JP3752868B2 - Liquid phase epitaxial growth method of SiC crystal - Google Patents

Liquid phase epitaxial growth method of SiC crystal Download PDF

Info

Publication number
JP3752868B2
JP3752868B2 JP33850698A JP33850698A JP3752868B2 JP 3752868 B2 JP3752868 B2 JP 3752868B2 JP 33850698 A JP33850698 A JP 33850698A JP 33850698 A JP33850698 A JP 33850698A JP 3752868 B2 JP3752868 B2 JP 3752868B2
Authority
JP
Japan
Prior art keywords
temperature
melt
substrate
sic
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33850698A
Other languages
Japanese (ja)
Other versions
JP2000154096A (en
Inventor
富男 梶ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP33850698A priority Critical patent/JP3752868B2/en
Publication of JP2000154096A publication Critical patent/JP2000154096A/en
Application granted granted Critical
Publication of JP3752868B2 publication Critical patent/JP3752868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高温動作デバイス、パワーデバイス、耐放射線デバイス等の材料として期待されているSiC結晶の育成方法に係り、特に、デバイス動作不良の原因となるマイクロパイプ、ポリタイプの混在等の結晶欠陥が無く、結晶の電気的特性に大きく影響を与える残留不純物濃度も大幅に低減された高品質でかつ大型のSiC結晶を育成可能なSiC結晶の液相エピタキシャル成長方法に関するものである。
【0002】
【従来の技術】
ワイドギャップ半導体であるSiC結晶は、エネルギーギャップが約3eVと大きい上に、化学結合力が強固であるため物理的、化学的に安定で、耐熱性、耐放射線性に優れた材料である。更に、p、n両伝導型の制御が可能であることやキャリアの移動度がSi結晶並に大きいこと等から、次世代送電システム、電車、電気自動車などや、航空、原子力、宇宙科学などの分野で要求される高耐圧パワーデバイス、高温動作デバイス、耐放射線デバイス等、従来におけるSi等の半導体材料ではその物性値から実現不可能であった過酷な環境下でも使用できる電子デバイスの材料として最も期待されている。
【0003】
ところで、SiCは常圧では融点を持たないため、バルク結晶の育成は非常に困難である。そして、SiC結晶の育成方法としては、SiO2 とコークスを高温で反応させるアチソン法が古くから知られている。このアチソン法では、研磨剤、耐火材等の一般工業用SiC結晶が製造されているが、偶発的に径が10mm程度の六角板状単結晶が得られる。しかし、このアチソン法では、単結晶の成長を制御することは不可能であるため、再現性が無く高純度で大型結晶を育成することはできない。
【0004】
他方、1960年代から研究されたレイリー法(昇華法)、すなわち、グラファイト製容器内において2000℃以上の高温でSiC粉末を昇華再結晶させる方法も、結晶核の発生を制御することが困難なため大型のSiC結晶を育成することは難しかった。
【0005】
このような技術的背景の下、容器内の低温部に平板結晶を設置しこの平板結晶を種結晶としてSiCの昇華ガスを再結晶化させる改良型レイリー法(昇華法)が1978年にロシアのYu.M.Tairov等によって提唱され、SiC結晶の大型化に向けて大きく進展した。
【0006】
現在、一般的に行われている改良型レイリー法は、図4(A)〜(B)に示すように円筒形のグラファイトからなる容器1内の一方に原料となるSiC粉末2を収容し、もう一方に種結晶3となる平板状のSiC単結晶を配置し、Ar等の不活性ガス雰囲気中で高周波誘導加熱コイルあるいは抵抗加熱ヒータ等の加熱手段(図示せず)によって容器1を2300〜2700K程度に加熱して行われている。
【0007】
そして、加熱によって原料SiC粉末から昇華した気体が容器1内で温度が最も低く設定されている種結晶3部に集まり、種結晶3上で結晶成長が行われ、種結晶3と同一結晶方位のSiCバルク結晶4が得られている。
【0008】
更に、大面積のSiC結晶を得るため、直径6インチ、8インチが既に実用化されているSi結晶を基板として適用し、CVD法、MBE法等の気相成長法により上記Si結晶基板上にSiC膜をエピタキシャル成長させる方法も研究されている。
【0009】
【発明が解決しようとする課題】
ところで、上記改良型レイリー法(昇華法)を適用した場合、研究レベルで直径50mm程度のSiC結晶は得られているが、現実的にある程度の再現性を持って得られる結晶のサイズは直径30mm程度であり、実用的なサイズである結晶径50mm以上の大型結晶を再現性よく育成することは困難であった。
【0010】
更に、改良型レイリー法を用いて育成されたSiC結晶には、マイクロパイプ、ポリタイプの混在など、デバイス特性に大きな影響を与え半導体基板として本質的に存在してはならない重大な結晶欠陥が存在する。そして、マイクロパイプは、電子デバイスにおいてリーク電流を発生させる原因となり、マイクロパイプが存在する領域は基板材料として使用することができない。ポリタイプは、ポリタイプが異なるとバンドギャップが異なるため、これ等ポリタイプが存在する領域もデバイス作製には適用することができない。
【0011】
加えて、改良型レイリー法で原料として通常用いられるSiC粉末は上述したアチソン法で合成されたものが一般的であり、SiC粉末の純度は高々98%程度である。このため、改良型レイリー法による育成中に、原料のSiC粉末に含まれる不純物元素も昇華し結晶中に取り込まれてしまう。従って、この方法で育成されたSiC結晶に含まれる残留不純物濃度は1017〜1018/cm2 以上となる。そして、この高い残留不純物濃度は結晶の電気的特性に大きな影響を与えることから、改良型レイリー法では、電子デバイス用材料として所望の電気的特性を有する結晶を得ることは非常に困難となる。
【0012】
尚、原料粉末として、気相合成法などアチソン法以外の方法で合成された高純度品を適用することもできるが、原料粉末の生産性が悪いことから原料コストがアチソン法の100倍以上と高くなる問題があり、更に、アチソン法以外の方法で得られたSiC原料粉末でさえも純度は99.5%程度であり、半導体結晶を育成するための原料として期待される6N(99.9999%)あるいは7N(99.99999%)という値と比較すると十分な純度ではない。
【0013】
他方、Si結晶を基板として適用した気相成長法においては、上記マイクロパイプの結晶欠陥はみられないが、その成長速度がせいぜい2〜3μm/hr.と上記改良型レイリー法の数百〜数千μm/hr.に較べて生産性が非常に劣る問題点を有している。また、成長温度が1000〜1100℃程度で行われるために、低温安定型でエネルギーバンドギャップがSiCポリタイプの中で最も狭い3Cタイプの結晶しか得られていないのが現状である。
【0014】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、デバイス動作不良の原因となるマイクロパイプ、ポリタイプの混在等の結晶欠陥が無く、結晶の電気的特性に大きく影響を与える残留不純物濃度も大幅に低減された高品質でかつ大型のSiC結晶を育成可能なSiC結晶の液相エピタキシャル成長方法を提供することにある。
【0015】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
Si−Cの2成分系状態図に示される包晶点と共晶点間の組成を有するSi−C系融液を原料融液とし、この原料融液とSi基板若しくはSi基板上に設けられたSiC膜とを接触させて上記Si基板上若しくはSiC膜上にSiC結晶をエピタキシャル成長させるSiC結晶の液相エピタキシャル成長方法を前提とし、
成長容器内の上方側にSi基板若しくはSiC膜が設けられたSi基板を配置しかつ成長容器内の下方側にSi原料とグラファイトを配置する工程と、
成長容器内を加熱してSi融液を得ると共に、Si融液上に配置されたグラファイトから供給されるSi−C系融液内におけるC濃度が平衡状態に達するまで加熱を継続させる工程と、
Si−C系融液内におけるC濃度が平衡状態に達した後、Si−C系融液の温度とSi基板の温度がSi−C系の共晶点の温度1404℃〜Siの融点1414℃の範囲内で、かつ、(Si基板の温度)<(Si−C系融液の温度)の関係を満たすと共に、Si−C系融液内においてグラファイトとの接触部の融液温度が最も低温となるように成長容器内の温度分布を変更させる工程と、
Si−C系融液におけるグラファイトとの接触部の温度が、(Si基板の温度)<(Si−C系融液におけるグラファイトとの接触部の温度)<(Siの融点1414℃)の関係を満たすまで降下した後、Si−C系融液全体の温度をグラファイトとの接触部の融液温度と等しくなるように変更させる工程と、
Si基板温度とSi−C系融液温度を安定させた後、成長容器の上下を反転させてSi−C系融液とSi基板若しくはSiC膜とを接触させると共に、Si基板の温度を保持したままグラファイトが浮かぶSi−C系融液上面側の温度をSiの融点1414℃よりも高温に設定して、グラファイトとの接触部が最も高温部でSi基板若しくはSiC膜との接触部が最も低温部となるSi−C系融液の温度分布を形成させる工程、
の各工程を具備することを特徴とする。
【0017】
そして、請求項記載の発明に係るSiC結晶の液相エピタキシャル成長方法によれば、Si−Cの2成分系状態図に示される包晶点と共晶点間の組成を有するSi−C系融液を原料融液とし、この原料融液とSi基板若しくはSi基板上に設けられたSiC膜とを接触させて上記Si基板上若しくはSiC膜上にSiC結晶をエピタキシャル成長させているため、従来より大型で、かつ、マイクロパイプ等の結晶欠陥が少なく、しかもポリタイプが電子デバイス用材料として必要とされている4H(六方晶系)あるいは6H(六方晶系)タイプのSiC結晶を簡便に得ることが可能となる。
【0018】
また、成長原料としてSiC粉末を用いていないため上述した改良型レイリー法(昇華法)で得られたSiC結晶よりも残留不純物濃度の低いSiC結晶を得ることができ、かつ、その成長速度も、成長温度やSi−C系融液内の温度勾配等に依存するが、数百μm/hr.以上とSi基板を用いた上述の気相成長法の百倍以上であり、高速でかつ再現性よくSiC結晶を得ることが可能となる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0020】
図2は、常圧におけるSi−Cの2成分系状態図である。この2成分系状態図で示されるようにSi単体の融点は1414℃であるが、Si−Cの2成分系は2545±40℃で包晶点を、また、1404±5℃で共晶点を持つ。包晶点での組成は、Siが73at%、Cが27at%であり、共晶点での組成は、Siが99.25±0.5at%、Cが0.75±0.5at%である。
【0021】
これ等の包晶組成と共晶組成の間の組成を有するSi−C系融液、例えば、図2において始めに点Aの状態にある融液を徐冷すると、融液の温度がTとなり、液相線上の点Bに到達した後は、Si−C系融液はSiC結晶を晶出しながら組成を液相線に沿って変化させる。温度降下に伴ってSi−C系融液の組成が液相線に沿って変化しても、晶出する結晶は常にSiCである。この状態は、Si−C系融液の組成が共晶点に到達するまで続く。そして、共晶点温度よりも低温では、もはや液相は存在せずに共晶点に達するまでに晶出したSiCと共晶組成のSiとSiCの混合物から成る固相となる。
【0022】
上記過程において、包晶組成と共晶組成の間の組成を有するSi−C系融液がSiC結晶を晶出する反応を、種結晶基板としてのSi基板上若しくはSi基板に設けられたSiC膜上で行わせればエピタキシャル成長が起こり、Si基板上若しくはSiC膜上にSiC結晶を育成させることが可能となる。
【0023】
このとき、SiCの晶出反応を効率よくSi基板上若しくはSiC膜上で行わせるために、Si−C系融液内にSi基板側が最も低温となる温度勾配を設定する。晶出反応は、この温度勾配を保持したままでSi−C系融液全体の温度を降下させることで起こすことができるが、Si−C系融液内における最も高温部にC供給源となるグラファイトを配置しかつSi−C系融液内における最も低温部にSi基板若しくはSiC膜が設けられたSi基板を配置させると共に、基板側低温−C供給源側高温の上記Si−C系融液の温度分布を保持することでも晶出反応を起こすことが可能である。これは、高温部で平衡濃度となったSi−C系融液中のCが、融液中のC濃度の差による拡散で基板が設置されている低温部に達すると過飽和状態となり、基板部の温度で平衡状態に近付こうとするときにSiCを晶出し、最も低温に保たれているSi基板上若しくはSiC膜上でSiCのエピタキシャル成長が行われる(すなわち温度差を利用した晶出方法)。また、他の方法として、Si−C系融液内の温度分布は一定に保ったままで溶媒であるSiを蒸発させ、Si−C系融液内をC過剰の過飽和状態とすることでSiCの晶出反応を起こすこともできる。
【0024】
そして、これ等の中で、特に上記温度差を利用した晶出方法では、基板側低温−C供給源側高温のSi−C系融液の温度分布を保持する方法であることから、結晶育成中、常に温度が一定に保たれる上に、溶媒Siを蒸発させることなく成長が行われるため、温度変化によるポリタイプ変化等の結晶欠陥の発生を抑制できるだけでなくCの供給がなくなるまでSiCの成長を行うことが可能であり、十分な厚さのSiC結晶が得られる利点を有する。
【0025】
以下、Si単結晶ウェハを液相エピタキシャル成長の基板とし、上記温度差法によりSiC結晶を育成する方法について具体的に説明する。尚、SiC結晶の育成を行う際には、Si基板の温度を、Si−C系の共晶点温度1404℃以上Si単体の融点温度1414℃未満に保持し、かつ、Si−C系融液内の少なくとも一部はSi単体の融点1414℃よりも高い温度となるように成長容器内の温度分布を設定する。
【0026】
まず、図1(A)に示すように成長容器10内に、基板となるSi単結晶ウェハ20と、溶融して溶媒となりかつSi−C系融液の原料となるSi多結晶体31と、融液にCを供給する原料となるグラファイト32を配置する。
【0027】
次に、上記成長容器10を、Arガス等の雰囲気中で高周波誘導加熱法あるいは抵抗加熱法等によって昇温する。このとき、Si多結晶体31とグラファイト32の設置部は、Si単体の融点Tm 以上の温度(例えば、図3のT)に昇温されるが、Si単結晶ウェハ20の設置部は、Si単結晶ウェハ20が融解しないようにSi単体の融点Tm を越えないように調整することが必要である。更に、図1(B)に示すように、Si単結晶ウェハ20と、Si多結晶体31の融液31’が接触しないようにそれぞれ配置する。この配置で成長容器10内の温度を保持することによりSi−C系融液中のC濃度を平衡状態に近付ける。
【0028】
Si−C系融液内におけるC濃度が平衡状態に達したら、Si−C系融液の温度とSi単結晶ウェハ20の温度が、共に図3で示すSi−C系の共晶点の温度Tu とSi単体の融点Tm の範囲内で、かつ、(Si単結晶ウェハ20の温度)<(Si−C系融液の温度)の関係となるように成長容器10内の温度分布を変更する。この際、Si−C系融液内においては、Cの供給源であるグラファイト32との接触部の融液温度が最も低温となるようにSi−C系融液内部に温度勾配を設ける。これは、Si−C系融液温度を低下させることで融液中のC濃度が過飽和となり、SiCが析出する反応を全てグラファイト32表面で行わせるためである(すなわちグラファイト32との接触部以外のSi−C系融液中におけるSiCの析出を行わせないためである)。
【0029】
そして、Si−C系融液における上記グラファイト32との接触部の温度が、(Si単結晶ウェハ20の温度)<(Si−C系融液の温度)<(Si単体の融点Tm )の関係を満たすまで降下したら、Si−C系融液全体の温度をグラファイト32との接触部の融液温度と等しくなるように変更する。この条件でSi単結晶ウェハ20の温度とSi−C系融液温度が安定したら、成長容器10の上下を反転させて図1(C)に示すようにSi−C系融液とSi単結晶ウェハ20とを接触させ、図1(C)の配置となったら、Si単結晶ウェハ20の温度を保持したままグラファイト32が浮かぶSi−C系融液上面側の温度をSi単体の融点Tm よりも高温となるように変更する。
【0030】
この操作によって、Si−C系融液内の温度分布は、Si単結晶ウェハ20側が最も低温に、Cの供給源であるグラファイト32側が高温となり、上述した温度差法によりSi単結晶ウェハ20上にエピタキシャル成長が起こり、SiC結晶を得ることができる。
【0031】
【実施例】
以下、本発明の実施例について具体的に説明する。
【0032】
まず、内壁をBNでコートしたグラファイト製成長容器10内の上方側に、図1(A)に示すように基板となるSi単結晶ウェハ20を配置しかつ成長容器10内の下方側にSi多結晶体31とグラファイト32をそれぞれ配置した。
【0033】
次に、上記成長容器10を、Arガス雰囲気中で、Si多結晶体31とグラファイト32の設置部が1430℃、Si単結晶ウェハ20の設置部が1400℃となるように高周波誘導加熱法により加熱し、図1(B)に示すようにグラファイト32が浮かぶSi−C系融液を得た。
【0034】
次に、上記成長容器10内の温度を保持することによりSi−C系融液中のC濃度を平衡状態に近付け、かつ、C濃度が平衡状態に達したら、Si−C系融液の温度とSi単結晶ウェハ20の温度が、共に図3で示すSi−C系の共晶点の温度1404℃(Tu )とSi単体の融点1414℃(Tm )の範囲内で、かつ、(Si単結晶ウェハ20の温度)<(Si−C系融液の温度)の関係となるように成長容器10内の温度分布を変更する。すなわち、Si単結晶ウェハ20の温度を1405℃に設定すると共に、グラファイト32との接触部の融液温度:1410℃、融液の最高温度:1413℃となるようにSi−C系融液内部に温度勾配を設ける。
【0035】
そして、Si−C系融液における上記グラファイト32との接触部の温度が、(Si単結晶ウェハ20の温度)<(Si−C系融液の温度)<(Si単体の融点Tm )の関係を満たす1410℃まで降下したら、Si−C系融液全体の温度をグラファイト32との接触部の融液温度と等しくなるように変更する。この条件でSi単結晶ウェハ20の温度とSi−C系融液温度が安定したら、成長容器10の上下を反転させて図1(C)に示すようにSi−C系融液とSi単結晶ウェハ20とを接触させ、図1(C)の配置となったら、Si単結晶ウェハ20の温度を保持したままグラファイト32が浮かぶSi−C系融液上面側の温度をSi単体の融点Tm よりも高温(1430℃)となるように変更する。
【0036】
この操作によって、Si−C系融液内の温度分布は、Si単結晶ウェハ20側が最も低温に、Cの供給源であるグラファイト32側が高温となり、温度差法によりSi単結晶ウェハ20上にエピタキシャル成長が起こり、SiC結晶を得ることができた。
【0037】
【発明の効果】
請求項記載の発明に係るSiC結晶の液相エピタキシャル成長方法によれば、
Si−Cの2成分系状態図に示される包晶点と共晶点間の組成を有するSi−C系融液を原料融液とし、この原料融液とSi基板若しくはSi基板上に設けられたSiC膜とを接触させて上記Si基板上若しくはSiC膜上にSiC結晶をエピタキシャル成長させているため、従来より大型で、かつ、マイクロパイプ等の結晶欠陥が少なく、しかもポリタイプが電子デバイス用材料として必要とされている4H(六方晶系)あるいは6H(六方晶系)タイプのSiC結晶を簡便に得ることが可能となる。
【0038】
また、成長原料としてSiC粉末を用いていないため上述した改良型レイリー法(昇華法)で得られたSiC結晶よりも残留不純物濃度の低いSiC結晶を得ることができ、かつ、その成長速度も、成長温度やSi−C系融液内の温度勾配等に依存するが、数百μm/hr.以上とSi基板を用いた上述の気相成長法の百倍以上であり、高速でかつ再現性よくSiC結晶を得ることが可能となる。
【図面の簡単な説明】
【図1】図1(A)〜(C)は実施例に係る液相エピタキシャル成長方法の工程を示す説明図。
【図2】Si−Cの2成分系状態図。
【図3】Si−Cの2成分系状態図における共晶点付近の部分拡大図。
【図4】図4(A)(B)は従来の改良型レイリー法(昇華法)の工程説明図。
【符号の説明】
10 成長容器
20 Si単結晶ウェハ
31 Si多結晶体
32 グラファイト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a SiC crystal growth method expected as a material for high-temperature operation devices, power devices, radiation resistant devices, and the like, and in particular, crystal defects such as micropipes and polytypes that cause device malfunction. The present invention relates to a liquid crystal epitaxial growth method of a SiC crystal capable of growing a high-quality and large-sized SiC crystal in which the residual impurity concentration that greatly affects the electrical characteristics of the crystal is greatly reduced.
[0002]
[Prior art]
A SiC crystal, which is a wide gap semiconductor, has a large energy gap of about 3 eV and a strong chemical bonding force, so that it is physically and chemically stable, and has excellent heat resistance and radiation resistance. In addition, both p and n conduction types can be controlled and the carrier mobility is as large as Si crystals, so next-generation power transmission systems, trains, electric cars, aviation, nuclear power, space science, etc. Highest withstand voltage power devices, high temperature operation devices, radiation resistant devices, etc. required in the field, the most suitable electronic device materials that can be used even in harsh environments that could not be realized by the physical properties of conventional semiconductor materials such as Si. Expected.
[0003]
By the way, since SiC does not have a melting point at normal pressure, it is very difficult to grow a bulk crystal. As an SiC crystal growth method, the Atchison method in which SiO 2 and coke are reacted at a high temperature has been known for a long time. In this Atchison method, general industrial SiC crystals such as abrasives and refractory materials are produced, but a hexagonal plate-like single crystal having a diameter of about 10 mm is accidentally obtained. However, with this Atchison method, it is impossible to control the growth of a single crystal, so there is no reproducibility and it is impossible to grow a large crystal with high purity.
[0004]
On the other hand, the Rayleigh method (sublimation method) studied since the 1960s, that is, a method in which SiC powder is sublimated and recrystallized at a high temperature of 2000 ° C. or higher in a graphite vessel is difficult to control the generation of crystal nuclei. It was difficult to grow a large SiC crystal.
[0005]
Under such a technical background, an improved Rayleigh method (sublimation method) in which a flat crystal is placed in a low-temperature portion in a container and the sublimation gas of SiC is recrystallized using the flat crystal as a seed crystal was introduced in 1978 in Russia. Proposed by Yu.M.Tairov et al., Great progress has been made toward increasing the size of SiC crystals.
[0006]
At present, the improved Rayleigh method that is generally performed contains SiC powder 2 as a raw material in one of containers 1 made of cylindrical graphite as shown in FIGS. 4 (A) to (B), A flat SiC single crystal serving as the seed crystal 3 is arranged on the other side, and the container 1 is placed 2300 to 2300 by heating means (not shown) such as a high frequency induction heating coil or a resistance heater in an inert gas atmosphere such as Ar. It is performed by heating to about 2700K.
[0007]
Then, the gas sublimated from the raw material SiC powder by heating gathers in 3 parts of the seed crystal having the lowest temperature in the container 1, crystal growth is performed on the seed crystal 3, and the same crystal orientation as the seed crystal 3 is obtained. A SiC bulk crystal 4 is obtained.
[0008]
Furthermore, in order to obtain a SiC crystal having a large area, a Si crystal having a diameter of 6 inches or 8 inches already applied as a substrate is applied to the Si crystal substrate by a vapor phase growth method such as a CVD method or an MBE method. A method of epitaxially growing a SiC film has also been studied.
[0009]
[Problems to be solved by the invention]
By the way, when the improved Rayleigh method (sublimation method) is applied, SiC crystals having a diameter of about 50 mm are obtained at the research level, but the crystal size obtained with a certain degree of reproducibility is 30 mm in diameter. It was difficult to grow large crystals having a crystal size of 50 mm or more, which is a practical size, with good reproducibility.
[0010]
In addition, SiC crystals grown using the modified Rayleigh method have significant crystal defects that must have a substantial impact on device characteristics, such as the mixing of micropipes and polytypes, and which should not exist as a semiconductor substrate. To do. The micropipe causes a leak current in the electronic device, and the region where the micropipe exists cannot be used as a substrate material. Since polytypes have different band gaps when different polytypes are used, regions where these polytypes are present cannot be applied to device fabrication.
[0011]
In addition, the SiC powder normally used as a raw material in the improved Rayleigh method is generally synthesized by the above-mentioned Atchison method, and the purity of the SiC powder is about 98% at most. For this reason, during the growth by the improved Rayleigh method, the impurity element contained in the raw SiC powder is also sublimated and incorporated into the crystal. Therefore, the residual impurity concentration contained in the SiC crystal grown by this method is 10 17 to 10 18 / cm 2 or more. Since this high residual impurity concentration greatly affects the electrical characteristics of the crystal, it is very difficult to obtain a crystal having desired electrical characteristics as an electronic device material by the improved Rayleigh method.
[0012]
In addition, as a raw material powder, a high-purity product synthesized by a method other than the Atchison method such as a gas phase synthesis method can be applied, but the raw material cost is 100 times or more that of the Atchison method due to poor productivity of the raw material powder. Further, even the SiC raw material powder obtained by a method other than the Atchison method has a purity of about 99.5%, and 6N (99.9999) expected as a raw material for growing semiconductor crystals. %) Or 7N (99.99999%), the purity is not sufficient.
[0013]
On the other hand, in the vapor phase growth method using Si crystal as a substrate, crystal defects of the micropipe are not observed, but the growth rate is at most 2 to 3 μm / hr. And hundreds to thousands μm / hr. Of the improved Rayleigh method. Compared to the above, productivity is very inferior. In addition, since the growth temperature is about 1000 to 1100 ° C., only the 3C type crystal having the lowest temperature and the narrowest energy band gap among SiC polytypes is obtained at present.
[0014]
The present invention has been made paying attention to such problems, and the problem is that there are no crystal defects such as micropipes and polytypes that cause device malfunction, and the electrical characteristics of the crystal. It is an object of the present invention to provide a liquid crystal epitaxial growth method of SiC crystal capable of growing a high-quality and large-sized SiC crystal in which the residual impurity concentration that greatly affects the quality is greatly reduced.
[0015]
[Means for Solving the Problems]
That is, the invention according to claim 1
A Si—C melt having a composition between the peritectic point and the eutectic point shown in the Si—C binary phase diagram is used as a raw material melt and provided on the Si substrate or the Si substrate. Assuming a liquid crystal epitaxial growth method of SiC crystal in which SiC crystal is epitaxially grown on the Si substrate or SiC film by contacting with the SiC film,
A step of disposing a Si substrate provided with a Si substrate or a SiC film on the upper side in the growth vessel and disposing Si raw material and graphite on the lower side in the growth vessel;
Heating the inside of the growth vessel to obtain a Si melt, and continuing the heating until the C concentration in the Si-C melt supplied from the graphite disposed on the Si melt reaches an equilibrium state;
After the C concentration in the Si—C melt reaches an equilibrium state, the temperature of the Si—C melt and the temperature of the Si substrate are from the Si—C eutectic point temperature of 1404 ° C. to the melting point of Si of 1414 ° C. And satisfying the relationship of (Si substrate temperature) <(Si—C melt temperature), and the melt temperature at the contact portion with graphite in the Si—C melt is the lowest. Changing the temperature distribution in the growth vessel so that
The temperature of the contact portion with the graphite in the Si—C melt is expressed as (Si substrate temperature) <(temperature of the contact portion with graphite in the Si—C melt) <(Si melting point 1414 ° C.). A step of changing the temperature of the entire Si-C-based melt so as to be equal to the melt temperature of the contact portion with graphite, after being lowered to fill;
After stabilizing the Si substrate temperature and the Si—C melt temperature, the growth vessel is turned upside down to bring the Si—C melt into contact with the Si substrate or the SiC film, and the temperature of the Si substrate is maintained. The temperature on the upper surface side of the Si-C melt on which graphite floats is set to a temperature higher than the melting point of Si 1414 ° C., and the contact portion with graphite is the hottest portion and the contact portion with the Si substrate or SiC film is the coldest. Forming a temperature distribution of the Si-C melt to be a part,
It comprises each of these processes .
[0017]
According to the liquid crystal epitaxial growth method of SiC crystal according to the first aspect of the present invention, the Si—C based melt having the composition between the peritectic point and the eutectic point shown in the Si—C binary phase diagram. Since the liquid is used as a raw material melt and the raw material melt is brought into contact with the Si substrate or the SiC film provided on the Si substrate, the SiC crystal is epitaxially grown on the Si substrate or the SiC film. In addition, a 4H (hexagonal) or 6H (hexagonal) type SiC crystal, which has few crystal defects such as micropipes and is required as a material for electronic devices, can be easily obtained. It becomes possible.
[0018]
Further, since SiC powder is not used as a growth material, a SiC crystal having a lower residual impurity concentration than the SiC crystal obtained by the above-described improved Rayleigh method (sublimation method) can be obtained, and the growth rate is also as follows. Although it depends on the growth temperature, the temperature gradient in the Si—C melt, etc., it is several hundred μm / hr. It is more than 100 times the above-described vapor phase growth method using a Si substrate, and it is possible to obtain a SiC crystal at high speed and with high reproducibility.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0020]
FIG. 2 is a two-component phase diagram of Si—C at normal pressure. As shown in this binary system phase diagram, the melting point of Si alone is 1414 ° C., but the Si—C binary system has a peritectic point at 2545 ± 40 ° C. and an eutectic point at 1404 ± 5 ° C. have. The composition at the peritectic point is 73 at% for Si and 27 at% for C, and the composition at the eutectic point is 99.25 ± 0.5 at% for Si and 0.75 ± 0.5 at% for C. is there.
[0021]
When the Si—C melt having a composition between the peritectic composition and the eutectic composition, for example, the melt in the state of point A in FIG. 2 is gradually cooled, the temperature of the melt becomes T. After reaching point B on the liquidus line, the Si—C melt changes the composition along the liquidus line while crystallizing SiC crystals. Even if the composition of the Si-C melt is changed along the liquidus with a temperature drop, the crystallized crystal is always SiC. This state continues until the composition of the Si—C melt reaches the eutectic point. At a temperature lower than the eutectic point temperature, there is no longer a liquid phase and a solid phase composed of a mixture of SiC crystallized up to the eutectic point and Si and SiC having the eutectic composition is reached.
[0022]
In the above process, the reaction of the Si—C melt having a composition between the peritectic composition and the eutectic composition to crystallize the SiC crystal is performed on the Si substrate as the seed crystal substrate or the SiC film provided on the Si substrate. If it is performed above, epitaxial growth occurs, and it becomes possible to grow a SiC crystal on a Si substrate or a SiC film.
[0023]
At this time, in order to efficiently perform the SiC crystallization reaction on the Si substrate or the SiC film, a temperature gradient is set in the Si—C-based melt so that the Si substrate side has the lowest temperature. The crystallization reaction can be caused by lowering the temperature of the entire Si—C melt while maintaining this temperature gradient, but it becomes a C supply source at the highest temperature portion in the Si—C melt. The Si-C-based melt having the Si-C-based melt and the Si substrate having the Si substrate or the SiC film provided at the lowest temperature in the Si-C-based melt is disposed. It is possible to cause a crystallization reaction by maintaining the temperature distribution. This is because when the C in the Si-C melt having an equilibrium concentration in the high temperature part reaches the low temperature part where the substrate is installed by diffusion due to the difference in the C concentration in the melt, the substrate part becomes supersaturated. SiC is crystallized when it is about to reach an equilibrium state at a temperature of, and epitaxial growth of SiC is performed on the Si substrate or SiC film kept at the lowest temperature (that is, a crystallization method using a temperature difference). . As another method, the temperature distribution in the Si-C melt is kept constant, and the solvent Si is evaporated, and the Si-C melt is brought into a super-saturated state of C excess, thereby making the SiC A crystallization reaction can also occur.
[0024]
Among these, in particular, the crystallization method using the above temperature difference is a method of maintaining the temperature distribution of the substrate-side low temperature-C supply source-side high temperature Si-C-based melt. In addition, since the temperature is always kept constant and the growth is carried out without evaporating the solvent Si, it is possible not only to suppress the occurrence of crystal defects such as polytype changes due to temperature changes, but also to supply SiC until C is no longer supplied. Therefore, there is an advantage that a SiC crystal having a sufficient thickness can be obtained.
[0025]
Hereinafter, a method for growing a SiC crystal by the above temperature difference method using a Si single crystal wafer as a substrate for liquid phase epitaxial growth will be specifically described. When the SiC crystal is grown, the temperature of the Si substrate is maintained at a Si—C system eutectic point temperature of 1404 ° C. or higher and lower than the melting point temperature of 1414 ° C. of Si alone, and the Si—C system melt. The temperature distribution in the growth vessel is set so that at least a part of the temperature is higher than the melting point of 1414 ° C. of Si alone.
[0026]
First, as shown in FIG. 1 (A), in a growth vessel 10, a Si single crystal wafer 20 serving as a substrate, a Si polycrystal 31 serving as a solvent by melting and a Si-C-based melt, A graphite 32 serving as a raw material for supplying C to the melt is disposed.
[0027]
Next, the growth vessel 10 is heated in an atmosphere such as Ar gas by a high frequency induction heating method or a resistance heating method. In this case, the installation portion of the Si polycrystalline 31 and graphite 32, Si single melting point T m above temperature (eg, T in FIG. 3) is heated to, installation of the Si single crystal wafer 20, it is necessary to Si single crystal wafer 20 is adjusted so as not to exceed the melting point T m of a Si simple substance so as not to melt. Further, as shown in FIG. 1B, the Si single crystal wafer 20 and the melt 31 ′ of the Si polycrystal 31 are arranged so as not to contact each other. By maintaining the temperature in the growth vessel 10 in this arrangement, the C concentration in the Si—C melt is brought close to the equilibrium state.
[0028]
When the C concentration in the Si-C melt reaches an equilibrium state, the temperature of the Si-C melt and the temperature of the Si single crystal wafer 20 are both the temperatures of the eutectic points of the Si-C melt shown in FIG. within the T u and Si single melting point T m, and the temperature distribution in the growth vessel 10 so as to be in the relationship of (temperature of the Si single crystal wafer 20) <(temperature of Si-C KeiTorueki) change. At this time, in the Si—C based melt, a temperature gradient is provided inside the Si—C based melt so that the melt temperature at the contact portion with the graphite 32 which is a C supply source becomes the lowest. This is because the C concentration in the melt is supersaturated by lowering the temperature of the Si—C melt, so that all the reactions in which SiC precipitates are performed on the surface of the graphite 32 (that is, other than the contact portion with the graphite 32). This is because SiC is not precipitated in the Si—C melt.
[0029]
The temperature of the contact portion with the graphite 32 in the Si—C melt is (temperature of the Si single crystal wafer 20) <(temperature of the Si—C melt) <(melting point T m of Si alone). If it falls to satisfy | fill a relationship, the temperature of the whole Si-C type melt will be changed so that it may become equal to the melt temperature of a contact part with the graphite 32. FIG. When the temperature of the Si single crystal wafer 20 and the temperature of the Si—C melt are stabilized under these conditions, the growth vessel 10 is turned upside down and the Si—C melt and the Si single crystal as shown in FIG. When the wafer 20 is brought into contact with the arrangement shown in FIG. 1C, the temperature of the upper surface side of the Si—C melt on which the graphite 32 floats while maintaining the temperature of the Si single crystal wafer 20 is set to the melting point T m of Si alone. Change to a higher temperature.
[0030]
By this operation, the temperature distribution in the Si—C based melt is such that the Si single crystal wafer 20 side has the lowest temperature and the C 32 supply source graphite 32 side has a high temperature. Epitaxial growth occurs, and a SiC crystal can be obtained.
[0031]
【Example】
Examples of the present invention will be specifically described below.
[0032]
First, as shown in FIG. 1 (A), a Si single crystal wafer 20 serving as a substrate is disposed on the upper side of a graphite growth vessel 10 whose inner wall is coated with BN, and Si is formed on the lower side of the growth vessel 10. A crystal body 31 and a graphite 32 were respectively disposed.
[0033]
Next, the growth vessel 10 is subjected to high-frequency induction heating in an Ar gas atmosphere so that the installation portion of the Si polycrystal 31 and the graphite 32 is 1430 ° C. and the installation portion of the Si single crystal wafer 20 is 1400 ° C. It heated and the Si-C type melt which the graphite 32 floated as shown in FIG.1 (B) was obtained.
[0034]
Next, by maintaining the temperature in the growth vessel 10, the C concentration in the Si—C melt is brought close to the equilibrium state, and when the C concentration reaches the equilibrium state, the temperature of the Si—C melt is reached. And the temperature of the Si single crystal wafer 20 are within the range of the temperature of 1404 ° C. (T u ) of the Si—C eutectic point and the melting point of 1414 ° C. (T m ) of Si alone as shown in FIG. The temperature distribution in the growth vessel 10 is changed so that the relationship of the temperature of the Si single crystal wafer 20) <(the temperature of the Si—C melt). That is, the temperature of the Si single crystal wafer 20 is set to 1405 ° C., the melt temperature at the contact portion with the graphite 32 is 1410 ° C., and the maximum temperature of the melt is 1413 ° C. A temperature gradient is provided.
[0035]
The temperature of the contact portion with the graphite 32 in the Si—C melt is (temperature of the Si single crystal wafer 20) <(temperature of the Si—C melt) <(melting point T m of Si alone). If it falls to 1410 degreeC which satisfy | fills a relationship, the temperature of the whole Si-C type melt will be changed so that it may become equal to the melt temperature of a contact part with the graphite 32. FIG. When the temperature of the Si single crystal wafer 20 and the temperature of the Si—C melt are stabilized under these conditions, the growth vessel 10 is turned upside down and the Si—C melt and the Si single crystal as shown in FIG. When the wafer 20 is brought into contact with the arrangement shown in FIG. 1C, the temperature of the upper surface side of the Si—C melt on which the graphite 32 floats while maintaining the temperature of the Si single crystal wafer 20 is set to the melting point T m of Si alone. The temperature is changed to a higher temperature (1430 ° C.).
[0036]
By this operation, the temperature distribution in the Si—C-based melt is such that the Si single crystal wafer 20 side has the lowest temperature and the C 32 supply source graphite 32 side has a high temperature, and epitaxial growth on the Si single crystal wafer 20 by the temperature difference method. And SiC crystals could be obtained.
[0037]
【The invention's effect】
According to the liquid crystal epitaxial growth method of SiC crystal according to the invention of claim 1 ,
A Si—C melt having a composition between the peritectic point and the eutectic point shown in the Si—C binary phase diagram is used as a raw material melt and provided on the Si substrate or the Si substrate. The SiC crystal is epitaxially grown on the Si substrate or SiC film by contacting with the SiC film, so that it is larger than before, has fewer crystal defects such as micropipes, and the polytype is a material for electronic devices. 4H (hexagonal crystal) or 6H (hexagonal crystal) type SiC crystal, which is required as the above, can be easily obtained.
[0038]
Further, since SiC powder is not used as a growth material, a SiC crystal having a lower residual impurity concentration than the SiC crystal obtained by the above-described improved Rayleigh method (sublimation method) can be obtained, and the growth rate is also as follows. Although it depends on the growth temperature, the temperature gradient in the Si—C melt, etc., it is several hundred μm / hr. It is more than 100 times the above-described vapor phase growth method using a Si substrate, and it is possible to obtain a SiC crystal at high speed and with high reproducibility.
[Brief description of the drawings]
FIG. 1A to FIG. 1C are explanatory views showing steps of a liquid phase epitaxial growth method according to an embodiment.
FIG. 2 is a two-component phase diagram of Si—C.
FIG. 3 is a partially enlarged view near a eutectic point in a two-component phase diagram of Si—C.
4 (A) and 4 (B) are process explanatory views of a conventional improved Rayleigh method (sublimation method).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Growth container 20 Si single crystal wafer 31 Si polycrystal 32 Graphite

Claims (1)

Si−Cの2成分系状態図に示される包晶点と共晶点間の組成を有するSi−C系融液を原料融液とし、この原料融液とSi基板若しくはSi基板上に設けられたSiC膜とを接触させて上記Si基板上若しくはSiC膜上にSiC結晶をエピタキシャル成長させるSiC結晶の液相エピタキシャル成長方法において、
成長容器内の上方側にSi基板若しくはSiC膜が設けられたSi基板を配置しかつ成長容器内の下方側にSi原料とグラファイトを配置する工程と、
成長容器内を加熱してSi融液を得ると共に、Si融液上に配置されたグラファイトから供給されるSi−C系融液内におけるC濃度が平衡状態に達するまで加熱を継続させる工程と、
Si−C系融液内におけるC濃度が平衡状態に達した後、Si−C系融液の温度とSi基板の温度がSi−C系の共晶点の温度1404℃〜Siの融点1414℃の範囲内で、かつ、(Si基板の温度)<(Si−C系融液の温度)の関係を満たすと共に、Si−C系融液内においてグラファイトとの接触部の融液温度が最も低温となるように成長容器内の温度分布を変更させる工程と、
Si−C系融液におけるグラファイトとの接触部の温度が、(Si基板の温度)<(Si−C系融液におけるグラファイトとの接触部の温度)<(Siの融点1414℃)の関係を満たすまで降下した後、Si−C系融液全体の温度をグラファイトとの接触部の融液温度と等しくなるように変更させる工程と、
Si基板温度とSi−C系融液温度を安定させた後、成長容器の上下を反転させてSi−C系融液とSi基板若しくはSiC膜とを接触させると共に、Si基板の温度を保持したままグラファイトが浮かぶSi−C系融液上面側の温度をSiの融点1414℃よりも高温に設定して、グラファイトとの接触部が最も高温部でSi基板若しくはSiC膜との接触部が最も低温部となるSi−C系融液の温度分布を形成させる工程、
の各工程を具備することを特徴とするSiC結晶の液相エピタキシャル成長方法。
A Si—C melt having a composition between the peritectic point and the eutectic point shown in the Si—C binary phase diagram is used as a raw material melt and provided on the Si substrate or the Si substrate. In the liquid crystal epitaxial growth method of SiC crystal, the SiC crystal is epitaxially grown on the Si substrate or the SiC film by contacting with the SiC film .
A step of disposing a Si substrate provided with a Si substrate or a SiC film on the upper side in the growth vessel and disposing Si raw material and graphite on the lower side in the growth vessel;
Heating the inside of the growth vessel to obtain a Si melt, and continuing the heating until the C concentration in the Si-C melt supplied from the graphite disposed on the Si melt reaches an equilibrium state;
After the C concentration in the Si—C melt reaches an equilibrium state, the temperature of the Si—C melt and the temperature of the Si substrate are from the Si—C eutectic point temperature of 1404 ° C. to the melting point of Si of 1414 ° C. And satisfying the relationship of (Si substrate temperature) <(Si—C melt temperature), and the melt temperature at the contact portion with graphite in the Si—C melt is the lowest. Changing the temperature distribution in the growth vessel so that
The temperature of the contact portion with the graphite in the Si—C melt is expressed as (Si substrate temperature) <(temperature of the contact portion with graphite in the Si—C melt) <(Si melting point 1414 ° C.). A step of changing the temperature of the entire Si-C-based melt so as to be equal to the melt temperature of the contact portion with graphite, after being lowered to fill;
After stabilizing the Si substrate temperature and the Si—C melt temperature, the growth vessel is turned upside down to bring the Si—C melt into contact with the Si substrate or the SiC film, and the temperature of the Si substrate is maintained. The temperature on the upper surface side of the Si-C melt on which graphite floats is set to a temperature higher than the melting point of Si 1414 ° C. , and the contact portion with graphite is the hottest portion and the contact portion with the Si substrate or SiC film is the coldest. Forming a temperature distribution of the Si-C melt to be a part ,
A liquid phase epitaxial growth method of an SiC crystal comprising the steps of:
JP33850698A 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal Expired - Lifetime JP3752868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33850698A JP3752868B2 (en) 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33850698A JP3752868B2 (en) 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal

Publications (2)

Publication Number Publication Date
JP2000154096A JP2000154096A (en) 2000-06-06
JP3752868B2 true JP3752868B2 (en) 2006-03-08

Family

ID=18318806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33850698A Expired - Lifetime JP3752868B2 (en) 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal

Country Status (1)

Country Link
JP (1) JP3752868B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001788A (en) * 2004-06-17 2006-01-05 Hitachi Chem Co Ltd Crucible for growing calcium fluoride crystal, method for producing calcium fluoride crystal, and calcium fluoride crystal
JP6207014B2 (en) * 2013-11-01 2017-10-04 国立大学法人名古屋大学 Method for producing compound semiconductor crystal

Also Published As

Publication number Publication date
JP2000154096A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
KR100855655B1 (en) Seed and seedholder combinations for high quality growth of large silicon carbide single crystals
KR100897312B1 (en) Process for producing silicon carbide single crystal
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
US5746827A (en) Method of producing large diameter silicon carbide crystals
US9856582B2 (en) SiC single crystal and production method thereof
US7520930B2 (en) Silicon carbide single crystal and a method for its production
JP2007197231A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2000264790A (en) Production of silicon carbide single crystal
JP2001072491A (en) Method and apparatus for producing single crystal
Chaussende et al. Prospects for 3C-SiC bulk crystal growth
JPS5948792B2 (en) Silicon carbide crystal growth method
KR20090021144A (en) Single-crystal sic, process for producing the same, and apparatus for producing single-crystal sic
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
JP4253974B2 (en) SiC single crystal and growth method thereof
JP3719341B2 (en) Liquid phase epitaxial growth method of SiC crystal
JP3752868B2 (en) Liquid phase epitaxial growth method of SiC crystal
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
EP3072995A1 (en) Method for producing silicon carbide crystals from vapour phase
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH11106297A (en) Growth of silicon carbide single crystal having low resistance
JPH10182297A (en) Method for growing sic single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
CN110914485B (en) Silicon-based molten composition and method for producing silicon carbide single crystal using same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

EXPY Cancellation because of completion of term