JP3752391B2 - 電子制御スロットル装置 - Google Patents

電子制御スロットル装置 Download PDF

Info

Publication number
JP3752391B2
JP3752391B2 JP29934198A JP29934198A JP3752391B2 JP 3752391 B2 JP3752391 B2 JP 3752391B2 JP 29934198 A JP29934198 A JP 29934198A JP 29934198 A JP29934198 A JP 29934198A JP 3752391 B2 JP3752391 B2 JP 3752391B2
Authority
JP
Japan
Prior art keywords
motor
throttle valve
gear
throttle
electronically controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29934198A
Other languages
English (en)
Other versions
JPH11193729A (ja
Inventor
武彦 小渡
裕三 門向
徳元  茂
康夫 斉藤
俊文 臼井
勝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP29934198A priority Critical patent/JP3752391B2/ja
Publication of JPH11193729A publication Critical patent/JPH11193729A/ja
Application granted granted Critical
Publication of JP3752391B2 publication Critical patent/JP3752391B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関に用いられ、空気流量を調整する電子制御スロットル装置に関する。
【0002】
【従来の技術】
特開平8−177534号公報には、スロットルボディと、このスロットルボディの吸気通路内に回転自在な軸を介して取り付けられ、この吸気通路を流れる空気流量を可変する絞弁(スロットルバルブ)と、この絞弁を複数のギヤを介して回転駆動するアクチュエータと、上記絞弁の回転角度を検出する回転角度検出手段とを有するスロットル制御装置が開示されている。
この装置では、複数のギヤとして、スロットルバルブのバルブシャフトに固着された第1のギヤと、アクチュエータであるモータの回転軸に固着された第3のギヤと、第1と第2のギヤの間に第2のギヤを設けており、これによりギヤ比を大きくとれ、スロットルバルブの開度制御をより細かく行えるよう配慮されている。
【0003】
【発明が解決しようとする課題】
上記の従来の装置では、ギヤ比を大きくしてスロットルバルブの開度制御をより細かく行えるよう配慮しているが、必要なスロットルバルブの動作速度を得るために、モータの特性、モータからスロットルバルブにトルクを伝達するときの減速比等をどのように決めれば良いかという指針については示されていない。
【0004】
また上記の従来の装置では、スロットルバルブはモータによって開閉動作されるが、このときの動作は操作者である運転者の操作にすばやく応えるものでなければ、運転者は自身の操作と内燃機関の運転状態の変化との間のギャップに戸惑うこととなる。しかし、電子制御のスロットル装置では、フェールセーフを考慮して、故障時には速やかにスロットルバルブを所定の開度に戻すよう付勢する付勢手段を設ける必要がある。このため、スロットルバルブの動作速度を単純に速めることはできず、付勢手段の付勢力やモータの性能、さらにはモータからスロットルバルブまでの減速機構の減速比を適切に設定する必要がある。
【0005】
また、燃料を直接、燃焼室内に噴霧するDI(Direct Injection)エンジンに適用することを考慮した場合には、以下のような課題が生じる。
【0006】
従来用いられてきた、吸気管内に燃料を噴射するポート噴射エンジンでは、理論空燃比(14.7)付近で運転される。これに対してDIエンジンでは、空燃比が理論空燃比(14.7)から超希薄な空燃比(40以上)まで、幅広い空燃比で運転される。このとき、理論空燃比付近では、混合気が均一な状態で着火されるので均一混合燃焼と呼ばれ、それ以上の空燃比では、混合気を層状に形成して燃焼させるため、層状燃焼と呼ばれる。DIエンジンでは、燃料を直接気筒内に噴射するため、層状燃焼を実現しやすい。図12にエンジンの運転領域による燃焼状態を示す。層状燃焼を行う領域は、エンジン回転数で2000〜3000rpm以下の領域である。
【0007】
これらの燃焼状態を実現するための、スロットルバルブの位置(開度)は、層状燃焼状態では、均一混合燃焼状態より開いた位置に設定する必要がある。したがって、層状燃焼状態から均一混合燃焼状態に移行するときには、スロットルバルブを閉じる方向に戻す動作が必要になる。図4は、運転者がアクセルを徐々に踏み込んだときの踏み込み量と、この踏み込み量に対するスロットルバルブの動作(開度)の関係を示している。
【0008】
図4に示したように、層状燃焼状態ではスロットルバルブが大きく開いており、均一混合燃焼に切り替えるときには一旦スロットルバルブが閉じる方向に動作する様子がわかる。この切り替え動作の時間が長いと、燃焼状態の切り替えがスムースにいかず、出力が急変する。そのため、車の乗員に切り替えの“ショック”が伝わり、操作性も乗り心地も悪化する。
【0009】
また、切り替えのショックを低減するためにスロットルバルブを高速に動作させると、これに伴ってスロットルバルブを駆動するモータも高速に動作させる必要がある。このとき、高速で動作させた分、スロットルバルブの速度にブレーキをかけたときの逆起電圧が大きくなる。このため、モータの駆動回路に、モータの駆動回路素子の許容電流値を超える大きな電流が流れる可能性も生じる。この場合、許容電流値の大きな電気素子をモータの駆動回路に使用できれば良いが、必ずしも要求される許容電流値を有する電気素子が存在するとは限らず、また存在したとしてもコストアップにつながり、自動車搭載用としては不向きである。またモータの駆動回路に流れる電流を許容電流値以内に抑える別の手段としては、電流制限回路を加えることも考えられるが、やはりコストアップにつながる。さらに電流制限回路が故障したときには、モータの駆動回路に流れる電流を許容電流値以内に抑えることはできなくなる恐れがあり、十分なフェールセーフ性をもつとは言えない。
【0010】
本発明の目的は、通常の開閉動作及びフェールセーフのためのバルブ動作を適切な時間で行いうる、信頼性の高い電子制御スロットル装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の電子制御スロットル装置は、モータと、このモータの回転を減速する減速機構と、この減速機構に接続されたスロットルバルブとを有し、前記モータを駆動して前記スロットルバルブの開度を調節する電子制御スロットル装置において、スロットルバルブの動作時間tを式
【0012】
【数1】
Figure 0003752391
【0013】
で、E=13Vとして計算したとき、N及び/又はJはtが80ms以下となる範囲内の値をもつようにしたものである。
このとき、N及び/又はJは式(数1)を減速比Nで微分した値が正である範囲内の値をもつようにすると良い。
また上記目的を達成するために、モータと、このモータの回転を減速する減速機構と、この減速機構に接続されたスロットルバルブとを有し、前記モータを駆動して前記スロットルバルブの開度を調節する電子制御スロットル装置において、次式、
【0014】
【数1】
Figure 0003752391
【0015】
で求まる時間tが80ms以下になるように、各パラメータを定めたものである。
このとき、各パラメータは温度120℃での値を用いるとよい
【0018】
【発明の実施の形態】
図1に、本発明に係る電子制御スロットル装置の一実施例の水平断面図を示す。また、図1のバルブシャフトの軸方向から見たギヤ部(ギヤ配置)を図8に示す。
【0019】
この電子制御スロットル装置は、空気通路とモータを内包するスロットルボディ101と、回転力を発生するモータ107と、モータの出力軸であるモータ軸105と、モータ軸105に締結されているモータギヤ106と、モータギヤと噛み合う中間ギヤ大104aと、中間ギヤ大104aと同軸上にあり締結されている中間ギヤ小104bと、中間ギヤ小104bと噛み合うバルブギヤ103と、バルブギヤ103が締結されているバルブシャフト108と、バルブシャフト108にネジ止めされているスロットルバルブ102、リターンスプリング111とデフォルトスプリング112を用いるデフォルト機構によって構成されている。
【0020】
性能を決定する仕様パラメータとしては、次のようなものがある。モータに関しては、トルク定数,逆起電圧定数、インダクタンス、抵抗、印可電圧がある。機構系に関しては、慣性モーメント、減速比(ギヤ比)、リターンスプリングのプリロードトルクがある。
【0021】
また、スロットルバルブの位置を検出するスロットルポジションセンサ110がデフォルト機構とスロットルバルブ102の間に取り付けられている。
【0022】
モータの回転を減速させるため、モータギヤ106は、これと噛み合う、中間ギヤ大104aよりピッチ円径が小さくする必要がある。中間ギヤ小104bは、これと噛み合う、バルブギヤ103よりピッチ円径が小さくする必要がある。スロットルバルブ102の動作角度は、せいぜい90度であるので、バルブギヤ103は90度回転すれば十分であり、扇型の形状をしている。
【0023】
中間ギヤ大104aおよび中間ギヤ小104bは、一つの部材にそれぞれの歯溝を形成することにより構成されている。中間ギヤの中心には穴が開けられており、そこにスロットルボディ101に圧入されている中間ギヤシャフト109を通している。図示はされていないが、フリクション低減のためと、中間ギヤのガタを減らすために、中間ギヤと中間ギヤシャフト109の間には、ドライベアリングを挿入している。
【0024】
モータ107には、モータ軸105に垂直なフランジが設けられ、スロットルボディ101に2本のねじで締結されている。本実施例では、モータ軸105が少しでも短くなるように、中間ギヤ大104aが中間ギヤシャフト109のスロットルボディ101側に配置してある。このレイアウトにより、モータ軸105の剛性が増加する分、モータ軸105を細くすることができ、慣性モーメントを小さくすることができる。これにより応答の高速化に寄与する。
【0025】
図2にデフォルト機構の原理を示す。この図では、説明を容易にするために、回転運動を直線運動に換えてある。レバー204は、スロットルシャフト108に結合されており、モータ107によって駆動される。紙面上、レバー204が左に動くとスロットルバルブは開方向に動作する。デフォルト機構は、モータ107が力を発生しないときに、スロットルバルブ102を設定された位置(デフォルト位置と呼ぶ)に開いておく機構で、1対のばねを利用している。デフォルト位置は、車両が暴走しないでかつエンジン始動が行えるスロットル位置に設定する。リターンスプリング111は、部材203とスロットルシャフト108によって動作するレバー204に取り付けられている。デフォルトスプリング202は、部材203とボディ205に取り付けられている。
【0026】
モータ107が力を発生しないときは、レバー204は、リターンスプリング201によって部材203に押し付けられ接触しており、デフォルトスプリング202によって部材203がデフォルト位置に固定される。レバー204がデフォルト位置以上では、部材203は、ボディ205に当り停止し、レバー204にはリターンスプリング201(111)によってスロットルバルブを閉じる方向に働く力を受ける。レバー204がデフォルト位置以下では、レバー204と部材203を介して、デフォルトスプリング202(112)の力を受ける。
【0027】
以上のようなデフォルト機構が、バルブシャフト108に与えるトルクを図3に示す。リターンスプリング111とデフォルトスプリング112にはプリロード(ばねの与圧)が与えられている。プリロードの大きさには最適値があり、大きすぎるとスロットルバルブの開閉動作の応答時間が長くなる原因になり、小さすぎると、空気抵抗や回動部の摩擦により、スロットルバルブ102がデフォルト位置まで戻らなくなる。デフォルト位置までバルブ102を確実に戻すには、リターンスプリング111のプリロードは重要であり、30〜40kgfmm必要である。
【0028】
本実施例の電子制御スロットル装置の動作を説明する。
【0029】
モータ107によってバルブシャフト102にデフォルト機構のばねの力以上の力が与えられると、モータ軸105が回転し、これにつれて、モータギヤ106、中間ギヤ大104aが回転する。モータギヤ106の歯数は、中間ギヤ大104aの歯数より少ないため、減速される。中間ギヤ小104bは中間ギヤ大104aとともに回転し、さらにトルクをバルブギヤ103に伝達する。中間ギヤ小104bとバルブギヤ103のピッチ円径は、中間ギヤ小104bの方が小さく設定してあるので、さらに減速される。モータ107の回転は、2段階に減速され、バルブシャフト108に伝えられる。
【0030】
図6に本発明の電子制御スロットルバルブを用いたDIエンジンの実施例を示す。電子制御スロットル61は、DIエンジン62の吸気側上流に、吸気管67を介して接続される。電子制御スロットル61は、モータ107に信号を送り駆動する制御ユニット63にスロットルハーネス66により接続される。
【0031】
制御ユニット63は、エンジンからの情報をエンジンハーネス64や、車両の他部からの情報をハーネス65を介して受け取り、スロットルバルブ102の目標位置を決定する。また、制御ユニット63は、スロットルバルブ102の位置を検出するスロットルポジションセンサ110の信号も受け取り、この信号を用いてスロットルバルブの位置が目標位置に近づくように制御する。
【0032】
制御ユニット63の内部には、モータ107の供給電力を調整する駆動回路68が組み込まれている。本実施例の駆動回路68は、モータ107の電源をパルス状にオンオフして、その長さよりモータの発生力を決めるPWM方式が使われている。パルス状にオンオフするには、電気素子としてトランジスタやFET等が用いられており、このトランジスタには許容電流値が定められている。この許容電流値以上の電流が流れるとトランジスタやFET等の電気素子は、故障する可能性がある。
【0033】
本実施例のモータ107と減速機構のギヤ比の仕様を表1に示す。
【0034】
【表1】
Figure 0003752391
【0035】
本仕様を用いることにより、応答時間を十分短くする、逆起電圧により過大な電流が回路に流れないようにする、といった課題を解決することができる。以降、これらの仕様について説明する。
【0036】
モータに電圧を供給し回転させると、モータはその発電作用により、加えた電圧とは逆向きの電圧を発生する。この電圧が逆起電圧であり、モータの回転数に比例する。電子制御スロットルに用いるモータは、目標位置になるように制御されるので、目標位置に近づくと減速のためにモータが回転している方向とは逆向きの電圧が印加される。このときに、逆起電圧と印加電圧があいまって過電流となるような大きな電流が流れる可能性が生じる。
【0037】
一例として図14にスロットルバルブをステップ動作させた状態を示す。
【0038】
図9にモータ107の駆動回路68と、図10にモータ107の回転している方向と逆向きに電圧をかけたときの電圧及び電流の状態を示す。M1、M2、M3、M4は、電気素子で、実施例ではFET(フィールドイフェクトトランジスタ)であり、モータ107への電源をオンオフする。M1とM4をオン(M2とM3はオフ)にすることによりモータ107が正転し、M2とM3をオン(M1とM4はオフ)にして逆転する。ここで逆転しているときには、モータ107の逆起電圧はA側が+になる向きに発生する。次に、急激にモータ107の回転を減速するため、図10に示すように正転側(M1とM4をオン)に電圧をかける。すると、逆起電圧Vmと、印加電圧Vbの方向が合致し、電流imが流れる。電流imは、印加電圧Vbによって流れる電流よりも、逆起電圧Vmが加わる分だけ大きな電流になる。この電流が電気素子(M1、M2、M3、M4)の許容電流値より大きな電流(過電流)であれば、電気素子(図10ではM4とM1)を損傷してしまう可能性がある。
【0039】
本実施例では、モータ107の抵抗を適切に設定することにより、逆起電圧によりモータ107の駆動回路68に過電流が流れないようにしてある。その結果、モータ107および駆動回路68に流れる電流を、電気素子(駆動回路素子)の許容電流値以下に設定することができる。
【0040】
具体的には、評価式(数2)に従ってモータ107の抵抗Rmを定める。数2は、逆起電圧Vmと印加電圧Vbの和よりモータ107にかかる電圧を求め、電気素子の許容電流で除することで、許容電流値以下となるモータ107の抵抗Rmを求める式である。
【0041】
ここで、モータの抵抗Rmとは、図9に示すAB間の抵抗であり、モータ107のターミナル間の抵抗である。この抵抗はアーマチュア抵抗はもちろん、ノイズフィルタとして用いられるチョークコイルの抵抗やブラシ接続用の配線抵抗も含まれる。また、この抵抗は、電流又は電圧が0Hzよりも大きな周波数を持つときはインピーダンスで定義される。
【0042】
実際の抵抗の測定は、自動車搭載状態のモータの駆動電圧、すなわち、本実施例では13Vの電圧をモータに印可し、モータがストールしたときの電流値からオームの法則を使用して抵抗を求める。
【0043】
評価式(数2)は、モータ107のあるべき抵抗を示しており、右辺が左辺より大きいと、モータの抵抗Rmが不足し駆動回路68の許容電流値をオーバーする。ただし、本評価式はモータ107の逆起電圧定数が温度によって変化するので、電気抵抗Rmが小さくなる−30℃における値で評価する。さらに低温で評価しても良いが、実際は自動車の使用環境として、低温側は−30℃で評価すれば良い。よって評価式(数2)は、―30℃におけるモータ特性を使う。またバルブ102の動作速度は、DIエンジンに適用するため、バルブの動作角度π/2[rad](90°)を80msで動作させる速度(187.5rpm)と定義して評価する。
【0044】
本実施例のギヤの減速比は10.28、−30℃における誘起電圧定数は3.92V/krpmである。印加電圧は、自動車の電源系統が発生する13Vで評価する。通常、自動車の電源系統は、12.7〜12.8Vに制御されているが、スタート時やバッテリ消耗時には10V以下になる場合もある。また、電圧制御装置の不具合により16V以上、上昇する事もあるが、ここでは、通常見られる電圧に近い13Vで評価する。本実施例で用いたモータ107の駆動回路68の電気素子の許容電流値は20Aである。評価式(数2)より、モータ107の抵抗Rmは、1.03Ω以上あれば良いことがわかる。製造誤差により、モータ107の抵抗は5%減、誘起電圧定数は10%増になる可能性があるので、さらに望ましくはこれらを考慮して計算するとよい。すると、誘起電圧定数は4.31V/krpmであり、抵抗は1.12Ω以上になる。
【0045】
そこで、本実施例では、余裕を持って1.29Ωに抵抗を設定してある。
【0046】
【数2】
Figure 0003752391
【0047】
以上の方法は、80msで動作する場合であったが、より精度よく抵抗Rmを設定するには、後述する数3の評価式で応答時間tを評価し(ただし、モータ107の特性は後述する120℃における値ではなく、−30℃を用いる)、応答時間tをバルブ102が動作する速度として定義して、評価式(数1)で抵抗Rmを求める方法もある。すると、80msより大幅に速い応答時間(評価時間t)を持つ電子制御スロットルであっても、電気素子の損傷を防ぐことができる。しかしながら、上記のように−30℃で評価した抵抗Rmを使用すると、場合によっては、モータ107に流れる電流量が減りすぎ、モータ107の力(トルク)が出なくなる。応答時間tも悪化する。また、数3は、制御系は考慮しておらず、早く動作させようとするほど、制御系の遅れは無視できなくなる。
【0048】
そこで、さらに好ましくは、常温(20℃)におけるモータ特性をつかって、数3より応答時間(評価時間t)を求め、これを用いて数2により20℃で必要な抵抗Rmを決めるとよい。本実施例に適用すると、数3をプロットした図5より応答時間tは0.04[s](375rpm)であるから、抵抗Rmは、20℃で1.35Ω以上あればよいことがわかる。さらに、これに量産の誤差(誘起電圧定数10%増、抵抗5%減)を考えると、1.49Ω以上あれば良い。本実施例では、さらに安全代をとり、20℃で1.61Ωに設定してある。
【0049】
以上のように電気抵抗Rmを定めることにより、モータ107とその駆動回路68に流れる電流を規定することができ、複雑な電気回路や制御を用いずとも、駆動回路68の電気素子の損傷の可能性を低減することができる。
【0050】
数2を満足するようにして、電気素子の損傷を防ぐ別の手段もある。これには、
図6に示すようなシステムを用いる。制御回路63は、設定したスロットルバルブ102の目標開度の変化率からモータ107の速度を逆算し、モータ107に与える印加電圧を、数2が成立する範囲で可変にする方法である。モータ107の速度が速いときには、モータ107を減速するときの印加電圧を少なくし、逆起電圧Vmと印加電圧Vbの両者による電流を減らせば良い。あるいは、別の手段としてはA−B間の電圧(モータの逆起電圧)を監視し、印加電圧との和をとり、ターミナル間抵抗で除した結果が、電気素子の許容電流値以上では、モータの減速を行うのに電圧を印加しないようにする方法もある。また、逆起電圧Vm及び印加電圧Vbを検出して、これらの和をターミナル間抵抗Rmで除した値が電気素子の許容電流値以上になる前に、モータ107の減速のための電圧の印加を中止し、再び電圧を印加するスイッチング動作を行うと良い。
【0051】
上記2つの手段は、簡単な回路で実現でき、モータの抵抗Rmを大きくする必要が無いため、モータのコイルの発熱(ジュール熱)を低減することができ、許容電流に近い電流を常に用いることができるようになるため、応答時間の短縮をすることができるようになる。
【0052】
本実施例のギヤ比は10.28である。本ギヤ比を使用したことにより、デフォルト機構のばね力やモータの性能のバラツキや、スロットルバルブへの付着物による負荷トルクの変化といった要因によって左右されず、安定的に応答性を確保することができ、同時に高速に動作可能なギヤ比になる。
【0053】
なお、ギヤ比10.28は、モータギヤ106、中間ギヤ大104a、中間ギヤ小104b、バルブギヤ103(各図1参照)の歯数によって決定されている。実施例の各ギヤの歯数は、モータギヤ:21、中間ギヤ大の歯数:65、中間ギヤ小:22、バルブギヤ:73(全周)、である。本発明を実施するにあたって、必ずしもこの歯数を用いなくてもよい。ギヤの歯数は、ギヤのモジュールやギヤとギヤの軸間距離に依存し、これらは寸法の制約を受ける。そのため、必ずしも目標とギヤ比が得られるとは限らない。実施例で意味する10.28とは、ギヤの枚数が一枚程度変った9.80〜10.78の範囲を示す。
【0054】
電子制御スロットルでは、ギヤの減速比を小さく選ぶと、モータの力に対してデフォルト機構のばね力が大きくなるので、モータの力に対して応答時間の変化が過敏になり安定した動作が難しくなる。また、モータより見たスロットルバルブの慣性モーメントが大きくなるので、応答は悪くなる。
【0055】
逆に、ギヤの減速比が大きいと、高速な応答性を確保するには、モータを早く回転させなければならず、モータを加速させるための時間が多大にかかるようになり、応答時間が遅くなり、DIエンジンにとって好ましくない。
【0056】
図11に、電子制御スロットルの動作モデルを示す。モータがトルクTmを発生すると、ギヤが回転し、モータの回転をギヤの減速比Nだけ減速し、ばね負荷Tsがかかったスロットルを回動する。数3に、図11の運動方程式を示す。数3の第1式は機械系の、第2式はモータの発生トルク、第3式はモータの電気的な特性を表している。これらの式によると、慣性モーメントJ、インダクタンスL、電気抵抗Rm、ばね力Tsは小さい方が早く動作し、一方、トルク定数Kmや誘起電圧定数Ke、ギヤ比Nには最適値があることがわかる。
【0057】
【数3】
Figure 0003752391
【0058】
本実施例の場合のギヤ比は、安定した動作と高速性を兼ね備えるように選択されている。これには、評価式(数4)を用いる。数4は、影響の小さいインダクタンスLや、モータの過渡応答を無視し、モータの発生トルクが最大付近にあるとして、数2を2回積分して求めた近似を行った理論式である。本式は、機械系を扱った近似式であり、実際の制御を行ったときの応答時間ではないが、機械系が早く動くほど、制御による応答も速くすることができるので、実際に制御したときのの応答時間の評価指標とすることができる。
【0059】
数4は、全閉から全開まで動作する動作角度をπ/2[rad]として、動作時間tを評価する。モータは、高温になるほど発生する力が小さくなるので、評価式(数4)にはモータが、雰囲気温120℃で十分長い間放置され、温度が定常状態に達した時の特性を用いる。評価式(数4)のJは、モータやギヤの慣性モーメントをバルブシャフト周りの慣性モーメントに置き換えた慣性モーメントJを使用する。印加電圧は、バッテリ電圧の13Vで評価する。
【0060】
【数4】
Figure 0003752391
【0061】
高速で動作させるには、評価式(数4)のtが0.08[s]以下になることが望ましい。通常は、モータの特性は自由に変えることができないため、モータの仕様は決定した後により簡単に変更できる減速比を変更する。図5(a)に実施例のモータ特性を評価式(数4)に代入した結果を示す。応答時間を実現するのに望ましい減速比の範囲は、2.5〜32であることがわかる。減速比2.5以下では、リターンスプリングの力Tsが大きくなるため、動作できない。減速比が小さい領域(勾配が負の領域:2.5〜5)の範囲は、減速比に対する、応答時間tの感度が高い。言い換えると、減速比が少しでも変化すると応答時間が大幅に変わる。これは、負荷に対しても同じ事がいえ、負荷が少しでも変わると評価時間tが大幅に変わることを意味する。図5の破線は、120℃のとき、量産誤差によりトルク定数、誘起電圧定数が10%、モータの抵抗が5%変化したときの評価時間tの最良値と最悪値を示す。これをみても、減速比が小さい領域では、評価時間tが大きく変わることがわかる。
【0062】
図5(b)に、減速比が3と10の時の温度に対する応答性の変化を示す。減速比10では、減速比3のときより変化が少ない、すなわち温度に対する感度が低い。感度が低い方が、制御を行うのが容易であるためギヤ比が大きい方が良い。したがって、ギヤ比10の方が、特性として優れている。ところで、温度により変化するのは、モータのトルク定数や抵抗であり、温度が高いとモータの発生トルクは小さくなり、低いと発生トルクが増加する。温度は、モータのトルクの変化と考えても良い。ギヤ比が小さいと、モータのトルク変化(温度の変化)に対し、応答時間の変化が大きいともいえる。また、別の見方をすると、ギヤ比が小さいことは、スロットルシャフトのトルクが小さいことになっており、負荷の変動に対して応答時間が敏感であるともいえる。そのため、やはりギヤ比が大きい方が、応答時間が安定しており、制御を行う上で都合がよい。図5(b)では、代表的なギヤ比として3と10を選んだが、ギヤ比3は、図5(a)のプロットした線の勾配が負(−)の領域、ギヤ比10は、正(+)の領域にある。ギヤ比3のように応答時間が温度により大きく変化する傾向は、勾配が負(−)の領域で見られる。したがって、ギヤ比を決定する際には、より温度に対してより安定している図5(a)の正(+)の領域を選択することがのぞましい。
【0063】
本実施例でも実線の勾配が正(+)の領域であるギヤ比を選択している。これは、この領域では負荷変動やモータの特性の変化に対する評価時間tの変化が少ないため、より安定した状態を維持することができるためである。
【0064】
このように減速比を選ぶことによってDIエンジンに適用したときに、燃焼状態を切り替えてもエンジンの出力変動が小さくなるような高速な応答性を確保することができる。
【0065】
図7に、本発明に係る電子制御スロットルを用いて、DIエンジンの燃焼状態を切り替えたときに発生するトルクの変動を示す。切替え時間が80ms以下であると、本発明の電子制御スロットルを用いることにより切り替え時のトルクの変動が小さくなることがわかる。
【0066】
以下に理由を述べる。
【0067】
本実施例の電子制御スロットルは、図6の61に示すように、エンジン62の吸気管の上流に位置している。そのため、スロットルバルブを急激に動作させても、スロットルバルブ下流からエンジンまでの配管の容積により、実際のエンジンの吸入空気流量には遅れが生じる。例えば、スロットルバルブを全開にした状態から、瞬時(10ms)に全閉にしても、配管に存在する空気のために瞬時にエンジンの吸入空気流量はゼロにならず、徐々に減少する。図13に、目標とするエンジン吸入空気流量を100%とし、それに到達するまでの空気流量をしめす。遅れ時間τは、配管の容積(スロットルバルブからエンジンまでの容積[L])Vmanとエンジン排気量Vd[L]の比と、回転数Ne[rpm]に依存し、(数5)により簡易的に計算できる。
【0068】
【数5】
τ=120・Vman/(Vd・Ne) …(数5)
ここで、Vmanとエンジン排気量Vdの比は、一般に0.8程度〜1.5程度である。スロットルバルブの応答時間と比較するため、図13の破線に示すように、時定数τをエンジン吸入空気流量が63%に達する時間と考え、100%に達するのにかかる時間を計算する。結果を表2にまとめる。DIエンジンの燃焼状態の切替えはエンジン回転数2000〜3000rpm程度で行われる。この範囲内で空気が目標流量に到達するのに必要な最小時間は、51ms(3000rpm、Vman/Vd比0.8)、最大は143ms(2000rpm、Vman/Vd比1.5)である。しかしながら、3000rpmで燃焼状態が切り替わる事はまれであり、また、Vman/Vd比も1より大きい事が多い。従って、スロットルの応答時間は100ms程度以下であれば、2000rpm程度の回転数で燃焼状態が切り替わるDIエンジンに好適である。よりのぞましくは、子制御スロットルは、応答時間80ms以下となるようにするとほぼすべてDIエンジンに適用できる。本実施例で用いたエンジン構成では、Vman/Vd比は1程度であった。切替えエンジン回転数は2500rpm程度である。本発明の電子制御スロットルを用いると、切替え時間が80ms以下であるため、空気の応答時間に対し速いかもしくはほぼ等しいので、高速にエンジンに吸入される空気流量を制御する事ができ、そのため、図7にしめすように切り替え時のトルクの変動が小さくなる。
【0069】
また電子制御スロットル固有の他の課題として、スロットルバルブが汚れの堆積(ガム状の物質)による固渋(はりつき)をひき剥がせられなければならないというものもある。特に、ドライバの踏力を伝えるアクセルワイヤで直接スロットルバルブを、駆動しない本実施例のような場合、モータの力のみによって固渋に対抗しなければならない。固渋力の大きさは使用環境により、さまざまであるが、110kgfmm以上のトルクをスロットルバルブが固定されているシャフトにかけられれば、固渋に対して有効である。
【0070】
デフォルト位置において、リターンスプリングのプリロードトルク以上に発生し得る力を余裕トルクと呼ぶ。余裕トルクを計算するには、モータがバルブシャフトに与えるトルクとリターンスプリングのプリロードトルクの差である。固渋の原因となるガム上の物質は、温度が高いと柔らかくなる。一方で、モータの最大発生トルクは、低温になればなるほど大きくなるので、余裕トルクの大きさは、常温(20℃)で評価するのが良い。また、固渋は、長時間駐車等の後に発生することが予想されることから、バッテリ電圧も下がっていることも予想される。したがって、評価するときの印加電圧は余裕を持って10Vとして考える。
【0071】
本実施例のモータの最大トルクは21.9[kgfmm](E=10V)、ギヤ比10.28なので、スロットルシャフトにかかるモータトルクは必要とする余裕トルク110kgfmmを79kgfmm、上回っている。実施例は十分、余裕トルクを確保している。このため、実施例は固渋(スロットルバルブの固着)に対して強く、信頼性が高い。
【0072】
上述の本発明に係る実施例によれば、DIエンジンの均一混合燃焼と層状燃焼を切り替えるときにも、スロットルバルブを高速に動作できるのでトルクの変動を小さくすることができるようになる。また、高速に動作させても、過電流を防止することができるため、特別な電気回路をもちいなくても駆動回路の電気素子の焼損がおこらず、フェールセーフ性が向上する効果が達成される。
【0073】
本実施例では、印可電圧13Vで評価したが、これに限らず他の電圧で評価してもよい。
【0074】
図15に、ギヤ比が10前後(9.8〜10.8)で、応答時間80ms、許容電流20A、さらに余裕トルクを110kgfmmとしたときのモータのトルク定数Kt、誘起電圧定数Ktとモータ抵抗Rmの関係を示す。等価慣性モーメントは、0.0013(kgm^2)である。
【0075】
図15の実線Aは、応答時間が80msとなる限界であり、実線Aより下側のKtとRmが望ましい。実線Cは、許容電流以下となる線であり、実線Cより上側であることが望ましい。
【0076】
したがって、実線Aと実線Cに挟まれた領域のKt、Rmを選択することが望ましい。望ましい領域は、点線で囲まれた領域である。数値を挙げるとモータ抵抗Rmは、1.0〜2.5Ω、トルク定数は0.025〜0.04Nm/Aの範囲であることが望ましい。トルク定数を0.04以上にすることは可能であるが、モータの磁石の強化が必要であり、コストアップや装置の大型化につながるため、0.04以下が望ましい。逆に0.025以下であると、実線AとCが近接しているため、製造誤差を小さくしなければならず、コストアップにつながる。
【0077】
より望ましくは、スロットルバルブの固渋(固着、しぶり)に対しても十分な余裕トルクを持つ事である。余裕トルクの限界を表す線を記号Bで表す。余裕トルクを確保するには、実線Bより下の抵抗とトルク定数が必要である。実線Bは、実線Aより下側であるため、実線Bと実線Cの間がより望ましい領域である。
【0078】
この領域に入るように、実施例ではトルク定数がトルク定数を0.03〜0.035Nm/A、抵抗は1.29〜2.24Ωとして選んだ。このような領域を選ぶことにより、余裕トルク、応答時間、許容電流を満足する電子制御スロットル装置を得る事ができる。
【0079】
さらに望ましくは、製造公差を考え、20℃で、トルク定数が3.54±0.35kgfmm/A(±10%)、抵抗1.61±0.08Ω(±5%)のモータを持ち、減速比10.27(9.80〜10.78)の電子制御スロットルである。また、減速比10.27(9.80〜10.78)であって、リターンスプリングのプリロードトルクが36(30〜40)kgfmmの電子制御スロットルであると、モータがフェールしても、スロットル弁が所定の開度まで自動的に戻り、より安全である。
【0080】
【発明の効果】
本発明により、ギヤ比及び慣性モーメントの関係が、通常のスロットルバルブの開閉動作に、またフェールセーフに伴うバルブ動作にも、適切に維持されるので、速やかに動作することができる、信頼性の高い電子制御スロットル装置を得ることができる。
【図面の簡単な説明】
【図1】 本発明の電子制御スロットルの一例を示す図。
【図2】 デフォルト機構の原理図。
【図3】 バルブシャフトにおけるばねトルクをあらわした図。
【図4】 DIエンジンにおける電子制御スロットルのスロットルバルブの動作を示す図。
【図5】 評価時間tと減速比Nの関係を示した図。
【図6】 電子制御スロットルを用いたDIエンジンを示す図。
【図7】 DIエンジンの燃焼状態を切替え時に発生するトルク変動を示す図。
【図8】 実施例のギヤとモータの配置を示す図。
【図9】 モータの駆動回路を示す図。
【図10】 モータの回転している方向と逆向きに電圧をかけたときの駆動回路の状態を示す図。
【図11】 電子制御スロットルの動作モデル。
【図12】 エンジンの運転状態と燃焼状態を表す図。
【図13】 エンジンの吸入空気流量の遅れを示す図。
【図14】 電子制御スロットルのモータの電流と逆起電力を示す図。
【図15】 電子制御スロットルのモータの仕様を示す図。
【符号の説明】
101…スロットルボディ、102…バルブ、103…バルブギヤ、104a…中間ギヤ小、104b…中間ギヤ大、105…モータ軸、106…モータギヤ、107…モータ、110…スロットルポジションセンサ、111、201…リターンスプリング、112、202…デフォルトスプリング、204…レバー、61…電子制御スロットル、62…DIエンジン、63…制御ユニット、68…駆動回路、Rm…モータ抵抗、θv…バルブ速度、E…電圧、Ilim…許容電流、Ke…誘起電圧定数、N…ギヤの減速比、θm…モータ速度、Km…トルク定数、J…バルブシャフト周りを基準とした慣性モーメント。

Claims (4)

  1. モータと、このモータの回転を減速する減速機構と、この減速機構に接続されたスロットルバルブと、このスロットルバルブを初期位置に戻す方向に力を加える付勢手段とを有し、前記モータを駆動して前記スロットルバルブの開度を調節する電子制御スロットル装置において、
    スロットルバルブの動作時間tを式
    Figure 0003752391
    で、E=13Vとして計算したとき、N及び/又はJはtが80ms以下となる範囲内の値をもつことを特徴とする電子制御スロットル装置。
  2. モータと、このモータの回転を減速する減速機構と、この減速機構に接続されたスロットルバルブとを有し、前記モータを駆動して前記スロットルバルブの開度を調節する電子制御スロットル装置において、
    次式、
    Figure 0003752391
    で求まる時間tが80ms以下になるように、各パラメータを定めたことを特徴とする電子制御スロットル装置。
  3. 請求項1に記載の電子制御スロットル装置において、前記N及び/又は前記Jは前記式を減速比Nで微分した値が正である範囲内の値をもつことを特徴とする電子制御スロットル装置。
  4. 請求項2に記載の電子制御スロットル装置において、前記パラメータは温度120℃での値であることを特徴とする電子制御スロットル装置。
JP29934198A 1997-10-21 1998-10-21 電子制御スロットル装置 Expired - Lifetime JP3752391B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29934198A JP3752391B2 (ja) 1997-10-21 1998-10-21 電子制御スロットル装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28820597 1997-10-21
JP9-288205 1997-10-21
JP29934198A JP3752391B2 (ja) 1997-10-21 1998-10-21 電子制御スロットル装置

Publications (2)

Publication Number Publication Date
JPH11193729A JPH11193729A (ja) 1999-07-21
JP3752391B2 true JP3752391B2 (ja) 2006-03-08

Family

ID=26557073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29934198A Expired - Lifetime JP3752391B2 (ja) 1997-10-21 1998-10-21 電子制御スロットル装置

Country Status (1)

Country Link
JP (1) JP3752391B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059947B2 (ja) * 2019-01-25 2022-04-26 トヨタ自動車株式会社 内燃機関の冷却装置

Also Published As

Publication number Publication date
JPH11193729A (ja) 1999-07-21

Similar Documents

Publication Publication Date Title
US3964457A (en) Closed loop fast idle control system
US4892071A (en) Throttle valve controlling apparatus employing electrically controlled actuator
US5429090A (en) Fail safe throttle positioning system
USRE42939E1 (en) Throttle valve control device for an internal combustion engine
US4827884A (en) Throttle assembly
JP2953476B2 (ja) 内燃機関のスロットルバルブ
JPH0385338A (ja) 内燃機関のスロットル弁制御装置
US6098594A (en) Electric-control-type throttle apparatus
JPH0131016B2 (ja)
US6543416B2 (en) Electric-control-type throttle apparatus
JP3752391B2 (ja) 電子制御スロットル装置
JP2550962B2 (ja) エンジンのスロツトル弁制御装置
US6401690B1 (en) Electric-control-type throttle apparatus
JP2001263098A (ja) スロットル装置
JP2505738B2 (ja) スロツトル制御装置
JP2001289071A (ja) 排気管バルブ装置
JP2004092550A (ja) 車載内燃機関のスロットル制御装置
JP2876806B2 (ja) 出力調整手段連係式モータ付スロットルバルブ装置
US6945908B2 (en) Electronic transmission throttle valve actuator
JP2000297660A (ja) ディーゼルエンジン用吸気流量制御装置
JPH0579354A (ja) 内燃機関の絞り弁開度制御装置
JPS6318016B2 (ja)
CA1151961A (en) Engine governor with reference position for throttle limiter
JP2001082179A (ja) スロットル装置
JP2003172157A (ja) 電子制御スロットル装置およびその運転制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

EXPY Cancellation because of completion of term