JP3752359B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP3752359B2
JP3752359B2 JP14175397A JP14175397A JP3752359B2 JP 3752359 B2 JP3752359 B2 JP 3752359B2 JP 14175397 A JP14175397 A JP 14175397A JP 14175397 A JP14175397 A JP 14175397A JP 3752359 B2 JP3752359 B2 JP 3752359B2
Authority
JP
Japan
Prior art keywords
wiring
wiring board
flip
circuit
chip connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14175397A
Other languages
Japanese (ja)
Other versions
JPH10335515A (en
Inventor
彰一 仲川
高志 山崎
慎也 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Denso Corp
Original Assignee
Kyocera Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Denso Corp filed Critical Kyocera Corp
Priority to JP14175397A priority Critical patent/JP3752359B2/en
Priority to US09/201,626 priority patent/US6288347B1/en
Priority claimed from DE19855193A external-priority patent/DE19855193A1/en
Publication of JPH10335515A publication Critical patent/JPH10335515A/en
Application granted granted Critical
Publication of JP3752359B2 publication Critical patent/JP3752359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components

Landscapes

  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ペリフェラルタイプの表面実装素子を収容搭載する配線基板に関するもので、とりわけペリフェラルタイプの半導体素子をフリップチップ接続する半導体素子収納用パッケージや、半導体素子の他にコンデンサや抵抗体等の各種電子部品を密に搭載する混成集積回路装置等に好適である平坦度が良好な低コストの配線基板に関するものである。
【0002】
【従来の技術】
従来、半導体素子収納用パッケージや混成集積回路装置等に用いられる配線基板は、一般にアルミナ質焼結体等の電気絶縁性のセラミック焼結体から成る絶縁基体を用い、その上面の略中央部に設けた凹部周辺から下面に、あるいはその内部及び表面に、タングステン(W)、モリブデン(Mo)、マンガン(Mn)等の高融点金属から成る複数の配線導体を配設すると共に、各配線導体を絶縁基体内に設けた前記同様の高融点金属から成るスルーホール導体で接続した構造を成している。
【0003】
そして、前述のように構成された配線基板は、例えば半導体素子収納用パッケージでは、その絶縁基体の凹部底面に半導体素子をガラスあるいは樹脂、ロウ材等の接着剤を介して接着固定すると共に、半導体素子の各電極を凹部周辺に位置する配線導体にボンディングワイヤを介して電気的に接続し、金属やセラミックスから成る蓋体を前記凹部を塞ぐ様に前記接着剤と同様の封止材を介して接合し、絶縁基体の凹部内に半導体素子を気密に収納することにより半導体装置としていた。
【0004】
しかしながら、近年のICやLSI等の半導体素子の高速化、高集積化に伴い、該半導体素子を搭載する配線基板には、従来より更に微細で高密度な配線パターンが形成されており、前記半導体素子をよりコンパクトに搭載するため、半導体素子の表面電極を前記配線基板の配線用電極に半田バンプ等により直接接続するフリップチップ接続法が採用されるようになってきている。
【0005】
一方、近年の前記半導体素子を搭載した半導体装置等、各種電子装置の用途の拡大により、その使用環境は従来よりも多彩でかつより厳しいものとなっており、特に自動車の電子制御化の発展に伴って車載環境で用いられる場合には、使用環境が厳しい上に高い信頼性が要求されている。
【0006】
係る車載環境で用いられる各種電子装置では、高い信頼性を確保する上で重要となるのが半田等による接合部であり、例えば、前記半田バンプによるフリップチップ接続法では、代表的な尺度として即時剪断強度及び熱疲労寿命が優れていることが接合信頼性を確保する上で重要となっている。
【0007】
従って、前記フリップチップ接続法は、前述のように半導体素子の表面電極を直接、配線基板の配線用電極に接続することからも、特に、前記配線基板の半導体素子が搭載される部分には、高い平坦度が要求されることになる。
【0008】
係る高い平坦度を確保するために、従来より配線基板を構成する積層体の密度や焼成時の温度分布を均一にする等の方法が講じられてきたが、電気絶縁性セラミック焼結体と配線導体との熱膨張率が本質的に大きく異なることから、それらを同時焼成すると焼成過程での収縮差に伴って配線基板に反りやうねりが発生し、平坦度の良好な配線基板を歩留り良く得ることが困難であるという問題があった。
【0009】
そこで、係る問題を解消するために治具を用いた矯正方法や、無機材料の軟化温度よりも高く、絶縁基体であるセラミック基板の焼成温度よりも低い温度領域で予備焼成した後、荷重をかけて本焼成する方法等、各種提案が成されている(特公平2−25277号公報、特開平4−31368号公報参照)。
【0010】
【発明が解決しようとする課題】
しかしながら、前記提案等では、一旦、焼成したセラミック焼結体を再度、治具を用いて焼成したり、あるいは予備焼成した後、更に荷重をかけて本焼成するという複数の焼成工程を要することになり、いずれも製造コストが大幅に増加して経済性を大きく損なう他、その都度、治具等により荷重を均一に加えるという煩雑な工程を経なければならず、作業性が極めて悪いという課題があった。
【0011】
その上、前記治具や荷重を加えるために何らかの重石等を用いると、治具や重石の表面状態が前記配線基板の当接面に転写されて表面に窪みを生じたり、傷を付けてしまい、高密度に形成された微細配線パターンを断線したり、短絡したりする恐れがあり、フリップチップ接続法による接合信頼性が低下するという課題もあった。
【0012】
【発明の目的】
本発明は前記課題に鑑み成されたもので、その目的は、配線導体を内部に有する配線基板の絶縁基体表面に反りやうねり等の変形が小さく、特に絶縁基体表面の表面実装素子が搭載される部分の変形が極めて小さく、フリップチップ接続部の高い接合信頼性を有し、量産効果に優れた配線基板を提供することにある。
【0013】
【課題を解決するための手段】
本発明者等は、ペリフェラルタイプの表面実装素子が搭載される配線基板であって、前記表面実装素子のフリップチップ接続用電極から外側に配線回路が形成されるとともに、前記表面実装素子が搭載される下部領域に、該表面実装素子をフリップチップ接続するための配線回路とは別に、該配線回路と電気的に接続しない独立した配線パターンを設けることにより、前記目的が達成されることを知見したものである。
【0014】
即ち、本発明の配線基板は、ペリフェラルタイプの表面実装素子をフリップチップ接続法で搭載する下部領域に、フリップチップ接続法で搭載するために設けた配線回路とは別に、該配線回路と電気的に接続されない独立した配線パターンを、前記配線回路のフリップチップ接続用電極で囲まれた内側に、いずれの電極よりも少なくとも50μmの間隔を有するように配設したことを特徴とするものである。
【0015】
また、かかる配線基板の配線パターンは、ペリフェラルタイプの表面実装素子がフリップチップ接続される配線回路とは同一平面内に形成されていることがより望ましく、前記配線パターンを構成する導電材料の焼成収縮率S1 に対する前記配線回路を構成する導電材料の焼成収縮率S2 の比S1 /S2
0.6≦S1 /S2 ≦1.4
であることがより望ましく、更に前記比S1 /S2
0.8≦S1 /S2 ≦1.0
であることが最も望ましいものである。
【0016】
【作用】
本発明の配線基板によれば、ペリフェラルタイプの表面実装素子がフリップチップ接続法で搭載される下部領域に、フリップチップ接続法で搭載するために設けた配線回路とは別に、該配線回路と電気的に接続されない独立した配線パターンを、前記配線回路のフリップチップ接続用電極で囲まれた内側に少なくとも50μmの間隔を有するように設けたことにより、少なくとも表面実装素子を搭載する絶縁基体の下部領域の収縮が、該下部領域に設けた独立した配線パターンによって拘束され、表面実装素子を搭載する絶縁基体表面の反りやうねり等の変形が極めて小さくなり、寸法精度が良好となる結果、フリップチップ接続部の即時剪断強度及び熱疲労寿命に優れた、高い接合信頼性を有することになる。
【0017】
【発明の実施の形態】
以下、本発明の配線基板について詳細に説明する。
【0018】
本発明の配線基板は、ペリフェラルタイプの表面実装素子が搭載される配線基板であって、前記表面実装素子のフリップチップ接続用電極から外側に配線回路が形成されるとともに、ペリフェラルタイプの表面実装素子がフリップチップ接続法で搭載される下部領域に、フリップチップ接続法で搭載するために設けた配線回路とは別に、該配線回路と電気的に接続されない独立した配線パターンを、前記配線回路のフリップチップ接続用電極で囲まれた内側に、表面実装素子をフリップチップ接続するいずれの電極よりも少なくとも50μmの間隔を有するように設けたものである。
【0019】
本発明における独立した配線パターンは、フリップチップ接続法でペリフェラルタイプの表面実装素子を搭載するために設けた配線回路とは直接、電気的に接続されなければ良く、グランド層に接続した構造であっても良い。
【0020】
前記ペリフェラルタイプの表面実装素子としては、一般のICチップをはじめ、電源IC用のパワーICチップ等が挙げられる。
【0021】
また、前記独立した配線パターンは、特にその材質を限定するものではないが、配線基板用の導電材料として一般の配線回路に使用されるW、Mo、Mn等の高融点金属を主成分とするものが適用でき、それらを混合して用いることも可能である。
【0022】
更に、前記導電材料の焼成収縮率を制御して反りやうねり等の変形を防止することからは、前記主成分にTi、V、Nb、Taの窒化物等を変色したりして外観不良を起こしたり、配線の電気抵抗値を増大させたりしない範囲で適宜添加することが望ましく、それらの粒径も均一に分散した組織が得られ、焼成収縮率もいかなる場所でも均一となるように、前記主成分である高融点金属の粒径よりも小さなものにしておくことが望ましい。
【0023】
また、本発明において前記配線パターンは、フリップチップ接続法でペリフェラルタイプの表面実装素子を搭載するために設けた配線回路の電極内側に設けたもので、いずれの電極よりも少なくとも50μmの間隔を有するように設けたのは、配線を印刷形成する際の位置精度を考慮すると、前記間隔が50μm未満では前記配線回路と配線パターンが短絡してしまう恐れがある他、前記配線を形成した初期の段階では異常がなくとも、経時変化によりそれらが短絡を生じる恐れがあるためである。
【0024】
尚、前記絶縁基体の下部領域の収縮を効果的に拘束するという点からは、配線パターンの大きさとして、前記配線パターンの対角線長さL1 と配線回路の電極内側の領域の対角線長さL2 との関係L1 /L2 が0.4以上であることが望ましい。
【0025】
一方、前記配線パターンは、ペリフェラルタイプの表面実装素子がフリップチップ接続される配線回路とは別な層に形成しても良いが、配線実装密度の向上という点からは同一平面内に形成することがより望ましい。
【0026】
また、車載用等の長期接合信頼性という点からは、前記配線パターンを構成する導電材料の焼成収縮率S1 に対するペリフェラルタイプの表面実装素子がフリップチップ接続される配線回路を構成する導電材料の焼成収縮率S2 の比S1 /S2 は、0.6≦S1 /S2 ≦1.4の範囲内がより望ましく、表面実装素子と配線基板とのフリップチップ接続法による接合強度を考慮すると0.8≦S1 /S2 ≦1.0の範囲が最適である。
【0027】
次に、本発明の配線基板を図面に基づき具体的に説明する。
【0028】
図1は、本発明の配線基板を表面実装素子である半導体素子をフリップチップ接続法で収納搭載した半導体素子収納用パッケージに適用した場合の一実施例を示す断面図であり、図2は、図1の半導体素子収納用パッケージを半導体素子側から見た要部の部分拡大図である。
【0029】
図1及び図2において、1はペリフェラルタイプの表面実装素子2が配線回路3の電極4にフリップチップ接続され、電極4で囲まれた内側に、配線回路3とは電気的に接続されていない独立した配線パターン5が表面実装素子2を搭載する下部領域の同一平面内に少なくとも50μmの間隔を設けて形成された配線基板である。
【0030】
前記配線基板1では、ペリフェラルタイプの表面実装素子2である半導体素子はその表面電極6を配線基板1の凹部7にスルーホール導体8で引き出された電極4に半田バンプ9で直接接続されており、そこから配線回路3に接続するスルーホール導体8を介して下面に導出されている。
【0031】
かくして配線基板1の下面に導出された部位には、外部電気回路と接続するリード端子(不図示)等が電気的に接続され、最終的に前記半導体素子の上部に封止材を介して蓋体(不図示)を接合して気密に搭載することとなる。
【0032】
【実施例】
本発明の配線基板を評価するに際し、アルミナ質焼結体から成る絶縁基体を以下の手順にて作製した。
【0033】
先ず、Al2 3 を主成分とし、該主成分にSiO2 、MgO、CaO等の焼結助剤を添加混合した原料粉末に、周知の有機バインダー、可塑剤、溶剤を添加して泥漿を調製し、該泥漿を周知のドクターブレード法やカレンダーロール法等のテープ成形技術により、厚さ約300μmのセラミックグリーンシートを成形し、該セラミックグリーンシートの所定位置に打ち抜き加工を施してスルーホールを形成した。
【0034】
一方、W、Mo等の高融点金属を主成分とする粉末に、アルミナ粒子を適量添加し、周知の有機バインダー、可塑剤、溶剤を添加して混練機で混練して配線用の基本の導電ペーストを作製した。
【0035】
更に、前記基本の導電ペーストからその組成を調整して焼成収縮率の異なる配線回路用及び独立した配線パターン用の導電ペーストを調製した。
【0036】
尚、前記各導電ペーストの焼成収縮率は、各導電ペーストを厚さ100μmのシート状に形成したものを後述する配線基板の焼成条件と同一条件で焼成し、焼成前後の寸法変化をマイクロメータ付き顕微鏡により測定して求めた。
【0037】
先ず、得られたセラミックグリーンシート上に前記配線回路用ペーストを用いて配線回路をスクリーン印刷法で形成すると共に、スルーホール部分にも前記スクリーン印刷法あるいは圧力充填法により前記配線回路用ペーストを充填し、更に、表面実装素子をフリップチップ接続する電極からその内側に各種距離を設定して前記配線回路とは接続しない独立した配線パターンを前記配線パターン用ペーストを用いて前記同様にして同一平面内に形成したものを作製した。
【0038】
また、前記同様にしてセラミックグリーンシート上に前記配線回路とそれらを接続するスルーホール導体を形成したもの、及び前記独立した配線パターンのみを形成したものをされぞれ作製し、それらを種々組み合わせて積層して、前記配線回路と独立した配線パターンをそれぞれ別の平面に形成したものも作製した。
【0039】
その後、前記配線回路と独立した配線パターンを種々組み合わせ積層したものを、水素(H2 )と窒素(N2 )の混合ガスから成る還元性雰囲気中、約1600℃の温度で焼成して、厚さが約1.25mmの5層から成る評価用の配線基板を作製した。
【0040】
尚、前記同様にして独立した配線パターンを設けないで作製した配線基板を比較例とした。
【0041】
【表1】

Figure 0003752359
【0042】
かくして得られた評価用の配線基板を用いて、表面実装素子がフリップチップ接続法で搭載される絶縁基体表面の平坦度として、先端の曲率半径が5μmの触針を装着した接触式表面粗さ計で対角線方向に走査して最大変位を測定し、一方、配線回路や配線パターンを内在せず、フリップチップ接続用電極と導通チェック用配線パッドのみを設けた配線基板を前記同様にして測定した最大変位を基準反りとし、その比から配線基板の反りを評価した。
【0043】
次に、前記評価用の配線基板に、ペリフェラルタイプの表面実装素子として評価用のシリコンチップをフリップチップ接続法により半田バンプで接合した。
【0044】
その後、前記評価用の配線基板とシリコンチップとの接合信頼性を評価するために、配線基板を固定し、該配線基板にフリップチップ接続法で搭載したシリコンチップの側面をプッシュプルゲージにより配線基板と平行に力を加え、シリコンチップが配線基板から剥離する強度を測定し、前記反り評価と同様の配線基板にシリコンチップをフリップチップ実装して前述のようにシリコンチップの剥離強度を測定して基準強度とし、その比から即時剪断強度を評価した。
【0045】
また、前記シリコンチップを搭載した評価用の配線基板について、−65℃と150℃の温度サイクル試験を行い、それぞれ1000サイクル、2000サイクル、3000サイクル毎にフリップチップ接続法による接合部に発生するクラックの進展を電気的導通の有無を測定して熱疲労寿命を評価し、とりわけ車載用等の長期接合信頼性という点から、前記配線基板の反り及び即時剪断強度、熱疲労寿命の諸特性に基づき総合評価した。
【0046】
【表2】
Figure 0003752359
【0047】
表から明らかなように、比較例の試料番号22では配線基板の反りが基準反りの2倍にも達し、即時剪断強度も基準剪断強度の0.6倍と低く、2000サイクルで導通が無くなり熱疲労寿命が極めて短く不適切であり、本発明の請求範囲外である試料番号1では配線回路の接続用電極と配線パターンの間隔が50μm未満のため、短絡を生じており配線基板として不適切である。
【0048】
それに対して、本発明ではいずれも配線基板の反りや即時剪断強度、熱疲労寿命の各特性をそれぞれ満足しており、配線基板として実用に耐えるものであることが明らかとなっている。
【0049】
また、前記表からは、本発明の配線基板では表面実装素子が搭載される下部領域に設けた前記配線回路とは独立した配線パターンは、焼成収縮率、位置を制御することにより前記表面実装素子が搭載される絶縁基体表面の反りを制御可能であることも分かる。
【0050】
尚、本発明は前述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更が可能である。
【0051】
【発明の効果】
本発明の配線基板は、ペリフェラルタイプの表面実装素子をフリップチップ接続法で搭載する下部領域に、フリップチップ接続法で搭載するために設けた配線回路とは別に、該配線回路と電気的に接続されない独立した配線パターンを、前記配線回路のフリップチップ接続用電極で囲まれた内側にいずれの電極よりも50μm以上離して設けたことから、配線導体を内部に有する配線基板の絶縁基体表面の反りやうねり等の変形が小さく、特に絶縁基体表面の表面実装素子が搭載される部分の変形が極めて小さく、フリップチップ接続部の高い接合信頼性を有し、量産効果に優れた配線基板を得ることができる。
【図面の簡単な説明】
【図1】本発明の配線基板を表面実装素子である半導体素子をフリップチップ接続法で収納搭載した半導体素子収納用パッケージに適用した場合の一実施例を示す断面図である。
【図2】図1の半導体素子収納用パッケージを半導体素子側から見た要部の部分拡大図である。
【符号の説明】
1 配線基板
2 ペリフェラルタイプの表面実装素子
3 配線回路
4 電極
5 配線パターン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board that accommodates and mounts peripheral type surface-mounted elements, and in particular, a package for storing semiconductor elements in which peripheral type semiconductor elements are flip-chip connected, and various types of capacitors, resistors, and the like in addition to semiconductor elements. The present invention relates to a low-cost wiring board with good flatness that is suitable for a hybrid integrated circuit device or the like on which electronic components are densely mounted.
[0002]
[Prior art]
Conventionally, wiring boards used for semiconductor element storage packages, hybrid integrated circuit devices, and the like generally use an insulating base made of an electrically insulating ceramic sintered body such as an alumina-based sintered body, and at the substantially central portion of the upper surface thereof. A plurality of wiring conductors made of a refractory metal such as tungsten (W), molybdenum (Mo), manganese (Mn), etc. are disposed from the periphery of the provided recess to the lower surface, or inside and on the surface thereof, and each wiring conductor is It has a structure in which it is connected by a through-hole conductor made of a refractory metal similar to that described above provided in an insulating substrate.
[0003]
The wiring board configured as described above is, for example, a semiconductor element housing package, in which a semiconductor element is bonded and fixed to the bottom surface of a recess of an insulating base via an adhesive such as glass, resin, brazing material, or the like. Each electrode of the element is electrically connected to a wiring conductor located around the recess through a bonding wire, and a lid made of metal or ceramic is sealed through a sealing material similar to the adhesive so as to close the recess. The semiconductor device is obtained by bonding and housing the semiconductor element in the recess of the insulating base in an airtight manner.
[0004]
However, with the recent increase in the speed and integration of semiconductor elements such as IC and LSI, a wiring board on which the semiconductor elements are mounted has been formed with finer and higher-density wiring patterns than before. In order to mount the element more compactly, a flip chip connection method in which the surface electrode of the semiconductor element is directly connected to the wiring electrode of the wiring board by a solder bump or the like has been adopted.
[0005]
On the other hand, due to the recent expansion of applications of various electronic devices such as semiconductor devices equipped with the semiconductor elements, the usage environment has become more diverse and harsher than before, especially in the development of electronic control of automobiles. In addition, when used in an in-vehicle environment, the use environment is severe and high reliability is required.
[0006]
In various electronic devices used in such an in-vehicle environment, it is important to secure a high reliability by using a solder joint or the like. For example, in the flip chip connection method using the solder bump, a representative measure is immediate. It is important for securing the joining reliability that the shear strength and the thermal fatigue life are excellent.
[0007]
Therefore, the flip-chip connection method connects the surface electrode of the semiconductor element directly to the wiring electrode of the wiring board as described above. In particular, in the portion where the semiconductor element of the wiring board is mounted, High flatness is required.
[0008]
In order to ensure such high flatness, methods such as making the density of the laminated body constituting the wiring substrate and the temperature distribution during firing uniform have been conventionally taken, but the electrically insulating ceramic sintered body and the wiring Since the coefficient of thermal expansion differs substantially from that of the conductor, if they are fired simultaneously, warping and undulation will occur in the wiring board due to shrinkage differences in the firing process, and a wiring board with good flatness will be obtained with good yield. There was a problem that it was difficult.
[0009]
Therefore, in order to solve such problems, a straightening method using a jig, or pre-baking in a temperature range that is higher than the softening temperature of the inorganic material and lower than the baking temperature of the ceramic substrate that is an insulating substrate, and then applying a load. Various proposals have been made, such as a method for performing final firing (see Japanese Patent Publication No. 2-25277, Japanese Patent Laid-Open No. 4-31368).
[0010]
[Problems to be solved by the invention]
However, the above proposal requires a plurality of firing steps in which the fired ceramic sintered body is fired again using a jig or pre-fired, and then fired by applying a further load. In both cases, the manufacturing cost is greatly increased and the economic efficiency is greatly impaired, and each time a complicated process of applying a load uniformly with a jig or the like is required, and the workability is extremely poor. there were.
[0011]
In addition, if the jig or some kind of weight is used to apply the load, the surface condition of the jig or weight is transferred to the contact surface of the wiring board, resulting in a dent or scratch on the surface. There is also a problem that the fine wiring pattern formed at a high density may be disconnected or short-circuited, and the bonding reliability by the flip chip connection method is lowered.
[0012]
OBJECT OF THE INVENTION
The present invention has been made in view of the above problems, and its purpose is that the surface of the insulating substrate of the wiring substrate having a wiring conductor therein is small in deformation such as warping and undulation, and in particular, a surface mount element on the surface of the insulating substrate is mounted. An object of the present invention is to provide a wiring board that has extremely small deformation, has high bonding reliability of a flip chip connecting portion, and is excellent in mass production.
[0013]
[Means for Solving the Problems]
The present inventors are a wiring board on which a peripheral type surface mount element is mounted , wherein a wiring circuit is formed outside a flip chip connection electrode of the surface mount element, and the surface mount element is mounted. In addition to the wiring circuit for flip-chip connection of the surface-mounted element, an independent wiring pattern that is not electrically connected to the wiring circuit is provided in the lower region. Is.
[0014]
That is, the wiring board of the present invention is electrically connected to the wiring circuit separately from the wiring circuit provided for mounting the peripheral-type surface-mount element by the flip-chip connection method in the lower region where the peripheral-surface mounting element is mounted by the flip-chip connection method. Independent wiring patterns that are not connected to the wiring circuit are arranged on the inner side of the wiring circuit surrounded by the flip-chip connection electrodes so as to have an interval of at least 50 μm from any of the electrodes.
[0015]
Further, the wiring pattern of the wiring substrate is more preferably formed in the same plane as the wiring circuit to which the peripheral type surface-mount element is flip-chip connected, and the firing shrinkage of the conductive material constituting the wiring pattern The ratio S 1 / S 2 of the firing shrinkage rate S 2 of the conductive material constituting the wiring circuit with respect to the rate S 1 is 0.6 ≦ S 1 / S 2 ≦ 1.4.
It is more desirable that the ratio S 1 / S 2 is 0.8 ≦ S 1 / S 2 ≦ 1.0.
Is most desirable.
[0016]
[Action]
According to the wiring board of the present invention, in addition to the wiring circuit provided for mounting by the flip-chip connection method in the lower region where the peripheral type surface mount element is mounted by the flip-chip connection method, Independent wiring patterns that are not connected to each other are provided so as to have an interval of at least 50 μm inside the wiring circuit surrounded by the flip-chip connection electrodes, so that at least the lower region of the insulating substrate on which the surface mount device is mounted Flip chip connection results in that the shrinkage of the substrate is constrained by an independent wiring pattern provided in the lower region, and deformation such as warpage and undulation on the surface of the insulating substrate on which the surface mount device is mounted becomes extremely small, resulting in good dimensional accuracy. It has excellent joint reliability with excellent instant shear strength and thermal fatigue life.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the wiring board of the present invention will be described in detail.
[0018]
The wiring board of the present invention is a wiring board on which a peripheral type surface mount element is mounted, and a wiring circuit is formed outside the flip chip connection electrode of the surface mount element , and the peripheral type surface mount element In addition to the wiring circuit provided for mounting by the flip chip connection method, an independent wiring pattern that is not electrically connected to the wiring circuit is flipped to the lower region where the flip circuit connection method is mounted. The inner surface surrounded by the chip connection electrodes is provided so as to have a distance of at least 50 μm from any electrode for flip chip connection of the surface mount element.
[0019]
The independent wiring pattern in the present invention is not required to be directly electrically connected to the wiring circuit provided for mounting the peripheral type surface mount device by the flip chip connection method, and has a structure connected to the ground layer. May be.
[0020]
Examples of the peripheral type surface-mounted element include a general IC chip, a power IC chip for a power supply IC, and the like.
[0021]
Further, the material of the independent wiring pattern is not particularly limited, but a refractory metal such as W, Mo, or Mn used as a conductive material for a wiring board in a general wiring circuit is a main component. A thing can be applied and it is also possible to mix and use them.
[0022]
Furthermore, from controlling the firing shrinkage rate of the conductive material to prevent deformation such as warpage and undulation, the appearance of the product may be deteriorated by discoloring Ti, V, Nb, Ta nitride or the like as the main component. It is desirable to add appropriately within a range that does not cause or increase the electrical resistance value of the wiring, and a structure in which the particle size is uniformly dispersed is obtained, and the firing shrinkage rate is uniform in any place. It is desirable to make it smaller than the particle size of the refractory metal as the main component.
[0023]
In the present invention, the wiring pattern is provided on the inner side of an electrode of a wiring circuit provided for mounting a peripheral type surface mount element by a flip chip connection method, and has an interval of at least 50 μm from any electrode. Considering the positional accuracy when the wiring is printed and formed, the wiring circuit and the wiring pattern may be short-circuited if the distance is less than 50 μm, and the initial stage in which the wiring is formed. This is because even if there is no abnormality, they may cause a short circuit due to a change with time.
[0024]
From the standpoint of effectively constraining the shrinkage of the lower region of the insulating base, the wiring pattern has a diagonal length L 1 of the wiring pattern and a diagonal length L of the region inside the wiring circuit electrode. relationship L 1 / L 2 and 2 is desirably 0.4 or more.
[0025]
On the other hand, the wiring pattern may be formed in a different layer from the wiring circuit to which the peripheral type surface mounting element is flip-chip connected, but it should be formed in the same plane from the viewpoint of improving the wiring mounting density. Is more desirable.
[0026]
Further, from the viewpoint of long-term bonding reliability for in-vehicle use etc., the conductive material constituting the wiring circuit in which the peripheral type surface mount element is flip-chip connected to the firing shrinkage rate S 1 of the conductive material constituting the wiring pattern is used. The ratio S 1 / S 2 of the firing shrinkage ratio S 2 is more preferably in the range of 0.6 ≦ S 1 / S 2 ≦ 1.4, and the bonding strength of the surface mount element and the wiring board by the flip chip connection method is increased. In consideration, the range of 0.8 ≦ S 1 / S 2 ≦ 1.0 is optimal.
[0027]
Next, the wiring board of the present invention will be specifically described with reference to the drawings.
[0028]
FIG. 1 is a cross-sectional view showing an embodiment in which the wiring board of the present invention is applied to a semiconductor element storage package in which a semiconductor element which is a surface mount element is stored and mounted by a flip chip connection method. FIG. 2 is a partial enlarged view of a main part of the semiconductor element storage package of FIG. 1 as viewed from the semiconductor element side.
[0029]
1 and 2, reference numeral 1 denotes a peripheral type surface mount element 2 that is flip-chip connected to the electrode 4 of the wiring circuit 3, and is not electrically connected to the wiring circuit 3 inside the electrode 4. An independent wiring pattern 5 is a wiring board formed with an interval of at least 50 μm in the same plane of the lower region on which the surface-mounted element 2 is mounted.
[0030]
In the wiring board 1, the semiconductor element which is the peripheral type surface-mounting element 2 has its surface electrode 6 directly connected to the electrode 4 drawn out by the through-hole conductor 8 in the recess 7 of the wiring board 1 by the solder bump 9. From there, it is led out to the lower surface through a through-hole conductor 8 connected to the wiring circuit 3.
[0031]
Thus, a lead terminal (not shown) connected to an external electric circuit is electrically connected to the portion led out to the lower surface of the wiring board 1, and finally a lid is placed on the upper portion of the semiconductor element via a sealing material. The body (not shown) is joined and airtightly mounted.
[0032]
【Example】
When evaluating the wiring board of the present invention, an insulating base made of an alumina sintered body was produced by the following procedure.
[0033]
First, a known organic binder, plasticizer and solvent are added to a raw material powder in which Al 2 O 3 is the main component and a sintering aid such as SiO 2 , MgO and CaO is added and mixed with the main component. The slurry is prepared, a ceramic green sheet having a thickness of about 300 μm is formed by a tape forming technique such as a known doctor blade method or calendar roll method, and a through hole is formed by punching the ceramic green sheet at a predetermined position. Formed.
[0034]
On the other hand, the basic conductivity for wiring is obtained by adding an appropriate amount of alumina particles to a powder mainly composed of a refractory metal such as W and Mo, adding a known organic binder, plasticizer, and solvent and kneading them with a kneader. A paste was prepared.
[0035]
Furthermore, the composition was adjusted from the basic conductive paste to prepare conductive pastes for wiring circuits having different firing shrinkage rates and independent wiring patterns.
[0036]
In addition, the firing shrinkage rate of each of the conductive pastes is obtained by firing each conductive paste formed in a sheet shape having a thickness of 100 μm under the same conditions as the firing conditions of the wiring board described later, and including a dimensional change before and after firing. It was determined by measuring with a microscope.
[0037]
First, the wiring circuit paste is formed on the obtained ceramic green sheet by the screen printing method using the wiring circuit paste, and the through-hole portion is also filled with the wiring circuit paste by the screen printing method or the pressure filling method. In addition, an independent wiring pattern that is not connected to the wiring circuit by setting various distances inside the electrode for flip chip connection of the surface mounting element and in the same plane using the wiring pattern paste is used. What was formed was produced.
[0038]
Further, in the same manner as described above, a ceramic green sheet formed with the wiring circuits and through-hole conductors connecting them and a structure formed only with the independent wiring patterns were prepared, and various combinations thereof were made. A laminate was also prepared in which wiring patterns independent of the wiring circuit were formed on different planes.
[0039]
Thereafter, various combinations of laminated wiring patterns independent of the wiring circuit are baked at a temperature of about 1600 ° C. in a reducing atmosphere composed of a mixed gas of hydrogen (H 2 ) and nitrogen (N 2 ) to obtain a thickness. A wiring board for evaluation consisting of 5 layers having a length of about 1.25 mm was produced.
[0040]
In addition, the wiring board produced without providing an independent wiring pattern like the above was made into the comparative example.
[0041]
[Table 1]
Figure 0003752359
[0042]
Using the wiring board for evaluation obtained in this way, as a flatness of the surface of the insulating substrate on which the surface mount element is mounted by the flip chip connection method, a contact type surface roughness equipped with a stylus having a radius of curvature of 5 μm at the tip The maximum displacement was measured by scanning diagonally with a total, and on the other hand, a wiring board having no wiring circuit or wiring pattern and having only flip-chip connection electrodes and wiring pads for continuity check was measured in the same manner as described above. Using the maximum displacement as the reference warpage, the warpage of the wiring board was evaluated from the ratio.
[0043]
Next, a silicon chip for evaluation as a peripheral type surface mounting element was joined to the wiring board for evaluation by solder bumps by a flip chip connection method.
[0044]
Thereafter, in order to evaluate the bonding reliability between the wiring board for evaluation and the silicon chip, the wiring board is fixed, and the side surface of the silicon chip mounted on the wiring board by the flip chip connection method is connected to the wiring board by a push-pull gauge. , Measure the strength at which the silicon chip peels from the wiring board, flip-chip mounts the silicon chip on the wiring board similar to the warpage evaluation, and measures the silicon chip peeling strength as described above. The standard shear strength was used, and the immediate shear strength was evaluated from the ratio.
[0045]
In addition, a temperature cycle test at −65 ° C. and 150 ° C. is performed on the evaluation wiring board on which the silicon chip is mounted, and cracks generated at the joint portion by the flip chip connection method every 1000 cycles, 2000 cycles, and 3000 cycles, respectively. The thermal fatigue life is evaluated by measuring the presence or absence of electrical continuity, especially in terms of long-term bonding reliability for in-vehicle use, etc., based on the characteristics of warpage, immediate shear strength, and thermal fatigue life of the wiring board. Overall evaluation.
[0046]
[Table 2]
Figure 0003752359
[0047]
As is apparent from the table, in the sample number 22 of the comparative example, the warpage of the wiring board reaches twice the standard warpage, the instantaneous shear strength is as low as 0.6 times the standard shear strength, and there is no conduction in 2000 cycles and the heat Fatigue life is extremely short and inappropriate, and in sample number 1 which is outside the scope of claims of the present invention, the distance between the connection electrode of the wiring circuit and the wiring pattern is less than 50 μm. is there.
[0048]
On the other hand, in the present invention, each of the characteristics of the warp, immediate shear strength, and thermal fatigue life of the wiring board is satisfied, and it is clear that the wiring board can be practically used.
[0049]
Further, according to the table, the wiring board independent of the wiring circuit provided in the lower region where the surface mounting element is mounted in the wiring board of the present invention is the surface mounting element by controlling the firing shrinkage rate and the position. It can also be seen that the warpage of the surface of the insulating substrate on which the is mounted can be controlled.
[0050]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
[0051]
【The invention's effect】
The wiring board according to the present invention is electrically connected to the wiring circuit separately from the wiring circuit provided for mounting the peripheral type surface-mounted element on the lower region where the flip chip connecting method is mounted by the flip chip connecting method. Independent wiring patterns are provided on the inner side surrounded by the flip chip connection electrodes of the wiring circuit at a distance of 50 μm or more from any of the electrodes, so that the warping of the insulating substrate surface of the wiring board having the wiring conductor inside is provided. To obtain a wiring board with small deformation such as waviness, especially with a very small deformation of the surface of the insulating substrate where the surface mounting element is mounted, high bonding reliability of the flip chip connection part, and excellent mass production effect Can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment in which a wiring board of the present invention is applied to a package for housing a semiconductor element in which a semiconductor element which is a surface-mounted element is accommodated and mounted by a flip chip connection method.
2 is a partial enlarged view of a main part of the semiconductor element storage package of FIG. 1 as viewed from the semiconductor element side;
[Explanation of symbols]
1 Wiring Board 2 Peripheral Type Surface Mount Device 3 Wiring Circuit 4 Electrode 5 Wiring Pattern

Claims (4)

ペリフェラルタイプの表面実装素子が搭載される配線基板であって、前記表面実装素子のフリップチップ接続用電極から外側に配線回路が形成されるとともに、前記表面実装素子の搭載される下部領域で、該表面実装素子のフリップチップ接続用電極に対し少なくとも50μm以上内側に、表面実装素子がフリップチップ接続される前記配線回路とは独立した配線パターンを配設したことを特徴とする配線基板。A wiring board on which a peripheral type surface mounting element is mounted, wherein a wiring circuit is formed outside a flip chip connection electrode of the surface mounting element, and in a lower region where the surface mounting element is mounted, A wiring board, wherein a wiring pattern independent of the wiring circuit to which the surface mounting element is flip-chip connected is disposed at least 50 μm or more inside the flip-chip connection electrode of the surface mounting element. 前記配線パターンがペリフェラルタイプの表面実装素子がフリップチップ接続される配線回路と同一平面内に形成されていることを特徴とする請求項1記載の配線基板。2. The wiring board according to claim 1, wherein the wiring pattern is formed in the same plane as a wiring circuit to which a peripheral type surface mounting element is flip-chip connected. 前記配線パターンを構成する導電材料の焼成収縮率Sに対するペリフェラルタイプの表面実装素子がフリップチップ接続される配線回路を構成する導電材料の焼成収縮率Sの比S/Sが0.6≦S/S≦1.4であることを特徴とする請求項1又は請求項2のいずれかに記載の配線基板。The ratio S 1 / S 2 of the firing shrinkage rate S 2 of the conductive material constituting the wiring circuit in which the peripheral-type surface-mounted element is flip-chip connected to the firing shrinkage rate S 1 of the conductive material constituting the wiring pattern is 0. The wiring board according to claim 1, wherein 6 ≦ S 1 / S 2 ≦ 1.4. 前記配線パターンを構成する導電材料の焼成収縮率Sに対するペリフェラルタイプの表面実装素子がフリップチップ接続される配線回路を構成する導電材料の焼成収縮率Sの比S/Sが0.8≦S/S≦1.0であることを特徴とする請求項1又は請求項2のいずれかに記載の配線基板。The ratio S 1 / S 2 of the firing shrinkage rate S 2 of the conductive material constituting the wiring circuit in which the peripheral-type surface-mounted element is flip-chip connected to the firing shrinkage rate S 1 of the conductive material constituting the wiring pattern is 0. The wiring board according to claim 1, wherein 8 ≦ S 1 / S 2 ≦ 1.0.
JP14175397A 1997-05-30 1997-05-30 Wiring board Expired - Fee Related JP3752359B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14175397A JP3752359B2 (en) 1997-05-30 1997-05-30 Wiring board
US09/201,626 US6288347B1 (en) 1997-05-30 1998-11-30 Wiring board for flip-chip-mounting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14175397A JP3752359B2 (en) 1997-05-30 1997-05-30 Wiring board
DE19855193A DE19855193A1 (en) 1997-05-30 1998-11-30 Wiring plate for peripheral type surface mounting component

Publications (2)

Publication Number Publication Date
JPH10335515A JPH10335515A (en) 1998-12-18
JP3752359B2 true JP3752359B2 (en) 2006-03-08

Family

ID=26050464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14175397A Expired - Fee Related JP3752359B2 (en) 1997-05-30 1997-05-30 Wiring board

Country Status (1)

Country Link
JP (1) JP3752359B2 (en)

Also Published As

Publication number Publication date
JPH10335515A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US5897724A (en) Method of producing a hybrid integrated circuit
US7009114B2 (en) Wiring substrate, method of producing the same, and electronic device using the same
JP2680443B2 (en) Ceramic wiring board and method of manufacturing the same
CN107615893B (en) Circuit board, electronic device and electronic module
US6288347B1 (en) Wiring board for flip-chip-mounting
JP3752359B2 (en) Wiring board
JPH0613755A (en) Ceramic multilayer wiring board and manufacture thereof
JP3732923B2 (en) Wiring board
JP4535801B2 (en) Ceramic wiring board
JP3404266B2 (en) Wiring board connection structure
JP3297567B2 (en) Package for housing semiconductor element and its mounting structure
JP3744678B2 (en) Wiring board mounting structure
JP3450119B2 (en) Metallized composition and wiring board using the same
JP4587587B2 (en) Electronic component mounting board
CN107431047A (en) Circuit board, electronic installation and electronic module
JP2002076193A (en) Semiconductor element storing package and package mounting board
JPH09135059A (en) Wiring board
JP3273113B2 (en) Multilayer wiring board
JP3301914B2 (en) Wiring board
JP3692214B2 (en) Multilayer wiring board
JP3784221B2 (en) Wiring board and manufacturing method thereof
JP3450111B2 (en) Metallized composition and wiring board using the same
JPH09260540A (en) Manufacture of package substrate for semiconductor
JP2001015930A (en) Multilayer printed wiring board and manufacture thereof
JP2001102492A (en) Wiring board and mounting structure thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees