JP3753762B2 - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler Download PDF

Info

Publication number
JP3753762B2
JP3753762B2 JP24338795A JP24338795A JP3753762B2 JP 3753762 B2 JP3753762 B2 JP 3753762B2 JP 24338795 A JP24338795 A JP 24338795A JP 24338795 A JP24338795 A JP 24338795A JP 3753762 B2 JP3753762 B2 JP 3753762B2
Authority
JP
Japan
Prior art keywords
pressure
economizer
evaporator
exhaust gas
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24338795A
Other languages
Japanese (ja)
Other versions
JPH0988516A (en
Inventor
淳夫 河原
利則 重中
和弘 武永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP24338795A priority Critical patent/JP3753762B2/en
Publication of JPH0988516A publication Critical patent/JPH0988516A/en
Application granted granted Critical
Publication of JP3753762B2 publication Critical patent/JP3753762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複合発電プラントにおいて、特に熱回収が効率的に行え、プラント性能の高効率化ができるように給水系統及び給水装置を配置した排熱回収ボイラに関する。
【0002】
【従来の技術】
複合発電プラントにおいては、例えば図7の複合発電プラントの概略系統図に示すように、ガスタービン開放サイクル部と排熱回収ボイラと蒸気タービンサイクル部と発電機を備えて構成されている。図7の排熱回収ボイラは高圧、中圧、低圧からなる三重圧ボイラの例である。
【0003】
ガスタービン開放サイクル部では、ガスタービン4で発電を行うと共に、ガスタービン4で仕事をした排ガスを排ガス通路6へ排出する。排出された高温の排ガスは排ガス通路6を経て排熱回収ボイラ5に導入され排ガス中の熱が回収される。また、蒸気タービンサイクル部では、排熱回収ボイラで発生した蒸気により蒸気タービン7でサイクル発電を行う。
【0004】
このような複合発電プラントは、ガスタービン4と蒸気タービン7による複合発電を行うために発電効率が高いことと、ガスタービン4による発電が負荷応答性に優れていることから、急激な電力需要の変化に対する追従性が高いことなどの特徴がある。特に最近の高頻度の起動停止(Daily Start Stop、以下、DSSとする)を行う運転には有効である。
【0005】
複合発電プラントにおける排熱回収ボイラの蒸気タービンへの蒸気供給系(以下、蒸気系とする)について図7で説明する。図7では排熱回収ボイラ5内に構成されている給水に係る装置(以下、給水系とする)の記載をドラムを除き省略している。
【0006】
ガスタービン4では、空気供給管1からの燃焼用空気と燃料供給管2からの燃料とが燃焼器において混合され、燃焼されることによって生じた燃焼ガスでガスタービン4を回転し、発電機によって発電が行われる。ガスタービン4を回転させて仕事をした燃焼ガスは排ガスとなって、排ガス通路6である高温ダクトを経て排熱回収ボイラ5へ導入される。
【0007】
一方、復水器8からの復水は低圧給水ポンプ9から排熱回収ボイラ内に構成されている図示していない給水系に送られる。排熱回収ボイラ5では排ガスの熱を効率よく熱回収するために、給水系と蒸気系が工夫された配置になっている。
【0008】
排熱回収ボイラ5へ導入された排ガスは、排熱回収ボイラ5内の給水系によって熱を回収され、蒸気を発生させる。
【0009】
上流側の高圧ドラム30で発生した蒸気は高圧過熱器35で過熱され、高圧主蒸気管39を経由して蒸気タービン7の高圧部Aへ送られ、蒸気タービン7を回転する動力として使用される。高圧部Aで仕事をした蒸気は再利用のために低温再熱管40を通って再熱器36へ送られる。また中圧ドラム25で発生した蒸気は中圧過熱器37で過熱され、中圧主蒸気管42を経由して低温再熱管40へ送られ、前記高圧部Aで仕事をした蒸気と合流して、再熱器36へ送られる。再熱器36で蒸気は過熱され、高温再熱管41を通って蒸気タービン7の中圧部Bへ送られ、蒸気タービン7を回転する動力として使用される。さらに下流側の低圧ドラム14で発生した蒸気は低圧過熱器38で過熱され、低圧主蒸気管43を通って、前記高圧部Bで仕事をした蒸気と合流して、蒸気タービン7の低圧部Cへ送られ、蒸気タービン7を回転する動力として使用される。このようにして蒸気タービン7で仕事を終えた蒸気は復水器8に送られて復水される。復水は再び低圧給水ポンプ9から排熱回収ボイラ内の給水系に送られる。
【0010】
次に、従来技術である排熱回収ボイラの給水系を図8、図9で説明する。図8に示す排熱回収ボイラの給水系は特開平6−185309号に開示されているものである。
【0011】
図8、図9においては、図7で説明した蒸気系は省略してあり、ここでも排熱回収ボイラは高圧、中圧、低圧からなる三重圧ボイラの例である。
【0012】
図8において、低圧給水ポンプ9から約30℃の給水が給水配管10を通って、低圧蒸発器21の下流側の排ガス流路に配置された低圧節炭器11に送られ、排ガスの熱回収を行う。低圧節炭器11で熱を回収して約150℃になった給水は給水配管12を通って、給水調整弁13を経由して低圧ドラム14へ送られ、低圧蒸発器21での熱回収によって低圧蒸気を発生するのに使用されると共に、給水調整弁13の上流側から分岐した給水配管15を通って高圧給水ポンプ16へ送られる。
【0013】
高圧給水ポンプ16へ送られた給水は給水配管17を通って、中圧蒸発器26と低圧蒸発器21の間であって中圧節炭器22の上流の排ガス流路に配置された高圧節炭器27(図8では高圧節炭器27a、27bに分割されている。)へ送られると共に、高圧給水ポンプ16の中間段にある吐出口から抽水され、抽水管16aを経由して給水配管20を通り、中圧蒸発器26と低圧蒸発器21の間であって高圧節炭器27の下流の排ガス流路に配置された中圧節炭器22へ送られる。
【0014】
前記高圧節炭器27及び中圧節炭器22へ送られた給水はそれぞれ給水調整弁29、24を経由してそれぞれ高圧ドラム30及び中圧ドラム25へ送られ、高圧蒸発器31及び中圧蒸発器26での熱回収によって高圧蒸気及び中圧蒸気を発生するのに使用される。低圧節炭器11へ送られ、約150℃になった給水の一部は再循環配管18を通って、再循環調整弁19を経由して低圧節炭器11の入口側の給水配管10に再循環され、低圧節炭器11の入口側の給水温度を約30℃から約50℃まで上昇させ、低圧節炭器11のチューブ外表面で排ガス中の水分が結露するのを防止する、いわゆる低温腐食の防止を行っている。
【0015】
しかしながら、このような給水系においては、高圧給水ポンプ16に低圧節炭器11で熱回収され、約150℃と高温に加熱された給水が送りこまれることから、高圧給水ポンプ16の熱変形が大きくなり、特にDSS運用を行う場合には前記熱変形によって発生する熱応力が繰り返し作用し、高圧給水ポンプ16の破損につながるといった問題があった。
【0016】
この対策として、図9に示すような給水系がある。図9に示す排熱回収ボイラの給水系は電気新聞平成7年5月10日号で開示されている。
【0017】
図9に示す装置が図8のそれとほぼ同一の装置の組み合わせからなるが、図8のそれと異なるところは、高圧給水ポンプ16を低圧給水ポンプ9からの給水配管10に設けたことと、図8の低圧節炭器11と中圧節炭器22の機能を合わせ持たせた中圧節炭器22を低圧蒸発器21の下流の排ガス流路に設け、高圧給水ポンプ16の中間段からの抽水を給水配管23と12によって中圧ドラム25と低圧ドラム14に送ると共に、再循環配管18によって再循環調整弁19を経由して高圧給水ポンプ16入口側に戻すようにしたことである。
【0018】
このような給水系を構成することによって、高圧給水ポンプ16へは、低圧給水ポンプ9からの約30℃の給水と再循環配管18からの約150℃の給水が混合して約50℃の適温になった給水が供給され、中圧節炭器22及び高圧節炭器27の低温腐食を防止すると共に、高圧給水ポンプ16の熱変形により発生する熱応力を防止するものである。
【0019】
【発明が解決しようとする課題】
以上説明した従来技術には次のような問題点があった。
すなわち、図8に示す従来技術では、高圧給水ポンプ16に低圧節炭器11で熱回収して加熱された約150℃の高温の給水が送りこまれることから、高圧給水ポンプ16の熱変形が大きくなり、特にDSS運用を行う場合には前記熱変形によって発生する熱応力が繰り返し作用し、高圧給水ポンプ16の破損につながるといった問題があった。
【0020】
次に、図9に示す従来技術では、高圧給水ポンプ16を低圧給水ポンプ9からの給水配管10に設けると共に、中圧節炭器22で熱回収して加熱された約150℃の高温の給水を再循環配管18を経て、高圧給水ポンプ16の入口側の給水配管10に戻し、低圧給水ポンプ9からの低温の約30℃の給水に合流するようにしたことで、高圧給水ポンプ16への入口給水温度を約50℃に低減でき、高圧給水ポンプ16の熱変形により発生する熱応力を防止することはできるようになった。
【0021】
一方、図9に示す従来技術では、高圧ドラム30への給水を高圧給水ポンプ16から高圧蒸発器31と中圧蒸発器26の間の排ガス流路に配置した高圧節炭器27によって行っているため、高圧給水ポンプ16からの約50℃の低温の給水は、高圧節炭器27によって高圧ドラム30の飽和蒸気温度である約320℃の近傍の給水温度(約310℃)まで昇温されることになる。
【0022】
しかしながら、前記昇温される給水温度の差が大きく、熱回収による排ガス温度の降下幅が大きくなることから、高圧節炭器27入口での排ガス温度が低い場合には、高圧節炭器27での排ガス温度降下によって、高圧節炭器27出口の排ガスの温度が下流の排ガス流路に配置した中圧蒸発器26の飽和温度を下回り、中圧蒸気が発生しないことになり、熱回収が効果的に行えない。
【0023】
従って、図9に示す従来技術においては、高圧節炭器27での排ガス温度降下によっても中圧蒸発器26で十分な蒸発量を得るために、高圧蒸発器31の伝熱面積を減少することで、高圧蒸発器31での熱回収を減少させ、高圧節炭器27入口での排ガス温度を高くしている。しかしながら、図9に示す従来技術では図10に示す従来の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性図に示すように、高圧節炭器27入口での排ガス温度を上昇した分だけ熱回収が行われないことになり、約600℃の入口ガス温度に対し、出口ガス温度が約180℃となり、プラント性能が低いといった問題があった。
【0024】
また、前記の対策として前記高圧蒸発器31の伝熱面積を減少させると共に、中圧蒸発器26及び低圧蒸発器21の伝熱面積を大幅に増加させ、蒸発量の減少を補うことも考えられるが、最も効率のよい高圧蒸気の発生量を制限し、効率で劣る中圧蒸気及び低圧蒸気の発生量を増加することであり、全体的なプラント性能を低下させることになり、効果的な改善ではない。
【0025】
さらに、図9に示す従来技術では、中圧ドラム25への給水を高圧給水ポンプ16の中間段から低圧蒸発器21の下流の排ガス流路に配置した中圧節炭器22によって行っているため、中圧節炭器22での熱回収によって約150℃に加熱された給水が中圧ドラム25に給水されるが、この場合中圧ドラム25の飽和蒸気温度が約230℃であることから、給水との温度差が約80℃あり、給水によって中圧ドラム25において過大な熱応力が発生するといった問題があった。
【0026】
本発明の課題は、排ガスの熱回収が効率的に行え、プラント性能の高効率化ができると共に、ドラムでの過大な熱応力の発生を防止できる給水系統及び給水装置を有する排熱回収ボイラを提供することにある。
【0027】
【発明を解決するための手段】
本発明の上記課題は次の解決手段によって達成される。
すなわち、ガスタービンからの排ガス流路に設けられ、復水器からの復水を低圧と高圧の給水ポンプにより低圧、中圧及び高圧レベルの三重圧または中圧と高圧の二重圧などの複圧に昇圧し、各圧力レベルの節炭器を経て各圧力レベルのドラムに給水する給水系と、各圧力レベルの蒸発器の伝熱管群において排ガスの熱を回収して蒸気を発生させると共に、発生した蒸気を各圧力レベルのドラムからそれぞれの圧力レベルの過熱器を経て蒸気タービンへ供給する蒸気系とから構成され、少なくとも節炭器の低温腐食を防止するため、節炭器で熱回収した高温の給水の一部を再循環配管により高圧の給水ポンプ入口の上流側の給水配管に戻す、給水の再循環系を有する排熱回収ボイラにおいて、高圧給水ポンプからの高圧ドラムへの給水を排ガス流路の2か所以上に分割して配置した高圧節炭器により行うと共に、高圧給水ポンプからの中圧ドラムへの給水を排ガス流路の2か所以上に分割して配置した中圧節炭器により行う排熱回収ボイラである。
【0028】
本発明の上記排熱回収ボイラのより具体的な構成としては、高圧ドラムへの給水を高圧給水ポンプから中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第一の高圧節炭器を経て、さらに高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第二の高圧節炭器により行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から低圧蒸発器の下流の排ガス流路に配置した第一の中圧節炭器を経て、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第二の中圧節炭器を経由して行う構成、
または、高圧ドラムへの給水を高圧給水ポンプから低圧蒸発器の下流の排ガス流路に配置した第一の高圧節炭器と、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第二の高圧節炭器を順次経て、さらに高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第三の高圧節炭器を経由して行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から低圧蒸発器の下流の排ガス流路に配置した第一の中圧節炭器を経て、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第二の中圧節炭器を経由して行う構成、
または、高圧ドラムへの給水を高圧給水ポンプから中圧蒸発器と低圧蒸発器の間の排ガス流路に第二の中圧節炭器を挟んで分割して配置した第一の高圧節炭器と第二の高圧節炭器を順次経て、高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第三の高圧節炭器を経由して行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から低圧蒸発器の下流の排ガス流路に配置した第一の中圧節炭器を経て、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した前記第二の中圧節炭器を経由して行う構成、
または、高圧ドラムへの給水を高圧給水ポンプから中圧蒸発器と低圧蒸発器の間の排ガス流路に第一の中圧節炭器を挟んで分割して配置した第一の高圧節炭器と第二の高圧節炭器を順次経て、高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第三の高圧節炭器を経由して行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から中圧蒸発器と低圧蒸発器の間の排ガス流路に前記第二の高圧節炭器を挟んで分割して配置した前記第一の中圧節炭器と第二の中圧節炭器を順次経由して行う構成としても良い。
【0029】
また、本発明の上記排熱回収ボイラにおいて、高圧節炭器と中圧節炭器をそれぞれ二つ以上に分割し、各分割された高圧節炭器の少なくとも一つを高圧蒸発器と中圧蒸発器の間の排ガス流路に配置し、他の少なくとも一つの高圧節炭器を中圧蒸発器と低圧蒸発器の間または低圧蒸発器の下流側の排ガス流路に配置し、各分割された中圧節炭器の少なくとも一つを中圧蒸発器と低圧蒸発器の間の排ガス流路に配置し、他の少なくとも一つの中圧節炭器を低圧蒸発器の下流側の排ガス流路に配置すること、
または、二つに分割した中圧節炭器の少なくとも第一の中圧節炭器の出口給水を低圧ドラムと第二の中圧節炭器にそれぞれ別個に供給し、第二の中圧節炭器の出口給水を中圧ドラムに供給する構成としても良い。
【0030】
また、本発明の排熱回収ボイラにおいては、低圧蒸発器の下流側の排ガス流路に配置される高圧節炭器と中圧節炭器または中圧蒸発器と低圧蒸発器の間の排ガス流路に配置される高圧節炭器と中圧節炭器をそれぞれ排ガス流れに対して並列に配置することができる。
【0031】
【作用】
本発明によれば、高圧ドラムへの給水をガス流路の2か所以上に分割して配置した高圧節炭器により行うので、高圧節炭器において効率的な熱回収が行える。また、中圧ドラムへの給水をガス流路の2か所以上に分割して配置した中圧節炭器により行うので、中圧節炭器において効率的な熱回収が行えると共に、高圧給水ポンプからの低温の給水を中圧ドラムで熱応力が発生しない程度の適正な温度に昇温して中圧ドラムに給水することができる。
【0032】
さらに本発明によれば、図5、図6の本発明の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性図に示すように、ボイラ入口の排ガス温度約600℃に対してボイラ出口で約100℃と、排ガスの熱回収が、図10に示す従来技術のプラントに比べ約20%増加するので、プラント性能において約5%の高効率化ができる。
【0033】
さらに、高圧節炭器及び中圧節炭器の分割を総伝熱面積あるいは総熱回収量を一定として行うことで、本発明を既存の設備の改善にも実施できる。
【0034】
【発明の実施の形態】
以下、図面を参照して本発明の一実施例について説明する。
図1に本発明の一実施例である排熱回収ボイラの給水系統図を示し、各過熱器については記載していない。
【0035】
図1において、排熱回収ボイラの排ガス流路の下流側から上流側に順に中圧一次節炭器22a、低圧蒸発器21、高圧一次節炭器27a、中圧二次節炭器22b、中圧蒸発器26、高圧二次節炭器27b、高圧蒸発器31が配置されている。そして、図1において、排熱回収ボイラへの給水入口側に低圧給水ポンプ9を設置し、低圧給水ポンプ9からの出口給水配管10を直接に高圧給水ポンプ16の入口に接続している。高圧給水ポンプ16により高圧一次節炭器27aを経て高圧二次節炭器27bを通り、高圧ドラム30に給水が行われる。
【0036】
また、高圧給水ポンプ16中間段から低圧蒸発器21の下流の排ガス流路に配置された中圧一次節炭器22aを経て、中圧二次節炭器22bを通り中圧ドラム25に給水が行われる。
【0037】
高圧給水ポンプ16からの約50℃の給水は、高圧一次節炭器27aでの熱回収によって約220℃に昇温された後、さらに高圧二次節炭器27bでの熱回収によって約310℃に昇温され、高圧ドラム30に給水される。従って、従来例のように高圧節炭器での過大な熱回収によって排ガス温度が極端に低下することがない。
【0038】
また、高圧給水ポンプ16中間段からの約50℃の給水は、中圧一次節炭器22aでの熱回収によって約150℃に昇温された後、中圧二次節炭器22bでの熱回収によって約220℃に昇温され、中圧ドラム25に給水される。ここで中圧蒸発器26の飽和温度は約230℃であることから、給水温度との差は約10℃まで低減でき、熱応力の発生が防止される。
【0039】
本発明の実施例によって、図5の本発明の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性図に示すように、ボイラ入口の排ガス温度約600℃に対してボイラ出口で約100℃と、排ガスの熱回収が効率的に行える。
【0040】
なお、本実施例では、中圧蒸発器26と低圧蒸発器21の間の排ガス流路おいて、高圧一次節炭器27aを中圧二次節炭器22bの下流に配置したが、高圧一次節炭器27aを中圧二次節炭器22bのガス上流又は並列に配置しても排ガスの熱回収において問題がないため、同様の効果が得られる。
【0041】
本発明の他の実施例を図2、図3、図4を用いてそれぞれ説明する。
図2に示す実施例では、排熱回収ボイラの排ガス流路の下流側から上流側に順に高圧一次節炭器27a、中圧一次節炭器22a、低圧蒸発器21、高圧二次節炭器27b、中圧二次節炭器22b、中圧蒸発器26、高圧三次節炭器27cおよび高圧蒸発器31が配置されている。
【0042】
そして、排熱回収ボイラへの給水入口側に低圧給水ポンプ9を設置し、低圧給水ポンプ9からの出口給水配管10を直接に高圧給水ポンプ16の入口に接続し、高圧給水ポンプ16により高圧一次節炭器27aと高圧二次節炭器27bを順次経て、高圧三次節炭器27cを通り高圧ドラム30に給水が行われる。
【0043】
また、高圧給水ポンプ16中間段からは中圧一次節炭器22aと中圧二次節炭器22bを順次通り、中圧ドラム25に給水が行われる。
【0044】
高圧給水ポンプ16からの約50℃の給水は、高圧一次節炭器27aでの熱回収によって約120℃に昇温された後、高圧二次節炭器27bでの熱回収によって約210℃に昇温され、さらに高圧三次節炭器27cでの熱回収によって約310℃に昇温されて高圧ドラム30に給水される。従って、従来例のように高圧節炭器での過大な熱回収によって排ガス温度が極端に低下することがなく、各節炭器で無理なく効率的に熱回収が行われる。
【0045】
また、高圧給水ポンプ16中間段からの約50℃の給水は、中圧一次節炭器22aでの熱回収によって約150℃に昇温された後、中圧二次節炭器22bでの熱回収によって約220℃に昇温され、中圧ドラム25に給水される。ここで中圧蒸発器26の飽和温度は約230℃であることから、給水温度との差は約10℃まで低減でき、熱応力の発生が防止される。
【0046】
本発明の前記実施例によって、図6は本発明の図2に示す実施例の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性図に示すように、ボイラ入口の排ガス温度約600℃に対してボイラ出口で約100℃と、排ガスの熱回収が効率的に行える。
【0047】
なお、本実施例では低圧蒸発器21の下流及び中圧蒸発器26と低圧蒸発器21の間の排ガス流路おいて、高圧一次節炭器27aを中圧一次節炭器22aの下流側に配置し、高圧二次節炭器27bを中圧二次節炭器22bの下流側に配置したが、高圧一次節炭器27a及び高圧二次節炭器27bをそれぞれ中圧一次節炭器22a及び中圧二次節炭器22bの上流または並列に配置しても排ガスの熱回収において問題がないため、同様の効果が得られる。
【0048】
次に、図3に示す実施例では、排熱回収ボイラの排ガス流路の下流側から上流側に順に中圧一次節炭器22a、低圧蒸発器21、高圧一次節炭器27a、中圧二次節炭器22b、高圧二次節炭器27b、中圧蒸発器26、高圧三次節炭器27cおよび高圧蒸発器31が配置されている。
【0049】
排熱回収ボイラへの給水入口側に低圧給水ポンプ9を設置し、低圧給水ポンプ9からの出口給水配管10を直接に高圧給水ポンプ16の入口に接続し、高圧給水ポンプ16により高圧一次節炭器27aと高圧二次節炭器27bを順次経て、さらに高圧三次節炭器27cによって高圧ドラム30に給水が行われる。
【0050】
また、高圧給水ポンプ16の中間段からは中圧一次節炭器22aと中圧二次節炭器22bを順次経て、中圧ドラム25に給水が行われる。
【0051】
高圧給水ポンプ16からの約50℃の給水は、高圧一次節炭器27aでの熱回収によって約120℃に昇温された後、高圧二次節炭器27bでの熱回収によって約210℃に昇温され、さらに高圧三次節炭器27cでの熱回収によって約310℃に昇温されて高圧ドラム30に給水される。従って、従来例のように高圧節炭器での過大な熱回収によって排ガス温度が極端に低下することがなく、各節炭器27a〜27cで無理なく効率的に熱回収が行われる。
【0052】
また、高圧給水ポンプ16中間段からの約50℃の給水は、中圧一次節炭器22aでの熱回収によって約150℃に昇温された後、中圧二次節炭器22bでの熱回収によって約220℃に昇温され、中圧ドラム25に給水される。ここで中圧蒸発器26の飽和温度は約230℃であることから、給水温度との差は約10℃まで低減でき、熱応力の発生が防止される。
【0053】
本発明の図3に示す実施例の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性は、図示していないが、ボイラ入口の約600℃の排ガスがボイラ出口で約100℃になる。
【0054】
次に、図4に示す実施例では、排熱回収ボイラの排ガス流路の下流側から上流側に順に低圧節炭器11、低圧蒸発器21、高圧一次節炭器27a、中圧一次節炭器22a、高圧二次節炭器27b、中圧二次節炭器22b、中圧蒸発器26、高圧三次節炭器27cおよび高圧蒸発器31が配置されている。
【0055】
排熱回収ボイラへの給水入口側の低圧給水ポンプ9からの出口給水配管10を直接に高圧給水ポンプ16の入口に接続し、高圧給水ポンプ16の上流から分岐して低圧節炭器11を経て、低圧ドラム14に給水が行われる。また高圧給水ポンプ16により高圧一次節炭器27aと高圧二次節炭器27bを順次経て、さらに高圧三次節炭器27cを経由して高圧ドラム30に給水が行われる。
【0056】
また、高圧給水ポンプ16中間段から中圧一次節炭器22aと中圧二次節炭器22bを順次経由して中圧ドラム25に給水が行われる。
【0057】
また、中圧一次節炭器22aと中圧二次節炭器22bを接続する給水配管23bから再循環配管18が分岐され、高圧給水ポンプ16入口の給水配管10に戻される。再循環配管18の給水配管10への接続部は、給水配管10から分岐した低圧節炭器11への給水配管20の分岐部より上流側にある。そして、再循環配管18からの給水は、低圧給水ポンプ9からの給水の温度を約50℃とし、各節炭器の低温腐食を防止している。
【0058】
高圧給水ポンプ16からの約50℃の給水は、高圧一次節炭器27aでの熱回収によって約120℃に昇温された後、高圧二次節炭器27bでの熱回収によって約210℃に昇温され、さらに高圧三次節炭器27cでの熱回収によって約310℃に昇温され高圧ドラム30に給水される。従って、従来例のように高圧節炭器での過大な熱回収によって排ガス温度が極端に低下することがなく、各節炭器で無理なく効率的に熱回収が行われる。
【0059】
また、高圧給水ポンプ16中間段からの約50℃の給水は、中圧一次節炭器22aでの熱回収によって約150℃に昇温された後、中圧二次節炭器22bでの熱回収によって約220℃に昇温され、中圧ドラム25に給水される。ここで、中圧蒸発器26の飽和温度は約230℃であることから、給水温度との差は約10℃まで低減でき、熱応力の発生が防止される。
【0060】
中圧蒸発器26と低圧蒸発器21の間の排ガス流路に配置される高圧節炭器27と中圧節炭器22は互いにその排ガス流路内での配置を置き換えてもまたは並列に配置しても排ガスの熱回収において問題がないため、同様の効果が得られる。
【0061】
【発明の効果】
本発明によれば、高圧ドラムへの給水をガス流路の2か所以上に分割して配置した高圧節炭器を経由して行い、また、中圧ドラムへの給水をガス流路の2か所以上に分割して配置した中圧節炭器を経由して行うので、排ガスの熱回収が効率的に行え、プラント性能の高効率化ができると共に、ドラムでの過大な熱応力の発生を防止できる給水系統及び給水装置を有する排熱回収ボイラを提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例の排熱回収ボイラの給水系統を示す図である。
【図2】 本発明の一実施例の排熱回収ボイラの給水系統を示す図である。
【図3】 本発明の一実施例の排熱回収ボイラの給水系統を示す図である。
【図4】 本発明の一実施例の排熱回収ボイラの給水系統を示す図である。
【図5】 本発明の一実施例の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性を示す図である。
【図6】 本発明の一実施例の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性を示す図である。
【図7】 排熱回収ボイラを有する複合発電プラントの概略の系統を示す図である。
【図8】 従来技術の排熱回収ボイラの給水系統を示す図である。
【図9】 従来技術の排熱回収ボイラの給水系統を示す図である。
【図10】 従来技術の給水系統を有する排熱回収ボイラにおける排ガス温度及び蒸気及び給水温度特性を示す図である。
【符号の説明】
9 低圧給水ポンプ 10 給水配管
11 低圧節炭器 14 低圧ドラム
16 高圧給水ポンプ 18 再循環配管
19 再循環調節弁 21 低圧蒸発器
22 中圧節炭器 25 中圧ドラム
26 中圧蒸発器 27 高圧節炭器
30 高圧ドラム 31 高圧蒸発器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust heat recovery boiler in which a water supply system and a water supply device are arranged so that heat recovery can be performed efficiently and plant performance can be improved in a combined power plant.
[0002]
[Prior art]
For example, as shown in the schematic system diagram of the combined power plant in FIG. 7, the combined power plant includes a gas turbine open cycle unit, an exhaust heat recovery boiler, a steam turbine cycle unit, and a generator. The exhaust heat recovery boiler of FIG. 7 is an example of a triple pressure boiler composed of high pressure, medium pressure, and low pressure.
[0003]
In the gas turbine open cycle section, power is generated by the gas turbine 4, and exhaust gas worked by the gas turbine 4 is discharged to the exhaust gas passage 6. The discharged high-temperature exhaust gas is introduced into the exhaust heat recovery boiler 5 through the exhaust gas passage 6, and the heat in the exhaust gas is recovered. In the steam turbine cycle section, cycle power generation is performed by the steam turbine 7 using steam generated in the exhaust heat recovery boiler.
[0004]
Such a combined power plant has high power generation efficiency for performing combined power generation by the gas turbine 4 and the steam turbine 7, and the power generation by the gas turbine 4 is excellent in load responsiveness. There are features such as high follow-up to changes. In particular, this is effective for the operation that performs the recent high frequency start / stop (Daily Start Stop, hereinafter referred to as DSS).
[0005]
A steam supply system (hereinafter referred to as a steam system) to the steam turbine of the exhaust heat recovery boiler in the combined power plant will be described with reference to FIG. In FIG. 7, the description of a water supply device (hereinafter referred to as a water supply system) configured in the exhaust heat recovery boiler 5 is omitted except for the drum.
[0006]
In the gas turbine 4, the combustion air from the air supply pipe 1 and the fuel from the fuel supply pipe 2 are mixed in the combustor, and the gas turbine 4 is rotated by the combustion gas generated by the combustion. Power generation is performed. The combustion gas that has worked by rotating the gas turbine 4 becomes exhaust gas, and is introduced into the exhaust heat recovery boiler 5 through the high-temperature duct that is the exhaust gas passage 6.
[0007]
On the other hand, the condensate from the condenser 8 is sent from the low-pressure feed water pump 9 to a water supply system (not shown) configured in the exhaust heat recovery boiler. In the exhaust heat recovery boiler 5, in order to efficiently recover the heat of the exhaust gas, the water supply system and the steam system are devised.
[0008]
The exhaust gas introduced into the exhaust heat recovery boiler 5 recovers heat by the feed water system in the exhaust heat recovery boiler 5 to generate steam.
[0009]
The steam generated in the high-pressure drum 30 on the upstream side is superheated by the high-pressure superheater 35, sent to the high-pressure part A of the steam turbine 7 via the high-pressure main steam pipe 39, and used as power for rotating the steam turbine 7. . The steam that has worked in the high pressure section A is sent to the reheater 36 through the low temperature reheat pipe 40 for reuse. The steam generated in the intermediate pressure drum 25 is superheated by the intermediate pressure superheater 37, sent to the low temperature reheat pipe 40 through the intermediate pressure main steam pipe 42, and merged with the steam worked in the high pressure section A. To the reheater 36. The steam is superheated by the reheater 36, is sent to the intermediate pressure part B of the steam turbine 7 through the high-temperature reheat pipe 41, and is used as power for rotating the steam turbine 7. Further, the steam generated in the low-pressure drum 14 on the downstream side is superheated in the low-pressure superheater 38, passes through the low-pressure main steam pipe 43, and merges with the steam that has worked in the high-pressure part B. To be used as power for rotating the steam turbine 7. In this way, the steam that has finished work in the steam turbine 7 is sent to the condenser 8 to be condensed. The condensate is sent again from the low-pressure feed pump 9 to the feed water system in the exhaust heat recovery boiler.
[0010]
Next, the water supply system of the exhaust heat recovery boiler, which is a conventional technology, will be described with reference to FIGS. The water supply system of the exhaust heat recovery boiler shown in FIG. 8 is disclosed in JP-A-6-185309.
[0011]
8 and 9, the steam system described in FIG. 7 is omitted, and the exhaust heat recovery boiler is also an example of a triple pressure boiler composed of high pressure, medium pressure, and low pressure.
[0012]
In FIG. 8, feed water of about 30 ° C. is fed from the low-pressure feed water pump 9 through the feed water pipe 10 to the low-pressure economizer 11 disposed in the exhaust gas flow path on the downstream side of the low-pressure evaporator 21 to recover the heat of the exhaust gas. I do. The feed water that has recovered heat at the low-pressure economizer 11 and has reached about 150 ° C. is sent to the low-pressure drum 14 via the feed water adjustment valve 13 through the feed water pipe 12, and by heat recovery at the low-pressure evaporator 21. It is used to generate low-pressure steam and is sent to a high-pressure feed pump 16 through a feed water pipe 15 branched from the upstream side of the feed water adjustment valve 13.
[0013]
The feed water sent to the high-pressure feed water pump 16 passes through the feed water pipe 17 and is located between the intermediate-pressure evaporator 26 and the low-pressure evaporator 21 and in the exhaust gas passage upstream of the intermediate-pressure economizer 22. While being sent to the charcoal unit 27 (divided into the high-pressure economizers 27a and 27b in FIG. 8), water is extracted from the discharge port in the intermediate stage of the high-pressure feed pump 16, and the feed water pipe is routed through the drain pipe 16a. 20, the intermediate pressure economizer 22 is disposed in the exhaust gas flow path between the intermediate pressure evaporator 26 and the low pressure evaporator 21 and downstream of the high pressure economizer 27.
[0014]
The feed water sent to the high-pressure economizer 27 and the medium-pressure economizer 22 is sent to the high-pressure drum 30 and the intermediate-pressure drum 25 via the feed water adjustment valves 29 and 24, respectively, and the high-pressure evaporator 31 and the intermediate pressure It is used to generate high pressure steam and medium pressure steam by heat recovery in the evaporator 26. A part of the feed water sent to the low-pressure economizer 11 and having reached about 150 ° C. passes through the recirculation pipe 18 and passes through the recirculation control valve 19 to the feed water pipe 10 on the inlet side of the low-pressure economizer 11. It is recirculated and raises the feed water temperature on the inlet side of the low-pressure economizer 11 from about 30 ° C. to about 50 ° C., and prevents the moisture in the exhaust gas from condensing on the outer surface of the tube of the low-pressure economizer 11. Prevents low temperature corrosion.
[0015]
However, in such a water supply system, heat is recovered in the high-pressure feed pump 16 by the low-pressure economizer 11, and the feed water heated to a high temperature of about 150 ° C. is sent to the high-pressure feed pump 16. In particular, when performing DSS operation, there is a problem that the thermal stress generated by the thermal deformation acts repeatedly, leading to damage to the high-pressure feed pump 16.
[0016]
As a countermeasure, there is a water supply system as shown in FIG. The water supply system of the exhaust heat recovery boiler shown in FIG. 9 is disclosed in the electric newspaper May 10, 1995.
[0017]
The apparatus shown in FIG. 9 is composed of a combination of substantially the same apparatus as that shown in FIG. 8, but is different from that shown in FIG. 8 in that the high-pressure feed water pump 16 is provided in the feed water pipe 10 from the low-pressure feed water pump 9. The medium-pressure economizer 22 having the functions of the low-pressure economizer 11 and the medium-pressure economizer 22 are provided in the exhaust gas flow path downstream of the low-pressure evaporator 21, and water is extracted from the intermediate stage of the high-pressure feed pump 16. Is fed to the intermediate-pressure drum 25 and the low-pressure drum 14 through the water supply pipes 23 and 12, and is returned to the inlet side of the high-pressure water supply pump 16 through the recirculation adjustment valve 19 by the recirculation pipe 18.
[0018]
By configuring such a water supply system, about 30 ° C. water supplied from the low pressure water supply pump 9 and about 150 ° C. water supplied from the recirculation pipe 18 are mixed with the high pressure water supply pump 16 to an appropriate temperature of about 50 ° C. Thus, the low pressure corrosion of the medium pressure economizer 22 and the high pressure economizer 27 is prevented, and the thermal stress generated by the thermal deformation of the high pressure feed pump 16 is prevented.
[0019]
[Problems to be solved by the invention]
The conventional technology described above has the following problems.
That is, in the prior art shown in FIG. 8, the high-pressure feed pump 16 is supplied with high-temperature feed water of about 150 ° C. heated and recovered by the low-pressure economizer 11. In particular, when performing DSS operation, there is a problem that the thermal stress generated by the thermal deformation acts repeatedly, leading to damage to the high-pressure feed pump 16.
[0020]
Next, in the prior art shown in FIG. 9, the high-pressure feed water pump 16 is provided in the feed water pipe 10 from the low-pressure feed water pump 9, and the high-temperature feed water having a temperature of about 150 ° C. heated and recovered by the medium pressure economizer 22. Is returned to the water supply pipe 10 on the inlet side of the high-pressure feed pump 16 through the recirculation pipe 18 and joined to the low-temperature feed water of about 30 ° C. from the low-pressure feed pump 9. The inlet water supply temperature can be reduced to about 50 ° C., and the thermal stress generated by the thermal deformation of the high pressure water supply pump 16 can be prevented.
[0021]
On the other hand, in the prior art shown in FIG. 9, water supply to the high-pressure drum 30 is performed by the high-pressure economizer 27 arranged in the exhaust gas flow path between the high-pressure evaporator 31 and the medium-pressure evaporator 26 from the high-pressure feed water pump 16. Therefore, the low-temperature feed water of about 50 ° C. from the high-pressure feed pump 16 is heated by the high-pressure economizer 27 to a feed water temperature (about 310 ° C.) in the vicinity of about 320 ° C. that is the saturated steam temperature of the high-pressure drum 30. It will be.
[0022]
However, since the difference in the temperature of the feed water to be raised is large and the exhaust gas temperature drop due to heat recovery is large, if the exhaust gas temperature at the inlet of the high pressure economizer 27 is low, the high pressure economizer 27 As the exhaust gas temperature drops, the temperature of the exhaust gas at the outlet of the high pressure economizer 27 falls below the saturation temperature of the intermediate pressure evaporator 26 arranged in the downstream exhaust gas flow path, so that no intermediate pressure steam is generated, and heat recovery is effective. Cannot be done.
[0023]
Therefore, in the prior art shown in FIG. 9, the heat transfer area of the high pressure evaporator 31 is reduced in order to obtain a sufficient amount of evaporation in the intermediate pressure evaporator 26 even when the exhaust gas temperature drops in the high pressure economizer 27. Thus, the heat recovery at the high pressure evaporator 31 is reduced, and the exhaust gas temperature at the inlet of the high pressure economizer 27 is increased. However, in the prior art shown in FIG. 9, the exhaust gas temperature at the inlet of the high pressure economizer 27 is increased as shown in the exhaust gas temperature and steam and feed water temperature characteristic diagram in the exhaust heat recovery boiler having the conventional water supply system shown in FIG. As a result, heat recovery is not performed, and the outlet gas temperature is about 180 ° C. with respect to the inlet gas temperature of about 600 ° C., resulting in poor plant performance.
[0024]
Further, as a countermeasure, it is conceivable that the heat transfer area of the high-pressure evaporator 31 is reduced and the heat transfer areas of the medium-pressure evaporator 26 and the low-pressure evaporator 21 are greatly increased to compensate for the decrease in the evaporation amount. Is to limit the generation of the most efficient high-pressure steam and increase the generation of inferior medium-pressure and low-pressure steam, which will reduce overall plant performance and effectively improve is not.
[0025]
Furthermore, in the prior art shown in FIG. 9, water supply to the intermediate pressure drum 25 is performed by the intermediate pressure economizer 22 disposed in the exhaust gas flow path downstream of the low pressure evaporator 21 from the intermediate stage of the high pressure feed water pump 16. The water supply heated to about 150 ° C. by heat recovery in the medium pressure economizer 22 is supplied to the intermediate pressure drum 25. In this case, since the saturated steam temperature of the intermediate pressure drum 25 is about 230 ° C., There was a problem that the temperature difference from the water supply was about 80 ° C., and excessive thermal stress was generated in the intermediate pressure drum 25 by the water supply.
[0026]
An object of the present invention is to provide an exhaust heat recovery boiler having a water supply system and a water supply device that can efficiently recover heat of exhaust gas, increase plant performance, and prevent the generation of excessive thermal stress in the drum. It is to provide.
[0027]
[Means for Solving the Invention]
The above object of the present invention is achieved by the following means.
That is, it is provided in the exhaust gas flow path from the gas turbine, and the condensate from the condenser is discharged by a low-pressure and high-pressure feed water pump to a low pressure, a medium pressure and a high pressure level of triple pressure or a medium pressure and a high pressure double pressure. In the water supply system that supplies water to the drum at each pressure level through the economizer at each pressure level and the heat transfer tube group of the evaporator at each pressure level, the heat of the exhaust gas is recovered to generate steam and generated High-temperature steam recovered from the economizer in order to prevent low-temperature corrosion of the economizer at least. In a waste heat recovery boiler with a feed water recirculation system that returns a part of the feed water to the feed water pipe upstream of the high pressure feed pump inlet by the recirculation pipe, the feed water from the high pressure feed pump to the high pressure drum is discharged. A medium pressure node that is divided into two or more places in the exhaust gas flow path, and the water supply from the high pressure feed pump to the medium pressure drum is divided into two or more places in the exhaust gas flow path. This is a waste heat recovery boiler that uses a charcoal.
[0028]
As a more specific configuration of the exhaust heat recovery boiler of the present invention, the first high-pressure economizer in which feed water to the high-pressure drum is disposed in the exhaust gas flow path between the medium-pressure evaporator and the low-pressure evaporator from the high-pressure feed pump And a second high-pressure economizer disposed in the exhaust gas flow path between the high-pressure evaporator and the intermediate-pressure evaporator, and water supply to the intermediate-pressure drum from the intermediate stage of the high-pressure feed pump to the low-pressure evaporator It goes through the first medium pressure economizer arranged in the exhaust gas flow path downstream from the first intermediate pressure economizer arranged in the exhaust gas flow path between the medium pressure evaporator and the low pressure evaporator. Constitution,
Alternatively, the feed water to the high-pressure drum is arranged in the exhaust gas passage between the first high-pressure economizer and the intermediate-pressure evaporator and the low-pressure evaporator, arranged in the exhaust gas passage downstream of the low-pressure evaporator from the high-pressure feed pump. It goes through the second high-pressure economizer sequentially, and further via the third high-pressure economizer arranged in the exhaust gas flow path between the high-pressure evaporator and the medium-pressure evaporator, and also supplies water to the intermediate-pressure drum. From the intermediate stage of the high-pressure feed pump, through the first medium-pressure economizer arranged in the exhaust gas flow path downstream of the low-pressure evaporator, the second arranged in the exhaust gas flow path between the intermediate-pressure evaporator and the low-pressure evaporator Configuration done via medium pressure economizer,
Or the 1st high pressure economizer which divided | segmented and arrange | positioned the feed water to a high pressure drum from the high pressure feed water pump to the exhaust gas flow path between the intermediate pressure evaporator and the low pressure evaporator with the second intermediate pressure economizer interposed And the second high-pressure economizer, and then through the third high-pressure economizer arranged in the exhaust gas flow path between the high-pressure evaporator and the medium-pressure evaporator, From the intermediate stage of the high pressure feed pump, through the first medium pressure economizer arranged in the exhaust gas flow path downstream of the low pressure evaporator, the second arranged in the exhaust gas flow path between the intermediate pressure evaporator and the low pressure evaporator The configuration to be performed via the medium pressure economizer,
Or the 1st high pressure economizer which divided | segmented and arrange | positioned the water supply to a high pressure drum from the high pressure feed pump to the exhaust gas flow path between the intermediate pressure evaporator and the low pressure evaporator with the first intermediate pressure economizer interposed And the second high-pressure economizer, and then through the third high-pressure economizer arranged in the exhaust gas flow path between the high-pressure evaporator and the medium-pressure evaporator, The first medium-pressure economizer and the second medium-pressure economizer arranged separately from the intermediate stage of the high-pressure feed water pump with the second high-pressure economizer sandwiched in the exhaust gas flow path between the intermediate-pressure evaporator and the low-pressure evaporator It is good also as a structure performed via a medium pressure economizer sequentially.
[0029]
In the exhaust heat recovery boiler of the present invention, the high pressure economizer and the medium pressure economizer are each divided into two or more, and at least one of the divided high pressure economizers is divided into the high pressure evaporator and the intermediate pressure economizer. Arranged in the exhaust gas flow path between the evaporators, and arranged at least one other high-pressure economizer between the medium pressure evaporator and the low pressure evaporator or in the exhaust gas flow path downstream of the low pressure evaporator, each divided At least one medium pressure economizer is disposed in the exhaust gas flow path between the medium pressure evaporator and the low pressure evaporator, and at least one other medium pressure economizer is disposed in the exhaust gas flow path downstream of the low pressure evaporator. To place in,
Or, the outlet water of at least the first medium pressure economizer of the medium pressure economizer divided into two is separately supplied to the low pressure drum and the second medium pressure economizer, respectively, It is good also as a structure which supplies the outlet water supply of a charcoal to an intermediate pressure drum.
[0030]
In the exhaust heat recovery boiler of the present invention, the exhaust gas flow between the high pressure economizer and the intermediate pressure economizer or the intermediate pressure evaporator and the low pressure evaporator disposed in the exhaust gas flow path downstream of the low pressure evaporator. A high-pressure economizer and a medium-pressure economizer arranged in the road can be arranged in parallel to the exhaust gas flow.
[0031]
[Action]
According to the present invention, the water supply to the high-pressure drum is performed by the high-pressure economizer arranged in two or more locations in the gas flow path, so that efficient heat recovery can be performed in the high-pressure economizer. In addition, since the water supply to the medium pressure drum is performed by the medium pressure economizer arranged in two or more places in the gas flow path, efficient heat recovery can be performed in the medium pressure economizer, and the high pressure feed pump Can be supplied to the intermediate pressure drum by raising the temperature of the low-temperature water supply to an appropriate temperature that does not generate thermal stress in the intermediate pressure drum.
[0032]
Further, according to the present invention, as shown in the exhaust gas temperature and steam and feed water temperature characteristic diagrams in the exhaust heat recovery boiler having the feed water system of the present invention in FIGS. 5 and 6, the exhaust gas temperature at the boiler inlet is about 600 ° C. About 100 ° C. at the boiler outlet, the heat recovery of the exhaust gas is increased by about 20% as compared with the prior art plant shown in FIG. 10, so that the efficiency of the plant can be improved by about 5%.
[0033]
Furthermore, by dividing the high pressure economizer and the medium pressure economizer with the total heat transfer area or the total heat recovery amount being constant, the present invention can be implemented to improve existing facilities.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a water supply system diagram of an exhaust heat recovery boiler according to an embodiment of the present invention, and each superheater is not described.
[0035]
In FIG. 1, a medium pressure primary economizer 22a, a low pressure evaporator 21, a high pressure primary economizer 27a, an intermediate pressure secondary economizer 22b, an intermediate pressure are sequentially arranged from the downstream side to the upstream side of the exhaust gas flow path of the exhaust heat recovery boiler. An evaporator 26, a high-pressure secondary economizer 27b, and a high-pressure evaporator 31 are arranged. In FIG. 1, a low-pressure feed pump 9 is installed on the feed water inlet side to the exhaust heat recovery boiler, and an outlet feed pipe 10 from the low-pressure feed pump 9 is directly connected to the inlet of the high-pressure feed pump 16. The high-pressure feed water pump 16 feeds water to the high-pressure drum 30 through the high-pressure primary economizer 27a and the high-pressure secondary economizer 27b.
[0036]
Further, water is supplied from the intermediate stage of the high-pressure feed pump 16 to the intermediate-pressure drum 25 through the intermediate-pressure secondary economizer 22b via the intermediate-pressure primary economizer 22a disposed in the exhaust gas flow path downstream of the low-pressure evaporator 21. Is called.
[0037]
The feed water at about 50 ° C. from the high pressure feed water pump 16 is heated to about 220 ° C. by heat recovery at the high pressure primary economizer 27a, and further increased to about 310 ° C. by heat recovery at the high pressure secondary economizer 27b. The temperature is raised and water is supplied to the high-pressure drum 30. Therefore, the exhaust gas temperature does not extremely decrease due to excessive heat recovery in the high pressure economizer as in the conventional example.
[0038]
In addition, about 50 ° C. feed water from the intermediate stage of the high pressure feed water pump 16 is heated to about 150 ° C. by heat recovery at the intermediate pressure primary economizer 22a, and then recovered at the intermediate pressure secondary economizer 22b. The temperature is raised to about 220 ° C. and water is supplied to the intermediate pressure drum 25. Here, since the saturation temperature of the medium pressure evaporator 26 is about 230 ° C., the difference from the feed water temperature can be reduced to about 10 ° C., and the generation of thermal stress is prevented.
[0039]
According to the embodiment of the present invention, as shown in the exhaust gas temperature and steam and feed water temperature characteristic diagram of the exhaust heat recovery boiler having the feed water system of the present invention of FIG. About 100 ° C., heat recovery of exhaust gas can be performed efficiently.
[0040]
In the present embodiment, the high-pressure primary economizer 27a is arranged downstream of the intermediate-pressure secondary economizer 22b in the exhaust gas flow path between the intermediate-pressure evaporator 26 and the low-pressure evaporator 21, but the high-pressure primary economizer Even if the charcoal unit 27a is arranged upstream or in parallel with the medium pressure secondary economizer 22b, there is no problem in the heat recovery of the exhaust gas, and the same effect can be obtained.
[0041]
Other embodiments of the present invention will be described with reference to FIGS.
In the embodiment shown in FIG. 2, the high-pressure primary economizer 27a, the medium-pressure primary economizer 22a, the low-pressure evaporator 21, and the high-pressure secondary economizer 27b are sequentially arranged from the downstream side to the upstream side of the exhaust gas flow path of the exhaust heat recovery boiler. An intermediate pressure secondary economizer 22b, an intermediate pressure evaporator 26, a high pressure tertiary economizer 27c, and a high pressure evaporator 31 are arranged.
[0042]
Then, a low-pressure feed pump 9 is installed on the feed water inlet side to the exhaust heat recovery boiler, an outlet feed pipe 10 from the low-pressure feed pump 9 is directly connected to the inlet of the high-pressure feed pump 16, and the high-pressure feed pump 16 Water is supplied to the high-pressure drum 30 through the economizer 27a and the high-pressure secondary economizer 27b in sequence, through the high-pressure tertiary economizer 27c.
[0043]
Further, water is supplied to the intermediate pressure drum 25 from the intermediate stage of the high pressure feed pump 16 through the intermediate pressure primary economizer 22a and the intermediate pressure secondary economizer 22b in order.
[0044]
The feed water at about 50 ° C. from the high pressure feed water pump 16 is heated to about 120 ° C. by heat recovery at the high pressure primary economizer 27a and then rises to about 210 ° C. by heat recovery at the high pressure secondary economizer 27b. Then, the temperature is raised to about 310 ° C. by heat recovery in the high pressure tertiary economizer 27 c and supplied to the high pressure drum 30. Therefore, the exhaust gas temperature does not extremely decrease due to excessive heat recovery in the high-pressure economizer as in the conventional example, and heat recovery is performed efficiently and efficiently in each economizer.
[0045]
In addition, about 50 ° C. feed water from the intermediate stage of the high pressure feed water pump 16 is heated to about 150 ° C. by heat recovery at the intermediate pressure primary economizer 22a, and then recovered at the intermediate pressure secondary economizer 22b. The temperature is raised to about 220 ° C. and water is supplied to the intermediate pressure drum 25. Here, since the saturation temperature of the medium pressure evaporator 26 is about 230 ° C., the difference from the feed water temperature can be reduced to about 10 ° C., and the generation of thermal stress is prevented.
[0046]
According to the above embodiment of the present invention, FIG. 6 shows the exhaust gas temperature and steam and feed water temperature characteristics in the exhaust heat recovery boiler having the feed water system of the embodiment shown in FIG. The heat recovery of the exhaust gas can be efficiently performed at about 100 ° C. at the boiler outlet with respect to 600 ° C.
[0047]
In this embodiment, the high-pressure primary economizer 27a is arranged downstream of the low-pressure evaporator 21 and downstream of the intermediate-pressure primary economizer 22a in the exhaust gas passage between the intermediate-pressure evaporator 26 and the low-pressure evaporator 21. The high-pressure secondary economizer 27b is arranged downstream of the medium-pressure secondary economizer 22b. The high-pressure primary economizer 27a and the high-pressure secondary economizer 27b are respectively arranged at the medium-pressure primary economizer 22a and the medium-pressure economizer. Since there is no problem in the heat recovery of the exhaust gas even if it is arranged upstream or in parallel with the secondary economizer 22b, the same effect can be obtained.
[0048]
Next, in the embodiment shown in FIG. 3, the intermediate pressure primary economizer 22 a, the low pressure evaporator 21, the high pressure primary economizer 27 a, and the intermediate pressure two in order from the downstream side to the upstream side of the exhaust gas flow path of the exhaust heat recovery boiler. A next economizer 22b, a high-pressure secondary economizer 27b, an intermediate-pressure evaporator 26, a high-pressure tertiary economizer 27c, and a high-pressure evaporator 31 are arranged.
[0049]
A low-pressure feed pump 9 is installed on the feed water inlet side to the exhaust heat recovery boiler, and an outlet feed pipe 10 from the low-pressure feed pump 9 is directly connected to the inlet of the high-pressure feed pump 16. Water is supplied to the high-pressure drum 30 by the high-pressure tertiary economizer 27c through the vessel 27a and the high-pressure secondary economizer 27b sequentially.
[0050]
Further, water is supplied from the intermediate stage of the high-pressure feed pump 16 to the intermediate-pressure drum 25 through the intermediate-pressure primary economizer 22a and the intermediate-pressure secondary economizer 22b sequentially.
[0051]
The feed water at about 50 ° C. from the high pressure feed water pump 16 is heated to about 120 ° C. by heat recovery at the high pressure primary economizer 27a and then rises to about 210 ° C. by heat recovery at the high pressure secondary economizer 27b. Then, the temperature is raised to about 310 ° C. by heat recovery in the high pressure tertiary economizer 27 c and supplied to the high pressure drum 30. Therefore, the exhaust gas temperature does not extremely decrease due to excessive heat recovery in the high-pressure economizer as in the conventional example, and heat recovery is performed without difficulty in each of the economizers 27a to 27c.
[0052]
In addition, about 50 ° C. feed water from the intermediate stage of the high pressure feed water pump 16 is heated to about 150 ° C. by heat recovery at the intermediate pressure primary economizer 22a, and then recovered at the intermediate pressure secondary economizer 22b. The temperature is raised to about 220 ° C. and water is supplied to the intermediate pressure drum 25. Here, since the saturation temperature of the medium pressure evaporator 26 is about 230 ° C., the difference from the feed water temperature can be reduced to about 10 ° C., and the generation of thermal stress is prevented.
[0053]
Although the exhaust gas temperature and the steam and feed water temperature characteristics in the exhaust heat recovery boiler having the feed water system of the embodiment shown in FIG. 3 of the present invention are not shown, the exhaust gas of about 600 ° C. at the boiler inlet is about 100 ° C. at the boiler outlet. become.
[0054]
Next, in the embodiment shown in FIG. 4, the low-pressure economizer 11, the low-pressure evaporator 21, the high-pressure primary economizer 27a, and the medium-pressure primary economizer in order from the downstream side to the upstream side of the exhaust gas flow path of the exhaust heat recovery boiler. A vessel 22a, a high pressure secondary economizer 27b, an intermediate pressure secondary economizer 22b, an intermediate pressure evaporator 26, a high pressure tertiary economizer 27c, and a high pressure evaporator 31 are arranged.
[0055]
The outlet water supply pipe 10 from the low-pressure feed pump 9 on the feed water inlet side to the exhaust heat recovery boiler is directly connected to the inlet of the high-pressure feed pump 16, branches from the upstream side of the high-pressure feed pump 16, and passes through the low-pressure economizer 11. The low pressure drum 14 is supplied with water. Further, water is supplied to the high-pressure drum 30 through the high-pressure primary economizer 27a and the high-pressure secondary economizer 27b sequentially by the high-pressure feed water pump 16, and further via the high-pressure tertiary economizer 27c.
[0056]
Further, water is supplied to the intermediate pressure drum 25 from the intermediate stage of the high pressure feed pump 16 through the intermediate pressure primary economizer 22a and the intermediate pressure secondary economizer 22b in sequence.
[0057]
In addition, the recirculation pipe 18 is branched from the feed water pipe 23b that connects the intermediate pressure primary economizer 22a and the intermediate pressure secondary economizer 22b, and is returned to the feed water pipe 10 at the inlet of the high-pressure feed pump 16. The connection part of the recirculation pipe 18 to the water supply pipe 10 is upstream of the branch part of the water supply pipe 20 to the low pressure economizer 11 branched from the water supply pipe 10. And the feed water from the recirculation piping 18 makes the temperature of the feed water from the low-pressure feed pump 9 about 50 degreeC, and prevents the low temperature corrosion of each economizer.
[0058]
The feed water at about 50 ° C. from the high pressure feed water pump 16 is heated to about 120 ° C. by heat recovery at the high pressure primary economizer 27a and then rises to about 210 ° C. by heat recovery at the high pressure secondary economizer 27b. Then, the temperature is raised to about 310 ° C. by heat recovery in the high pressure tertiary economizer 27 c and supplied to the high pressure drum 30. Therefore, the exhaust gas temperature does not extremely decrease due to excessive heat recovery in the high-pressure economizer as in the conventional example, and heat recovery is performed efficiently and efficiently in each economizer.
[0059]
In addition, about 50 ° C. feed water from the intermediate stage of the high pressure feed water pump 16 is heated to about 150 ° C. by heat recovery at the intermediate pressure primary economizer 22a, and then recovered at the intermediate pressure secondary economizer 22b. The temperature is raised to about 220 ° C. and water is supplied to the intermediate pressure drum 25. Here, since the saturation temperature of the intermediate pressure evaporator 26 is about 230 ° C., the difference from the feed water temperature can be reduced to about 10 ° C., and the generation of thermal stress is prevented.
[0060]
The high pressure economizer 27 and the medium pressure economizer 22 arranged in the exhaust gas flow path between the intermediate pressure evaporator 26 and the low pressure evaporator 21 may be arranged in parallel with each other even if the arrangement in the exhaust gas flow path is mutually replaced. Even if there is no problem in the heat recovery of the exhaust gas, the same effect can be obtained.
[0061]
【The invention's effect】
According to the present invention, water supply to the high-pressure drum is performed via the high-pressure economizer arranged in two or more places in the gas flow path, and water supply to the intermediate pressure drum is performed in the gas flow path 2. Since it is conducted via medium pressure economizers that are divided into more than one location, heat recovery of exhaust gas can be performed efficiently, plant performance can be improved, and excessive thermal stress is generated in the drum. It is possible to provide a waste heat recovery boiler having a water supply system and a water supply device that can prevent the above.
[Brief description of the drawings]
FIG. 1 is a view showing a water supply system of an exhaust heat recovery boiler according to an embodiment of the present invention.
FIG. 2 is a view showing a water supply system of an exhaust heat recovery boiler according to an embodiment of the present invention.
FIG. 3 is a diagram showing a water supply system of an exhaust heat recovery boiler according to an embodiment of the present invention.
FIG. 4 is a view showing a water supply system of an exhaust heat recovery boiler according to an embodiment of the present invention.
FIG. 5 is a diagram showing exhaust gas temperature and steam and feed water temperature characteristics in an exhaust heat recovery boiler having a feed water system according to an embodiment of the present invention.
FIG. 6 is a diagram showing exhaust gas temperature, steam and feed water temperature characteristics in an exhaust heat recovery boiler having a feed water system according to an embodiment of the present invention.
FIG. 7 is a diagram showing a schematic system of a combined power plant having an exhaust heat recovery boiler.
FIG. 8 is a view showing a water supply system of a conventional heat recovery steam generator.
FIG. 9 is a view showing a water supply system of a conventional heat recovery steam generator.
FIG. 10 is a diagram showing exhaust gas temperature and steam and feed water temperature characteristics in an exhaust heat recovery boiler having a conventional feed water system.
[Explanation of symbols]
9 Low pressure water supply pump 10 Water supply piping
11 Low pressure economizer 14 Low pressure drum
16 High pressure feed pump 18 Recirculation piping
19 Recirculation control valve 21 Low pressure evaporator
22 Medium pressure economizer 25 Medium pressure drum
26 Medium pressure evaporator 27 High pressure economizer
30 High pressure drum 31 High pressure evaporator

Claims (8)

ガスタービンからの排ガス流路に設けられ、復水器からの復水を低圧と高圧の給水ポンプにより低圧、中圧及び高圧レベルの三重圧または中圧と高圧の二重圧などの複圧に昇圧し、各圧力レベルの節炭器を経て各圧力レベルのドラムに給水する給水系と、各圧力レベルの蒸発器の伝熱管群において排ガスの熱を回収して蒸気を発生させると共に、発生した蒸気を各圧力レベルのドラムからそれぞれの圧力レベルの過熱器を経て蒸気タービンへ供給する蒸気系とから構成され、少なくとも節炭器の低温腐食を防止するため、節炭器で熱回収した高温の給水の一部を再循環配管により高圧の給水ポンプ入口の上流側の給水配管に戻す、給水の再循環系を有する排熱回収ボイラにおいて、
高圧給水ポンプからの高圧ドラムへの給水を排ガス流路の2か所以上に分割して配置した高圧節炭器により行うと共に、高圧給水ポンプからの中圧ドラムへの給水を排ガス流路の2か所以上に分割して配置した中圧節炭器により行うことを特徴とする排熱回収ボイラ。
It is provided in the exhaust gas flow path from the gas turbine, and the condensate from the condenser is boosted to low pressure, medium pressure and high pressure triple pressure or double pressure such as medium pressure and high pressure by a low and high pressure feed pump. In the water supply system for supplying water to the drums at each pressure level through the economizers at each pressure level and the heat transfer tube group of the evaporator at each pressure level, the heat of the exhaust gas is recovered and steam is generated. High-temperature feed water that is recovered by heat from the economizer in order to prevent low-temperature corrosion of the economizer, at least in order to prevent low-temperature corrosion of the economizer In a waste heat recovery boiler having a water recirculation system that returns a part of the water to the water supply pipe upstream of the high-pressure feed water pump inlet by recirculation pipe,
Water is supplied from the high-pressure feed pump to the high-pressure drum using a high-pressure economizer that is divided into two or more locations in the exhaust gas flow path, and water from the high-pressure feed pump to the intermediate pressure drum is supplied to the exhaust gas flow path 2 An exhaust heat recovery boiler, which is performed by a medium-pressure economizer divided into more than one place.
高圧ドラムへの給水を高圧給水ポンプから中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第一の高圧節炭器を経て、さらに高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第二の高圧節炭器により行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から低圧蒸発器の下流の排ガス流路に配置した第一の中圧節炭器を経て、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第二の中圧節炭器を経由して行うことを特徴とする請求項1に記載の排熱回収ボイラ。The feed water to the high-pressure drum passes through the first high-pressure economizer arranged in the exhaust gas flow path between the medium-pressure evaporator and the low-pressure evaporator from the high-pressure feed pump, and further, the exhaust gas between the high-pressure evaporator and the medium-pressure evaporator The first medium-pressure economizer is arranged in the exhaust gas channel downstream of the low-pressure evaporator from the intermediate stage of the high-pressure feedwater pump with the second high-pressure economizer arranged in the flow path. 2. The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler is disposed via a second intermediate pressure economizer disposed in an exhaust gas flow path between the intermediate pressure evaporator and the low pressure evaporator. 高圧ドラムへの給水を高圧給水ポンプから低圧蒸発器の下流の排ガス流路に配置した第一の高圧節炭器と、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第二の高圧節炭器を順次経て、さらに高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第三の高圧節炭器を経由して行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から低圧蒸発器の下流の排ガス流路に配置した第一の中圧節炭器を経て、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した第二の中圧節炭器を経由して行うことを特徴とする請求項1に記載の排熱回収ボイラ。The first high-pressure economizer is disposed in the exhaust gas flow path downstream of the low-pressure evaporator from the high-pressure feed water pump, and the second is disposed in the exhaust gas flow path between the intermediate-pressure evaporator and the low-pressure evaporator. Through the high-pressure economizer in turn, and further through the third high-pressure economizer arranged in the exhaust gas flow path between the high-pressure evaporator and the intermediate-pressure evaporator, From the middle stage of the pump, through the first medium pressure economizer located in the exhaust gas flow path downstream of the low pressure evaporator, the second medium pressure located in the exhaust gas flow path between the intermediate pressure evaporator and the low pressure evaporator It performs via a economizer, The exhaust heat recovery boiler of Claim 1 characterized by the above-mentioned. 高圧ドラムへの給水を高圧給水ポンプから中圧蒸発器と低圧蒸発器の間の排ガス流路に第二の中圧節炭器を挟んで分割して配置した第一の高圧節炭器と第二の高圧節炭器を順次経て、高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第三の高圧節炭器を経由して行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から低圧蒸発器の下流の排ガス流路に配置した第一の中圧節炭器を経て、中圧蒸発器と低圧蒸発器の間の排ガス流路に配置した前記第二の中圧節炭器を経由して行うことを特徴とする請求項1に記載の排熱回収ボイラ。The first high-pressure economizer and the second high-pressure drum are arranged by dividing the water supply from the high-pressure drum into the exhaust gas flow path between the medium-pressure evaporator and the low-pressure evaporator with the second medium-pressure economizer interposed The two high-pressure economizers are sequentially passed through a third high-pressure economizer disposed in the exhaust gas flow path between the high-pressure evaporator and the medium-pressure evaporator, and the medium-pressure drum is supplied with high-pressure water. From the intermediate stage of the pump, through the first medium pressure economizer located in the exhaust gas flow path downstream of the low pressure evaporator, the second medium located in the exhaust gas flow path between the intermediate pressure evaporator and the low pressure evaporator. The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler is performed via a pressure-saving charcoal unit. 高圧ドラムへの給水を高圧給水ポンプから中圧蒸発器と低圧蒸発器の間の排ガス流路に第一の中圧節炭器を挟んで分割して配置した第一の高圧節炭器と第二の高圧節炭器を順次経て、高圧蒸発器と中圧蒸発器の間の排ガス流路に配置した第三の高圧節炭器を経由して行うと共に、中圧ドラムへの給水を高圧給水ポンプの中間段から中圧蒸発器と低圧蒸発器の間の排ガス流路に前記第二の高圧節炭器を挟んで分割して配置した前記第一の中圧節炭器と第二の中圧節炭器を順次経由して行うことを特徴とする請求項1に記載の排熱回収ボイラ。The first high-pressure economizer and the first high-pressure economizer, which are arranged by dividing the feedwater to the high-pressure drum from the high-pressure feed pump into the exhaust gas flow path between the medium-pressure evaporator and the low-pressure evaporator with the first medium-pressure economizer interposed The two high-pressure economizers are sequentially passed through a third high-pressure economizer arranged in the exhaust gas flow path between the high-pressure evaporator and the medium-pressure evaporator, and the water supply to the intermediate-pressure drum is supplied to the high-pressure water supply. The first medium-pressure economizer and the second medium-scale economizer, which are arranged separately from the intermediate stage of the pump in the exhaust gas flow path between the intermediate-pressure evaporator and the low-pressure evaporator with the second high-pressure economizer interposed therebetween The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler is performed sequentially through a pressure-saving charcoal unit. 高圧節炭器と中圧節炭器をそれぞれ二つ以上に分割し、各分割された高圧節炭器の少なくとも一つを高圧蒸発器と中圧蒸発器の間の排ガス流路に配置し、他の少なくとも一つの高圧節炭器を中圧蒸発器と低圧蒸発器の間または低圧蒸発器の下流側の排ガス流路に配置し、各分割された中圧節炭器の少なくとも一つを中圧蒸発器と低圧蒸発器の間の排ガス流路に配置し、他の少なくとも一つの中圧節炭器を低圧蒸発器の下流側の排ガス流路に配置したことを特徴とする請求項1記載の排熱回収ボイラ。Dividing the high-pressure economizer and the medium-pressure economizer into two or more, respectively, placing at least one of the divided high-pressure economizers in the exhaust gas flow path between the high-pressure evaporator and the intermediate-pressure evaporator, At least one other high-pressure economizer is placed between the medium-pressure evaporator and the low-pressure evaporator or in the exhaust gas flow path downstream of the low-pressure evaporator, and at least one of the divided medium-pressure economizers is 2. The exhaust gas flow path between the pressure evaporator and the low pressure evaporator, and at least one other medium pressure economizer is disposed in the exhaust gas flow path downstream of the low pressure evaporator. Waste heat recovery boiler. 二つに分割した中圧節炭器の少なくとも第一の中圧節炭器の出口給水を低圧ドラムと第二の中圧節炭器にそれぞれ別個に供給し、第二の中圧節炭器の出口給水を中圧ドラムに供給することを特徴とする請求項6に記載の排熱回収ボイラ。Supply the outlet water of at least the first medium pressure economizer of the medium pressure economizer divided into two separately to the low pressure drum and the second medium pressure economizer, respectively. The exhaust heat recovery boiler according to claim 6, wherein the outlet water supply is supplied to the intermediate pressure drum. 低圧蒸発器の下流側の排ガス流路に配置される高圧節炭器と中圧節炭器または中圧蒸発器と低圧蒸発器の間の排ガス流路に配置される高圧節炭器と中圧節炭器をそれぞれ排ガス流れに対して並列に配置したことを特徴とする請求項1〜7のいずれかに記載の排熱回収ボイラ。High pressure economizer and medium pressure economizer disposed in the exhaust gas flow path downstream of the low pressure evaporator or high pressure economizer and medium pressure disposed in the exhaust gas flow path between the medium pressure evaporator and the low pressure evaporator The exhaust heat recovery boiler according to any one of claims 1 to 7, wherein the economizers are arranged in parallel to the exhaust gas flow.
JP24338795A 1995-09-21 1995-09-21 Waste heat recovery boiler Expired - Lifetime JP3753762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24338795A JP3753762B2 (en) 1995-09-21 1995-09-21 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24338795A JP3753762B2 (en) 1995-09-21 1995-09-21 Waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH0988516A JPH0988516A (en) 1997-03-31
JP3753762B2 true JP3753762B2 (en) 2006-03-08

Family

ID=17103104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24338795A Expired - Lifetime JP3753762B2 (en) 1995-09-21 1995-09-21 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP3753762B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415122B2 (en) * 2014-06-13 2018-10-31 三菱重工業株式会社 Combined cycle equipment
DE102014222682A1 (en) 2014-11-06 2016-05-12 Siemens Aktiengesellschaft Control method for operating a continuous steam generator
CN104832232B (en) * 2015-05-13 2016-04-20 辽宁工程技术大学 A kind of step heat exchange organic Rankine cycle power generation system and electricity-generating method thereof

Also Published As

Publication number Publication date
JPH0988516A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
US7367192B2 (en) Combined cycle plant
US5428950A (en) Steam cycle for combined cycle with steam cooled gas turbine
US20070017207A1 (en) Combined Cycle Power Plant
JPH094417A (en) Composite cycle-system
JPH06317106A (en) Steam-gas turbine composite type power plant
JPH09177508A (en) Exhaust heat recovery type steam generator and method for operating gas turbo system combined with steam consumer
CN101012924A (en) Composite cycle power generation system improved in efficiency
US6408612B2 (en) Gas and steam-turbine plant
EP0618997B1 (en) Steam system in a multiple boiler plant
JP3925985B2 (en) Combined cycle power plant
JP3679094B2 (en) Operation method and equipment of gas / steam combined turbine equipment
US6405520B1 (en) Gas and steam turbine plant and method for cooling a coolant of a gas turbine of such a plant
JP3753762B2 (en) Waste heat recovery boiler
CN115075904A (en) Waste heat and complementary energy power generation system for iron and steel enterprise
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
JPH0440524B2 (en)
JP3745419B2 (en) Waste heat recovery boiler
JP3068972B2 (en) Combined cycle power plant
JPH11350921A (en) Exhaust heat recovery boiler
JP4051322B2 (en) Combined power plant
JP2604117B2 (en) Double pressure type waste heat boiler water supply system
JP2000220412A (en) Repowering system of steam power generating equipment
JPS63253105A (en) Compound generating plant
JPH08326507A (en) Operating method of combined gas-steam generator
JPH0419306A (en) Steam temperature control system of combined cycle plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term