JP3750977B2 - Lightning noise identification method during real-time data observation - Google Patents

Lightning noise identification method during real-time data observation Download PDF

Info

Publication number
JP3750977B2
JP3750977B2 JP25773899A JP25773899A JP3750977B2 JP 3750977 B2 JP3750977 B2 JP 3750977B2 JP 25773899 A JP25773899 A JP 25773899A JP 25773899 A JP25773899 A JP 25773899A JP 3750977 B2 JP3750977 B2 JP 3750977B2
Authority
JP
Japan
Prior art keywords
cross
time data
lightning
real
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25773899A
Other languages
Japanese (ja)
Other versions
JP2001051065A (en
Inventor
豊 中村
恒章 新谷
Original Assignee
株式会社システムアンドデータリサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社システムアンドデータリサーチ filed Critical 株式会社システムアンドデータリサーチ
Priority to JP25773899A priority Critical patent/JP3750977B2/en
Publication of JP2001051065A publication Critical patent/JP2001051065A/en
Application granted granted Critical
Publication of JP3750977B2 publication Critical patent/JP3750977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リアルタイムに複数成分のデータを観測する場合の雷ノイズ識別方法に関する。本発明は観測されているデータに含まれる雷ノイズを識別する方法を提供するものであり、例えば地震計等のように、リアルタイム観測データにより動作するシステムに対して、雷ノイズによる誤動作を防ぐために利用することができる。
【0002】
【従来の技術】
例えば地震計においては、雷などの影響で電磁ノイズや電源ノイズがセンサなどを経由してA/D変換器に混入し、大きな地震と誤認識し、誤警報を発令してしまうことがあった。
【0003】
従来これに対しては機械的にガードをかけて雷等のノイズがシステム内に混入することを防ぐことで、対処してきた。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、リアルタイムデータ観測時に、雷など、大電流の入力や地絡に伴う電圧や電流の変化が、センサ系や記録系に混入した場合に、雷等ノイズと観測データとをリアルタイムに識別することができないことである。
【0005】
また雷等ノイズと観測データとをリアルタイムに識別できないことにより、リアルタイム観測データを用いた警報装置の場合、誤警報が発令されることである。
【0006】
【課題を解決するための手段】
本発明に係るリアルタイムデータ観測時の雷ノイズ識別方法は、リアルタイムデータ観測を行い、リアルタイムデータの観測時において、各観測ステップ毎に、各観測成分間の相互相関値を連続的に算出する。さらに、算出された相互相関値の一定間隔毎の統計量を算出し、各区間毎の統計量の変化を監視することにより雷ノイズを識別する。したがって、次のように作用する。
【0007】
一般に、時定数の大きい観測系に雷ノイズが混入した場合、各観測成分間の相互相関値は、長時間高い値を示す。また、時定数の小さい観測系に雷ノイズが混入した場合、各観測成分間の相互相関値は、雷ノイズ現象の終了後、時間の経過とともに急速に減少するという性質がある。
【0008】
上述の性質を利用し、各観測ステップ毎に各観測成分の相互相関値を算出する手法に加え、各観測成分間の相互相関値を一定間隔の連続データについて算出し、算出された相互相関値の推移を監視する方法も、雷ノイズの識別に有効に作用する。
【0009】
本願発明の手段の有効性を示す具体例として、ノイズ混入の影響を受けたリアルタイムデータの相互相関値が閾値を超えない程度である場合が考えられる。このような場合は、各観測成分間の相互相関値を、一定間隔の連続データについて算出し、観測系の時定数により相互相関値の推移を監視することで、本来のリアルタイム観測データと雷ノイズとを区別することができる。
【発明の実施の形態】
【0010】
本発明の実施の形態を図1に示す。図1は、観測したリアルタイムデータの相互相関値の算出後、一定間隔毎の相互相関値の統計量を算出し、その統計量を監視することによって雷ノイズか否かを判断する過程を示す流れ図である。
【0011】
段階21では、リアルタイムデータを常時観測する。
【0012】
段階22では、段階21において観測されたリアルタイムデータを用い、各観測ステップ毎に、各観測成分間の相互相関値を算出する。
【0013】
段階23では、段階22で算出された相互相関値に関して、一定間隔毎に統計量を算出する。
【0014】
段階24では、段階22において算出された各観測成分間の相互相関値と、予め設定された閾値とを比較し、段階22で算出された相互相関値が予め設定された閾値を上回っていれば、段階21で観測されたリアルタイムデータは雷ノイズの影響を受けていると判断する。
【0015】
段階24において、各観測成分間の相互相関値が閾値を超えなかった場合、さらに段階25へ進む。段階25は、用いられている観測系の時定数の大小に応じ、これから行われるノイズ識別処理を分岐させる段階である。用いられている観測系の時定数が小さければ段階26に進み、逆に時定数が大きければ段階27に進む。
【0016】
段階26では、時定数の小さい観測系を用いている場合において、段階23で算出した、相互相関値の一定間隔毎の統計量を用いて、リアルタイムデータと雷ノイズとを識別する。前述したように、時定数の小さい観測系に雷ノイズが混入した場合は、雷ノイズ現象の終了後、急速に相互相関値が小さくなる性質がある。この性質を利用し、段階23で算出された、相互相関値の統計量を監視し、その統計量が急速に減少した場合に、雷ノイズが観測データに混入したと判断する。
【0017】
段階27では、時定数の大きい観測系を用いている場合において、段階23で算出した、相互相関値の一定間隔毎の統計量を用いて、リアルタイムデータと雷ノイズとを識別する。時定数の大きい観測系に雷ノイズが混入した場合は、雷ノイズ現象の終了後、相互相関値が長時間大きい値を保持する性質がある。この性質を利用し、段階23で算出された、相互相関値の統計量を監視し、その統計量が大きい値を保持した場合に、雷ノイズが観測データに混入したと判断する。
【0018】
段階28は、段階21で観測されたデータが、雷ノイズの影響を受けていると判断された段階である。第1の実施の形態と同様、誤警報を出力しないような処理をしたり、落雷の事実そのものを検知するような処理をすることができる。
【0019】
段階29は、段階21で観測されたデータが、雷ノイズの影響を受けていないと判断された段階である。したがって、段階21で観測された観測データが平常を作動させたりすることができる。
【0020】
段階21から段階28乃至段階29の処理を繰り返し連続的に行うことにより、リアルタイムデータを観測しながら、同時に雷ノイズの混入の有無を識別し、システムを誤作動させないようにすることができる。
【発明の効果】
【0021】
本発明は前述したような構成をもっているため、以下のような効果を奏する。
【0022】
本発明の方法を用いれば、仮に、落雷等によるノイズがシステムに混入しても、そのノイズをリアルタイムに識別することができる。また、リアルタイムに雷等によるノイズを識別できることにより、リアルタイム観測データを用いて動作するシステムが、誤警報を発令することや、誤動作をすることを防ぐことができる。さらに、落雷の事実そのものを検知することもできる。
【図面の簡単な説明】
【図1】本発明の実施の形態における、観測したリアルタイムデータの相互相関値を算出し、雷ノイズか否かを判断する流れ図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of identifying lightning noise when observing data of a plurality of components in real time. The present invention provides a method for identifying lightning noise included in observed data, and is intended to prevent malfunction caused by lightning noise for a system operating with real-time observation data such as a seismometer. Can be used.
[0002]
[Prior art]
For example, in seismometers, electromagnetic noise and power supply noise may be mixed into the A / D converter via sensors, etc. due to the effects of lightning, etc., and may be misrecognized as a large earthquake, giving a false alarm. .
[0003]
Conventionally, this has been dealt with by mechanically guarding to prevent noise such as lightning from entering the system.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that, when observing real-time data, when a change in voltage or current due to a large current input or ground fault such as lightning is mixed in the sensor system or recording system, it is observed that the lightning noise is observed. That is, the data cannot be identified in real time.
[0005]
In addition, a false alarm is issued in the case of an alarm device using real-time observation data because noise such as lightning and observation data cannot be discriminated in real time.
[0006]
[Means for Solving the Problems]
The lightning noise identification method during real-time data observation according to the present invention performs real-time data observation, and continuously calculates cross-correlation values between observation components for each observation step during real-time data observation. Furthermore, a lightning noise is identified by calculating a statistical amount of the calculated cross-correlation value at regular intervals and monitoring a change in the statistical amount for each section. Therefore, it operates as follows.
[0007]
In general, when lightning noise is mixed in an observation system with a large time constant, the cross-correlation value between the observation components shows a high value for a long time. In addition, when lightning noise is mixed in an observation system with a small time constant, the cross-correlation value between the observation components has a property of rapidly decreasing with time after the lightning noise phenomenon ends.
[0008]
In addition to the method of calculating the cross-correlation value of each observation component at each observation step using the above properties, the cross-correlation value between each observation component is calculated for continuous data at a fixed interval, and the calculated cross-correlation value The method of monitoring the transition of lightning also works effectively for lightning noise identification.
[0009]
As a specific example showing the effectiveness of the means of the present invention, there may be a case where the cross-correlation value of real-time data affected by noise mixing does not exceed a threshold value. In such a case, the cross-correlation value between each observation component is calculated for continuous data at regular intervals, and the transition of the cross-correlation value is monitored by the time constant of the observation system, so that the original real-time observation data and lightning noise And can be distinguished.
DETAILED DESCRIPTION OF THE INVENTION
[0010]
An embodiment of the present invention is shown in FIG. FIG. 1 is a flowchart showing a process of calculating whether or not lightning noise is detected by calculating a statistic of cross-correlation values at regular intervals after calculating a cross-correlation value of observed real-time data. It is.
[0011]
In step 21, real time data is constantly observed.
[0012]
In step 22, the cross-correlation value between the observed components is calculated for each observation step using the real-time data observed in step 21.
[0013]
In step 23, a statistic is calculated at regular intervals with respect to the cross-correlation value calculated in step 22.
[0014]
In step 24, the cross-correlation value between the observed components calculated in step 22 is compared with a preset threshold value, and if the cross-correlation value calculated in step 22 exceeds the preset threshold value. The real-time data observed in step 21 is determined to be affected by lightning noise.
[0015]
In step 24, when the cross-correlation value between the observed components does not exceed the threshold value, the process further proceeds to step 25. Step 25 is a step of branching off the noise identification processing to be performed in accordance with the time constant of the observation system used. If the time constant of the observation system used is small, the process proceeds to step 26. If the time constant is large, the process proceeds to step 27.
[0016]
In step 26, when an observation system with a small time constant is used, real-time data and lightning noise are discriminated using the statistics for each fixed interval of the cross-correlation values calculated in step 23. As described above, when lightning noise is mixed in an observation system with a small time constant, the cross-correlation value rapidly decreases after the lightning noise phenomenon ends. Utilizing this property, the statistic of the cross-correlation value calculated in step 23 is monitored, and when the statistic rapidly decreases, it is determined that lightning noise is mixed in the observation data.
[0017]
In step 27, when an observation system with a large time constant is used, real-time data and lightning noise are discriminated using the statistics for each fixed interval of the cross-correlation values calculated in step 23. When lightning noise is mixed in an observation system with a large time constant, the cross-correlation value has a property of maintaining a large value for a long time after the lightning noise phenomenon ends. Using this property, the statistic of the cross-correlation value calculated in step 23 is monitored, and if the statistic has a large value, it is determined that lightning noise has been mixed into the observation data.
[0018]
Step 28 is a step in which it is determined that the data observed in step 21 is affected by lightning noise. Similar to the first embodiment, it is possible to perform processing so as not to output a false alarm or to detect the fact of a lightning strike.
[0019]
Step 29 is a step in which it is determined that the data observed in step 21 is not affected by lightning noise. Therefore, the observation data observed in step 21 can activate normality.
[0020]
By repeatedly performing the processing from step 21 to step 28 to step 29 repeatedly, it is possible to identify the presence or absence of lightning noise at the same time while observing real-time data, and prevent the system from malfunctioning.
【The invention's effect】
[0021]
Since the present invention has the configuration as described above, the following effects can be obtained.
[0022]
If the method of the present invention is used, even if noise due to lightning strikes enters the system, the noise can be identified in real time. In addition, since noise caused by lightning or the like can be identified in real time, a system that operates using real-time observation data can be prevented from issuing a false alarm or malfunctioning. It can also detect the fact of lightning.
[Brief description of the drawings]
FIG. 1 is a flowchart for calculating a cross-correlation value of observed real-time data and determining whether or not it is lightning noise in an embodiment of the present invention.

Claims (1)

リアルタイムデータ観測時の雷ノイズ識別方法において、
リアルタイムデータ観測の各観測成分間の相互相関値を、一定間隔の連続データについて算出し、
算出された相互相関値と、閾値とを比較し、
算出された相互相関値が閾値を上回っている場合に、観測されたリアルタイムデータは雷ノイズであると判断し、
観測されたリアルタイムデータが雷ノイズではないと判断された場合は、さらに用いられている観測系の時定数の大小に着目し、
用いられている観測系の時定数が小さい場合は、相互相関値の統計量を監視し、相互相関値の統計量が急速に減少した場合に、観測されたリアルタイムデータは雷ノイズであると判断し、
用いられている観測系の時定数が大きい場合は、相互相関値の統計量を監視し、相互相関値の統計量が大きい値を保持した場合に、観測されたリアルタイムデータは雷ノイズであると判断する、
ことを特徴とする、リアルタイムデータ観測時の雷ノイズ識別方法。
In the lightning noise identification method when observing real-time data,
Calculate cross-correlation values between observation components of real-time data observation for continuous data at regular intervals,
Compare the calculated cross-correlation value with the threshold,
If the calculated cross-correlation value exceeds the threshold, the observed real-time data is determined to be lightning noise,
If it is determined that the observed real-time data is not lightning noise, pay attention to the time constant of the observation system used,
If the time constant of the observation system used is small, the cross-correlation value statistic is monitored, and if the cross-correlation value statistic rapidly decreases, it is determined that the observed real-time data is lightning noise. And
When the time constant of the observation system used is large, the statistics of the cross-correlation values are monitored, and when the cross-correlation values of the statistics are large, the observed real-time data is lightning noise. to decide,
A method of identifying lightning noise when observing real-time data.
JP25773899A 1999-08-09 1999-08-09 Lightning noise identification method during real-time data observation Expired - Fee Related JP3750977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25773899A JP3750977B2 (en) 1999-08-09 1999-08-09 Lightning noise identification method during real-time data observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25773899A JP3750977B2 (en) 1999-08-09 1999-08-09 Lightning noise identification method during real-time data observation

Publications (2)

Publication Number Publication Date
JP2001051065A JP2001051065A (en) 2001-02-23
JP3750977B2 true JP3750977B2 (en) 2006-03-01

Family

ID=17310425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25773899A Expired - Fee Related JP3750977B2 (en) 1999-08-09 1999-08-09 Lightning noise identification method during real-time data observation

Country Status (1)

Country Link
JP (1) JP3750977B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004018276U1 (en) * 2004-11-25 2005-03-24 Lachenit Heinrich Earthquake warning system has master/slave configured primary wave vibration sensors with alarm actuated at calculated secondary wave threshold
JP5141052B2 (en) 2007-03-08 2013-02-13 日本電気株式会社 Power supply noise measurement circuit and measurement method

Also Published As

Publication number Publication date
JP2001051065A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
US7579843B2 (en) Methods and apparatus for analyzing partial discharge in electrical machinery
CN105425082B (en) Detect equipment, the method and apparatus of arc fault
US8538729B2 (en) Method and system of wind turbine condition monitoring
WO2015100577A1 (en) Devices and methods for arc fault detection
CA2184436C (en) Glass break sensor
CN101802628A (en) A method for detecting, identifying and locating partial discharges occurring in a discharge site along an electric apparatus
CN106652285A (en) Distributed multi-defence-area vibration optical fiber perimeter alarm system and perimeter monitoring method
CN102135555B (en) Series arcing fault identifying method for low-voltage system
CN108828406A (en) The fault recognition method and its system of non-intrusion type user power utilization
CN111521687B (en) Inhaul cable broken wire distinguishing method and system based on acoustic emission signal analysis
CN101027565A (en) Method and device for detecting electric arc phenomenon on at least one electric cable
CN105681274B (en) A kind of method and device of original alarm information processing
CN112461289A (en) Ring main unit fault monitoring method, system, terminal and storage medium
JP3750977B2 (en) Lightning noise identification method during real-time data observation
CN109357753B (en) System and method for reducing false alarm rate of loose parts and vibration monitoring of nuclear power plant
CN110808995A (en) Safety protection method and device
DE102018218655A1 (en) FIRE DETECTORS
WO2019075673A1 (en) Single-phase-to-ground fault detection method and device based on electric field induction, and storage medium
EP3679787B1 (en) Method and system for monitoring epidemic disease in piggery
DE60134014D1 (en) DEVICE AND METHOD FOR ANALYZING A SYSTEM WITH FAULT START
US20240096185A1 (en) Intrusion detection algorithm with reduced tuning requirement
CN114912495A (en) Transformer fault monitoring method, device and storage medium
JP4289282B2 (en) Partial discharge detection device for rotary machine and partial discharge remote monitoring system
Tondreau et al. Vibration based damage localization using multi-scale filters and large strain sensor networks
Tejedor et al. Towards detection of pipeline integrity threats using a SmarT fiber-OPtic surveillance system: PIT-STOP project blind field test results

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050323

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees