned, the second solenoid valve opening / closing frequency was higher than the previous value. 2 It is assumed that the solenoid valve opening / closing frequency (1) is set.
[0012]
In the next combustion, the second electromagnetic valve is opened and closed at a newly set frequency. When the combustion is started and the low combustion is performed, the inverter 8 outputs the frequency of the low combustion frequency to the blower motor 7. When changing the combustion amount from low combustion to high combustion, the control device 10 changes the output to the inverter 8 to high combustion, and the inverter 8 changes the frequency from the low combustion frequency to the high combustion frequency. When the frequency detection device 11 detects that the frequency output from the inverter 8 has reached the second electromagnetic valve opening / closing frequency (1), the control device 10 opens the second electromagnetic valve and starts high combustion. Since the second solenoid valve opening / closing frequency {circle around (1)} is set to a value higher than the second solenoid valve opening / closing frequency {circle around (2)}, the air supply amount when the high combustion is started is the second solenoid valve opening / closing frequency {circle around (2)}. The amount is larger than the case where is set. However, since the density in the combustion air is reduced due to the temperature rise in the boiler chamber, the amount of air actually sent when changing the fuel supply amount is the same as the previous time.
[0013]
The room temperature of the boiler room is the temperature of the combustion air, and if the air temperature is low, the density of the air is high, and if the temperature is high, the density is low. Is supplied with a large amount of oxygen, and the amount of oxygen supplied decreases at high temperatures. Therefore, as described above, when the temperature is low, the frequency is set lower to reduce the air supply amount when changing the fuel supply amount, and when the temperature is high, the frequency is set higher to increase the air supply amount when changing the fuel supply amount. Thus, the oxygen supply amount at the time of changing the fuel supply amount can be set to an appropriate amount.
[0014]
In addition, although the temperature change of the boiler room in one day was illustrated in the present embodiment, the setting value is changed by detecting the temperature of the air, so that it corresponds to the temperature change due to seasonal fluctuations. be able to.
[0015]
【The invention's effect】
By carrying out the present invention, it is possible to make the combustion air supply amount appropriate when changing the fuel supply amount, and to prevent the combustion from becoming unstable.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention. FIG. 2 is a time chart of an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Boiler 2 Combustion apparatus 3 Fuel supply piping 4 1st solenoid valve 5 2nd solenoid valve 6 Blower 7 Blower motor 8 Inverter 9 Temperature measurement apparatus 10 Control apparatus 11 Frequency detection apparatus 12 Correction apparatus

Claims (1)

燃料供給量を段階的に調節することで燃焼量を段階的に調節する燃焼装置を持ったボイラであって、燃焼用空気を送る送風機に回転数を制御する回転数制御手段を接続し、回転数制御手段によって送風機の回転数を制御することで、燃焼量に合わせて給気量の調節を行っており、送風機の回転数が燃料供給量変更用の設定値となった時に燃料供給量の変更を行っているボイラにおいて、
燃焼用空気の温度を検出する温度計測装置、温度計測装置にて計測された空気温度に基づいて燃料供給量変更用の設定値を変更する補正装置を設けておき、
燃焼量の小さな低燃焼から燃焼量の大きな高燃焼へ燃焼量を変更する場合には、まず送風機の回転数を徐々に増加させ、空気温度に基づいて設定した燃料供給量変更用の設定値に送風機の回転数が達すると、燃料供給量を増加して高燃焼を開始し、
燃焼量の大きな高燃焼から燃焼量の小さな低燃焼へ燃焼量を変更する場合には、まず送風機の回転数を徐々に低下させ、空気温度に基づいて設定した燃料供給量変更用の設定値に送風機の回転数が達すると、燃料供給量を減少して低燃焼を開始することを特徴とするボイラの燃料供給量変更制御装置。
It is a boiler with a combustion device that adjusts the amount of combustion in stages by adjusting the fuel supply amount in stages, and a rotation speed control means that controls the rotation speed is connected to a blower that sends combustion air and rotates. The air supply amount is adjusted according to the combustion amount by controlling the rotational speed of the blower by the number control means. When the rotational speed of the blower reaches the set value for changing the fuel supply amount, the fuel supply amount is adjusted. In the boiler that is changing,
A temperature measuring device for detecting the temperature of the combustion air, and a correction device for changing the set value for changing the fuel supply amount based on the air temperature measured by the temperature measuring device ;
When changing the combustion amount from low combustion with small combustion amount to high combustion with large combustion amount, first increase the rotational speed of the blower gradually to the set value for changing the fuel supply amount set based on the air temperature When the rotation speed of the blower reaches, increase the fuel supply amount and start high combustion,
When changing the combustion amount from high combustion with a large amount of combustion to low combustion with a small amount of combustion, first reduce the rotational speed of the blower gradually to the set value for changing the fuel supply amount set based on the air temperature. A fuel supply amount change control device for a boiler, wherein when the rotation speed of the blower reaches, the fuel supply amount is decreased and low combustion is started .
JP34060897A 1997-11-25 1997-11-25 Boiler fuel supply change control device Expired - Fee Related JP3753851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34060897A JP3753851B2 (en) 1997-11-25 1997-11-25 Boiler fuel supply change control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34060897A JP3753851B2 (en) 1997-11-25 1997-11-25 Boiler fuel supply change control device

Publications (2)

Publication Number Publication Date
JPH11159751A JPH11159751A (en) 1999-06-15
JP3753851B2 true JP3753851B2 (en) 2006-03-08

Family

ID=18338614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34060897A Expired - Fee Related JP3753851B2 (en) 1997-11-25 1997-11-25 Boiler fuel supply change control device

Country Status (1)

Country Link
JP (1) JP3753851B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551265B2 (en) * 2005-04-12 2010-09-22 株式会社サムソン Thermal equipment that adjusts the air supply for combustion
JP6003792B2 (en) * 2013-05-01 2016-10-05 三浦工業株式会社 boiler

Also Published As

Publication number Publication date
JPH11159751A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JPH02256813A (en) Re-burner for particulate trap
JP3753851B2 (en) Boiler fuel supply change control device
JPS62190322A (en) Device for controlling combustion
JP3558800B2 (en) Control method of furnace pressure
JPH1082523A (en) Method for controlling pressure in furnace
JPH11236824A (en) Fuel gas heating control system for gas turbine
JPS6115397Y2 (en)
JP2004513317A (en) Combustion device for cooking appliance and cooking appliance equipped with such a combustion device
KR0153711B1 (en) Combustion apparatus
JP3185504B2 (en) Combustion control device
JP2669662B2 (en) Water heater control device
JP2564722B2 (en) Gas combustion equipment
JP3799762B2 (en) Combustion device
JP2771944B2 (en) Combustion equipment
JPH10122555A (en) Air capacity control method by inverter device of boiler
JPH11344218A (en) Combustion equipment
JPH09243058A (en) Combustion control apparatus for boiler
JP3713076B2 (en) Combustor control device and control method
JP2000240937A (en) Combustion apparatus
JPH07253211A (en) Fan controller
JPS6249123A (en) Combustion control device
JPH06221553A (en) Combustion control method of combustor
JPH10176827A (en) Combustion device
JPS58148314A (en) Burning control method for boiler
JPH0227325Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees