JP3750515B2 - Method of stirring molten metal - Google Patents

Method of stirring molten metal Download PDF

Info

Publication number
JP3750515B2
JP3750515B2 JP2000354277A JP2000354277A JP3750515B2 JP 3750515 B2 JP3750515 B2 JP 3750515B2 JP 2000354277 A JP2000354277 A JP 2000354277A JP 2000354277 A JP2000354277 A JP 2000354277A JP 3750515 B2 JP3750515 B2 JP 3750515B2
Authority
JP
Japan
Prior art keywords
molten metal
holding container
wall
flow
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000354277A
Other languages
Japanese (ja)
Other versions
JP2002153944A (en
Inventor
淳 久保田
典子 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000354277A priority Critical patent/JP3750515B2/en
Publication of JP2002153944A publication Critical patent/JP2002153944A/en
Application granted granted Critical
Publication of JP3750515B2 publication Critical patent/JP3750515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状保持容器内に収容された溶融金属を攪拌する方法に関し、詳しくは、保持容器内湯面の広い範囲に緩やかな湧昇流を発生させることが可能な攪拌方法に関するものである。
【0002】
【従来の技術】
溶融金属を凝固させ、製品素材を製造する工程において、溶融金属中に含まれる非金属介在物を浮上分離させて少なくすることは、良好な製品品質を維持する上で重要である。例えば鉄鋼業においては、溶鋼の精錬過程で溶鋼中の酸素を脱酸する工程があり、この脱酸工程では溶鋼中に多数の酸化物系非金属介在物(以下「介在物」と記す)が生成する。
【0003】
ここで生成する介在物の大半は大きさが10μm以下と小さく、溶鋼との比重差に基づく介在物自体の有する浮上速度は1×10-5m/sec程度であり、この浮上速度で溶鋼湯面まで浮上するためには、数時間のオーダーを必要とする。又、取鍋内の溶鋼中には、移動速度が1×10-2m/secのオーダーで、その大きさが1m以下の熱対流セルが存在するので、介在物の浮上分離はますます難しくなる。そのため介在物の浮上分離を促進させる方法が種々提案されてきた。
【0004】
その一つとして、RH真空脱ガス装置を利用する方法がある。RH真空脱ガス装置では、取鍋と真空槽との間を高速度で循環する溶鋼流が生じ、この溶鋼流による乱流・衝突により介在物の凝集・合体が起こり、介在物は100μm程度まで大きくなり、その結果、介在物の浮上速度が速くなり、介在物の浮上分離が促進される。しかし、この方法は、介在物の合体による浮上分離の促進を利用したものであり、介在物の浮上分離にとって最も本質的で効果的なことである、保持容器内の溶融金属湯面位置に短時間の内に数多くの介在物を輸送することを促進させる方法ではない。
【0005】
又、磁場が鉛直方向に移動する移動磁場発生装置を保持容器の側面に取り付け、保持容器内の溶鋼を鉛直方向に攪拌する装置(例えば、ASEA−SKF)がある。この装置では、移動磁場により保持容器内に鉛直方向の循環流を励起するため、強い循環流が得られる。しかし、このような移動磁場発生装置は、保持容器のハンドリングや設備コストの点から保持容器の全周に配置されることはなく、通常、円周方向の一部分のみに設置されて攪拌を行うことになる。従って、保持容器内の溶鋼湯面では、移動磁場発生装置が設置された部分だけに強い湧昇流が生じるため、この湧昇流により溶鋼湯面に浮かんでいるスラグが溶鋼中に巻き込まれ、このスラグが介在物となることもある。
【0006】
又、特開平4−314813号公報には、円筒状の保持容器に水平旋回流を生じさせ、介在物と溶鋼との密度差に起因して介在物に作用する中心方向への求心力により介在物を保持容器の中心部に集め、介在物が少なくなった溶鋼を保持容器の円周に沿った位置から流出させる方法が提案されている。この方法では、介在物に求心力を作用させるために、50rpmという大きな水平旋回速度が必要である。連続鋳造機のタンディッシュのような比較的小さな保持容器であれば、小さな移動磁場発生装置でもこの旋回速度まで溶鋼を駆動できるが、取鍋のような大きな保持容器内の溶鋼をこれだけの旋回速度で駆動させる場合には、大規模な装置が必要となり、設備コストが増加する。又、旋回速度が高速になれば、湯面のゆらぎにより溶鋼の溢れ出しの虞もある。これを避けるために保持容器内の溶鋼量を少なくすると、生産性が低下するという問題が生ずる。
【0007】
【発明が解決しようとする課題】
溶融金属中の介在物を浮上分離させるためには、より多くの介在物を溶融金属の湯面に迅速に輸送し、湯面から系外へ排出してしまうことである。そのための輸送に必要なことは、介在物の大きさから決まる浮上速度を考慮すると、介在物を含んだ溶融金属が溶融金属の湯面と極力多く接触するように輸送すること、換言すれば、介在物を含んだ溶融金属が溶融金属の湯面と極力多く接触するように溶融金属を攪拌することである。
【0008】
しかしながら、従来の攪拌方法にはこの概念が取り入れられておらず、例えば合金を添加した際の溶融金属成分を均一にする手段としては優れた攪拌方法であるが、介在物の浮上分離を促進させる点に関しては十分とは言い難い。
【0009】
本発明は上記事情に鑑みなされたもので、その目的とするところは、溶融金属湯面に局所的な湧昇流を発生させずに、円筒状保持容器内に収容された溶融金属を保持容器内の溶融金属湯面と高い頻度で接触させることができる、介在物の浮上分離に好適な攪拌方法を提供することである。
【0010】
【課題を解決するための手段】
本発明者等は上記課題を解決するために鋭意検討を重ねた。その結果、内壁側面が円筒状の保持容器を用い、この保持容器内で溶融金属を水平方向に旋回させた場合、内壁底面と溶融金属との摩擦により内壁底面側の旋回速度を遅くさせて、保持容器内で旋回させる溶融金属の遠心力に保持容器の上下方向で差を生じさせれば、保持容器の中心部に緩やかな湧昇流が発生するとの知見を得た。
【0011】
又、内壁側面が円筒状の保持容器を用い、その内部に溶融金属を収容させ、この保持容器の鉛直方向の中心線を軸として保持容器を水平方向に回転させた場合、内壁底面と溶融金属との摩擦により内壁底面側の溶融金属の旋回速度を大きくさせて、保持容器内で旋回させる溶融金属の遠心力に保持容器の上下方向で差を生じさせれば、保持容器の側面部に緩やかな湧昇流が発生するとの知見を得た。
【0012】
本発明は上記知見に基づきなされたもので、第1の発明による溶融金属の攪拌方法は、内壁側面が円筒状である保持容器に収容された溶融金属の攪拌方法であって、保持容器の内壁底面形状を凹凸のある形状として、保持容器の内壁底面に沿って流動する溶融金属に摩擦による駆動力を生じさせるようにし、保持容器の外部に設置した移動磁場発生装置を用いて、保持容器内の溶融金属に保持容器の側面に沿って水平方向に移動する磁場を印加することを特徴とするものである。
【0013】
第2の発明による溶融金属の攪拌方法は、内壁側面が円筒状である保持容器に収容された溶融金属の攪拌方法であって、保持容器の内壁底面形状を凹凸のある形状として、保持容器の内壁底面に沿って流動する溶融金属に摩擦による駆動力を生じさせるようにし、保持容器の鉛直方向の実質的な中心線を軸として保持容器を水平回転させることを特徴とするものである。
【0014】
図1に、内壁側面が円筒状の保持容器1において保持容器1内の溶融金属3を旋回させた時の溶融金属3の流動状況を模式的に示す。内壁側面が円筒状の保持容器1内の溶融金属3を内壁側面に沿って水平方向に旋回させると、溶融金属3には遠心力が生じる。その際に、保持容器1の内壁底面を適当な粗度の凹凸形状としておくと、内壁底面に沿った溶融金属3の旋回流7には摩擦による減速力が生じ、内壁底面上方の旋回流7aに較べて旋回速度が減少する。すると、底面に沿って旋回する溶融金属3の遠心力は、上方で旋回する溶融金属3の遠心力よりも小さくなるので、力の釣り合いから、保持容器1の内壁側面に沿って保持容器1の上部側から底面側に溶融金属3が移動して、二次鉛直循環流8が発生する。この二次鉛直循環流8は、内壁底面では側面側から底面中心側に向かう流れとなり、そして、底面中心部に集まった二次鉛直循環流8は、保持容器1の中心軸に沿って底面から溶融金属湯面に向かう、緩やかな湧昇流9を発生させる。
【0015】
又、図2に内壁側面が円筒状の保持容器1において保持容器1を鉛直方向の中心線を軸にして水平回転させた時の保持容器1内の溶融金属3の流動状況を模式的に示す。内部に溶融金属3を収容した保持容器1を水平方向に回転させると、溶融金属3と保持容器1の内壁との摩擦により、溶融金属3も保持容器1の回転方向に旋回を開始する。その際に、保持容器1の内壁底面を適当な粗度の凹凸形状としておくと、内壁底面近傍の溶融金属3には摩擦による駆動力がより多く作用し、内壁底面に沿った溶融金属3の旋回流7は内壁底面上方の旋回流7aに較べて旋回速度が増加する。すると、底面に沿って旋回する溶融金属3の遠心力は、上方で旋回する溶融金属3の遠心力よりも大きくなるので、力の釣り合いから、保持容器1の内壁側面に沿って保持容器1の底面側から上部側に溶融金属3が移動して、二次鉛直循環流8が発生する。この二次鉛直循環流8は、溶融金属3の湯面では側面側から湯面の中心側に向かう流れとなり、そして湯面中心部に集まった二次鉛直循環流は保持容器1の中心軸に沿って下降して内壁底面に至り、内壁底面では底面中心側から側面側に向かう流れとなる。この二次鉛直循環流8のなかで、保持容器1の側面に沿って底面から溶融金属湯面に向かう流れは緩やかな湧昇流9となる。
【0016】
本発明では、保持容器の内壁底面形状を凹凸のある形状として、内壁底面近傍の溶融金属に摩擦による駆動力を生じさせ、この保持容器内の溶融金属を移動磁場発生装置を用いて水平方向に旋回させる、又は、保持容器を水平回転させて、その時に生ずる鉛直方向の二次循環流を利用するので、保持容器内の溶融金属湯面の広い範囲に緩やかな湧昇流を生じさせることができる。この攪拌方法により溶融金属を攪拌することで、溶融金属中の介在物は湧昇流に伴って湯面に輸送されて、湯面に浮かんでいるスラグ等に吸収されるので、介在物を溶融金属から迅速に分離させることができる。
【0017】
【発明の実施の形態】
以下、本発明を図面を参照して説明する。図3は本発明の実施の形態の1例を示す図であって、保持容器と移動磁場発生装置との取り合いを示す縦断面概略図、図4は図3におけるX−X’矢視による平断面概略図、図5は図3に示す保持容器の内壁底面を示す平面概略図、図6は図5におけるY−Y’矢視による縦断面概略図である。
【0018】
図3に示すように、その内壁側面1bが円筒状の保持容器1に溶鋼等の溶融金属3が収容されており、溶融金属3上には精錬過程等に生成したスラグ4が浮遊している。保持容器1の内壁底面1aには、図5及び図6に示すように、高さがHで幅がDの凸部5が平坦部6から突出して設けられている。
【0019】
保持容器1の外周には保持容器1を囲うようにして、磁場が水平方向に移動する移動磁場発生装置2が設置されており、この移動磁場発生装置2により保持容器1内の溶融金属3は水平方向に旋回移動される。図4では、移動磁場発生装置2が保持容器1の外周長さの1/2を囲うように設置されているが、これは設備コストを勘案したものであり、この移動磁場発生装置2により十分な水平方向の旋回流が得られるが、勿論、移動磁場発生装置2を保持容器1の全周に設置しても良く、又、水平方向の旋回流が得られる範囲で設置範囲を短くしても良い。
【0020】
このような保持容器1と移動磁場発生装置2とを用い、移動磁場発生装置2により溶融金属3に磁場を印加する。水平方向に移動する磁場が印加された溶融金属3は、内壁側面1bに沿う水平方向の移動を開始し、前述した図1に示す旋回流を形成する。
【0021】
前述したように、内壁底面1aに沿った旋回流は凸部5により減速され、内壁底面1a上方の旋回流に較べて旋回速度が減少する。すると、内壁底面1aに沿って旋回する溶融金属3の遠心力は、内壁底面1aの上方位置で旋回する溶融金属3の遠心力に較べて小さくなるので、力の釣り合いから、保持容器1の内壁側面1bに沿って保持容器1の上部側から内壁底面1a側に溶融金属3が移動し、二次鉛直循環流が発生する。この二次鉛直循環流は、内壁底面1aでは内壁側面1b側から内壁底面1aの中心側に向かう流れとなり、そして、内壁底面1aの中心部に集まった二次鉛直循環流は、保持容器1の中心軸に沿って内壁底面1aから溶融金属湯面に向かい、溶融金属湯面の広い範囲に緩やかな湧昇流を形成する。
【0022】
このようにして溶融金属3を攪拌することで、保持容器1内の溶融金属湯面の中央部に緩やかな湧昇流を連続して生成させることが可能となり、この方法で溶融金属3を攪拌すれば、溶融金属3の上に浮遊するスラグ4を溶融金属3中に巻き込むことなく、溶融金属3に含まれる介在物を迅速に除去することができる。
【0023】
図7は本発明の他の実施の形態の1例を示す図であって、保持容器と保持容器を水平回転させるための装置を示す縦断面概略図である。
【0024】
図7に示すように、保持容器1を戴置する台盤10の下面には車輪11が円周方向に設けられており、台盤10の周縁に設けられた歯(図示せず)と、この歯に噛み合う歯車14と、歯車14を駆動するための電動機12及び減速機13とからなる回転装置により、台盤10は水平旋回するようになっている。保持容器1の鉛直方向の中心線と台盤10の旋回中心とがおおよそ一致するように保持容器1を台盤10に戴置させて、1分間に数回から数十回の旋回速度で保持容器1を水平旋回できるようになっている。尚、保持容器1を水平回転させる装置は上述の装置に限るものではなく、保持容器1を水平回転できる機能を備えていればどのような装置であっても良い。
【0025】
溶融金属3を収容した保持容器1の内壁側面1bは円筒状であり、保持容器1の内壁底面1aには、前述した図5及び図6に示すような、高さがHで幅がDの凸部5が平坦部6から突出して設けられている。溶融金属3上には精錬過程等に生成したスラグ4が浮遊している。
【0026】
このような保持容器1と回転装置とを用いて保持容器1を水平回転させる。保持容器1の内壁底面1a及び内壁側面1bの近傍に存在する溶融金属3は、保持容器1の水平回転に伴って内壁側面1bに沿う水平方向の移動を開始し、前述した図2に示す旋回流を形成する。
【0027】
前述したように、内壁底面1aに沿った旋回流は凸部5により加速され、内壁底面1a上方の旋回流に較べて旋回速度が増加する。すると、内壁底面1aに沿って旋回する溶融金属3の遠心力は、内壁底面1aの上方位置で旋回する溶融金属3の遠心力に較べて大きくなるので、力の釣り合いから、保持容器1の内壁側面1bに沿って保持容器1の内壁底面1a側から上部側へ向かって溶融金属3が移動し、二次鉛直循環流が発生する。この二次鉛直循環流は、溶融金属3の湯面では内壁側面1b側から湯面の中心側に向かう流れとなり、そして湯面中心部に集まった二次鉛直循環流は保持容器1の中心軸に沿って下降して内壁底面1aに至り、内壁底面1aでは中心側から内壁側面1b側に向かう流れとなり、内壁側面1bに到達した二次鉛直循環流は、保持容器1の内壁側面1bに沿って内壁底面1aから溶融金属湯面に向かい、溶融金属湯面の広い範囲に緩やかな湧昇流を形成する。
【0028】
このようにして溶融金属3を攪拌することで、保持容器1内の溶融金属湯面の周辺部に緩やかな湧昇流を連続して生成させることが可能となり、この方法で溶融金属3を攪拌すれば、溶融金属3の上に浮遊するスラグ4を溶融金属3中に巻き込むことなく、溶融金属3に含まれる介在物を迅速に除去することができる。
【0029】
尚、溶融金属3の旋回流を減速するための凸部5の形状は、図5及び図6に示す形状に限るものではなく、溶融金属3に摩擦による駆動力を作用させる形状であれば、どのような形状としても良い。但し、保持容器1の容量や内壁底面1aの面積等により、同一形状の凸部5であっても溶融金属3へ作用する駆動力が異なってくるので、各々の条件に合致した凸部5の形状をモデル実験等により予め求めておくことが重要である。
【0030】
【実施例】
[実施例1]
保持容器として250トンの溶鋼を収容する取鍋を用い、図3に示すような取鍋と移動磁場発生装置との組み合わせにより、本発明の方法により溶鋼を攪拌した。取鍋の内壁底面には、図5及び図6に示す凸部が設置されており、本実施例では凸部の高さ(H)を0.15m、幅(D)を0.6m(D1 =D2 )とした。取鍋の内壁底面の直径は3.2m、内壁側面の高さは3.9m、上端部の内壁直径は3.9mである。
【0031】
転炉から出鋼された溶鋼をRH真空脱ガス装置にて精錬し、C:0.005質量%(以下「%」と記す)以下、Mn:0.025%以下、Si:0.04%以下、S:0.035%以下、P:0.008〜0.020%、Al:0.020〜0.050%、N:0.0060%以下の溶鋼を製造した。この溶鋼上には、CaO−Al23 −SiO2 −MgO系のスラグが浮遊していた。この溶鋼を収容した取鍋を連続鋳造機による鋳造前にリニア型の移動磁場発生装置を用いて攪拌した。用いた移動磁場発生装置の仕様を表1に示す。
【0032】
【表1】

Figure 0003750515
【0033】
移動磁場発生装置により溶鋼を水平方向に攪拌しつつ、2分間隔で取鍋内の溶鋼湯面位置から約1m深さの位置から分析試料を採取し、介在物量の指標となる全酸素量を分析した。その結果を図8に示す。尚、図8には溶鋼を攪拌せずに、単に取鍋内で放置した場合の溶鋼中の全酸素量の推移を調査した結果を合わせて示す。図8から明らかなように、本発明を実施した場合には全酸素量の減少が顕著であり、本発明法による20分間の攪拌により、放置した場合の1/2の量まで全酸素量を低減することができた。
[実施例2]
保持容器として250トンの溶鋼を収容する取鍋を用い、図7に示すような取鍋と回転装置との組み合わせにより、本発明の方法により溶鋼を攪拌した。取鍋の内壁底面には、図5及び図6に示す凸部が設置されており、本実施例では凸部の高さ(H)を0.15m、幅(D)を0.6m(D1 =D2 )とした。取鍋の内壁底面の直径は3.2m、内壁側面の高さは3.9m、上端部の内壁直径は3.9mである。
【0034】
転炉から出鋼された溶鋼をRH真空脱ガス装置にて精錬し、C:0.005%以下、Mn:0.025%以下、Si:0.04%以下、S:0.035%以下、P:0.008〜0.020%、Al:0.020〜0.050%、N:0.0060%以下の溶鋼を製造した。この溶鋼上には、CaO−Al23 −SiO2 −MgO系のスラグが浮遊していた。この溶鋼を収容した取鍋を、連続鋳造機による鋳造前に図7の取鍋回転装置を用いて回転させた。回転速度は毎分10回転とした。
【0035】
取鍋回転装置により取鍋を水平回転しつつ、2分間隔で取鍋内の溶鋼湯面位置から約1m深さの位置から分析試料を採取し、介在物量の指標となる全酸素量を分析した。その結果を図9に示す。尚、図9には溶鋼を攪拌せずに、単に取鍋内で放置した場合の溶鋼中の全酸素量の推移を調査した結果を合わせて示す。図9から明らかなように、本発明を実施した場合には全酸素量の減少が顕著であり、本発明法による26分間の攪拌により、放置した場合の1/2の量まで全酸素量を低減することができた。
【0036】
【発明の効果】
本発明では、溶融金属を収容する保持容器の内壁底面を凹凸形状として、内壁底面に沿った水平方向の旋回流を減速させ、これによる保持容器内の二次鉛直循環流を積極的に利用するので、容器内の溶融金属湯面の広い範囲に緩やかな湧昇流を発生させることができる。そのため、この方法で溶融金属を攪拌することにより、溶融金属湯面に浮かんでいるスラグを溶融金属中に巻き込むことなく、溶融金属中の介在物を迅速に除去することができる。
【図面の簡単な説明】
【図1】保持容器内の溶融金属を旋回させた時の溶融金属の流動状況を模式的に示す図である。
【図2】保持容器を水平回転させた時の溶融金属の流動状況を模式的に示す図である。
【図3】本発明の実施の形態の1例を示す縦断面概略図である。
【図4】図3におけるX−X’矢視による平断面概略図である。
【図5】図3に示す保持容器の内壁底面を示す平面概略図である。
【図6】図5におけるY−Y’矢視による縦断面概略図である。
【図7】本発明の他の実施の形態の1例を示す縦断面概略図である。
【図8】実施例1における攪拌中の溶鋼の全酸素量の推移を示す図である。
【図9】実施例2における攪拌中の溶鋼の全酸素量の推移を示す図である。
【符号の説明】
1 保持容器
2 移動磁場発生装置
3 溶融金属
4 スラグ
5 凸部
6 平坦部
7 旋回流
8 二次鉛直循環流
9 湧昇流
10 台盤
11 車輪
12 電動機
13 減速機
14 歯車[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stirring molten metal accommodated in a cylindrical holding container, and more particularly, to a stirring method capable of generating a gentle upwelling flow in a wide range of a molten metal surface in a holding container. .
[0002]
[Prior art]
In the process of solidifying the molten metal and producing the product material, it is important to keep the non-metallic inclusions contained in the molten metal by floating and reducing them in order to maintain good product quality. For example, in the iron and steel industry, there is a process of deoxidizing oxygen in molten steel during the refining process of molten steel. In this deoxidation process, many oxide-based nonmetallic inclusions (hereinafter referred to as “inclusions”) are contained in the molten steel. Generate.
[0003]
Most of the inclusions generated here are as small as 10 μm or less, and the floating speed of the inclusion itself based on the difference in specific gravity from the molten steel is about 1 × 10 −5 m / sec. In order to ascend to the surface, an order of several hours is required. In addition, in the molten steel in the ladle, there is a thermal convection cell with a moving speed of the order of 1 × 10 -2 m / sec and a size of 1 m or less. Become. Therefore, various methods for promoting the floating separation of inclusions have been proposed.
[0004]
One of them is a method using an RH vacuum degassing apparatus. In the RH vacuum degassing apparatus, a molten steel flow that circulates between the ladle and the vacuum chamber at a high speed is generated, and the inclusions are agglomerated and coalesced by turbulent flow and collision caused by the molten steel flow. As a result, the floating speed of inclusions increases, and the floating separation of inclusions is promoted. However, this method uses acceleration of floating separation by coalescence of inclusions, and is the most essential and effective for floating separation of inclusions. It is not a way to facilitate transporting numerous inclusions in time.
[0005]
There is also a device (for example, ASEA-SKF) that attaches a moving magnetic field generator that moves the magnetic field in the vertical direction to the side surface of the holding vessel and stirs the molten steel in the holding vessel in the vertical direction. In this apparatus, since a circulating flow in the vertical direction is excited in the holding container by the moving magnetic field, a strong circulating flow is obtained. However, such a moving magnetic field generator is not arranged on the entire circumference of the holding container from the viewpoint of handling of the holding container or equipment costs, and is usually installed only in a part of the circumferential direction to perform stirring. become. Therefore, on the surface of the molten steel in the holding container, a strong upwelling flow is generated only in the portion where the moving magnetic field generator is installed, so the slag floating on the molten steel surface is entrained in the molten steel by this upwelling flow, This slag may become an inclusion.
[0006]
Japanese Patent Laid-Open No. 4-314813 discloses that a horizontal swirling flow is generated in a cylindrical holding container, and inclusions are caused by a centripetal force in the center direction acting on inclusions due to a density difference between the inclusions and molten steel. Has been proposed in which molten steel with reduced inclusions flows out from the position along the circumference of the holding container. In this method, in order to apply a centripetal force to inclusions, a large horizontal turning speed of 50 rpm is required. A relatively small holding container such as a tundish of a continuous casting machine can drive the molten steel to this turning speed even with a small moving magnetic field generator, but the swirling speed of the molten steel in a large holding container such as a ladle can only be reached. In the case of driving with a large-scale device, a large-scale device is required, and the equipment cost increases. Further, if the turning speed becomes high, there is a possibility that the molten steel overflows due to fluctuations in the molten metal surface. If the amount of molten steel in the holding container is reduced in order to avoid this, there arises a problem that productivity is lowered.
[0007]
[Problems to be solved by the invention]
In order to float and separate inclusions in the molten metal, more inclusions are quickly transported to the molten metal surface and discharged from the molten metal surface. What is necessary for transportation for that purpose is to transport the molten metal containing inclusions in contact with the molten metal as much as possible in consideration of the ascent rate determined by the size of the inclusions, in other words, This is to stir the molten metal so that the molten metal containing inclusions contacts the molten metal surface as much as possible.
[0008]
However, this concept is not incorporated in the conventional stirring method, and is an excellent stirring method as a means for making the molten metal component uniform when an alloy is added, for example, but promotes floating separation of inclusions. It is hard to say that the point is enough.
[0009]
The present invention has been made in view of the above circumstances, and the object of the present invention is to hold the molten metal contained in the cylindrical holding container without generating a local upwelling flow on the molten metal surface. It is an object of the present invention to provide a stirring method suitable for floating separation of inclusions, which can be brought into contact with the molten metal surface inside with high frequency.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, when the inner wall side surface uses a cylindrical holding container, and the molten metal is swirled in the horizontal direction in this holding container, the turning speed on the inner wall bottom surface side is reduced by friction between the inner wall bottom surface and the molten metal, It has been found that if the centrifugal force of the molten metal swirled in the holding container is made different in the vertical direction of the holding container, a gentle upwelling flow is generated at the center of the holding container.
[0011]
In addition, when a holding container having a cylindrical inner wall side surface is used, molten metal is accommodated therein, and the holding container is rotated horizontally around the vertical center line of the holding container, the bottom surface of the inner wall and the molten metal If the rotational speed of the molten metal on the bottom surface of the inner wall is increased by friction with the inner wall, and the centrifugal force of the molten metal swirled in the holding container makes a difference in the vertical direction of the holding container, the side wall of the holding container will be gently The knowledge that a large upwelling flow occurs was obtained.
[0012]
The present invention has been made on the basis of the above knowledge, and the molten metal stirring method according to the first invention is a molten metal stirring method housed in a holding container having a cylindrical inner wall side surface, the inner wall of the holding container Using a moving magnetic field generator installed on the outside of the holding vessel, the bottom shape is made uneven so that the molten metal flowing along the bottom of the inner wall of the holding vessel generates a driving force due to friction. A magnetic field that moves in the horizontal direction along the side surface of the holding container is applied to the molten metal.
[0013]
The molten metal stirring method according to the second invention is a molten metal stirring method accommodated in a holding container having a cylindrical inner wall side surface, wherein the bottom surface of the inner wall of the holding container has an uneven shape, and A driving force due to friction is generated in the molten metal flowing along the bottom surface of the inner wall, and the holding container is horizontally rotated about the substantial center line in the vertical direction of the holding container.
[0014]
FIG. 1 schematically shows a flow state of the molten metal 3 when the molten metal 3 in the holding container 1 is swung in the holding container 1 having a cylindrical inner wall side surface. When the molten metal 3 in the holding container 1 whose inner wall side surface is cylindrical is swung horizontally along the inner wall side surface, centrifugal force is generated in the molten metal 3. At this time, if the bottom surface of the inner wall of the holding container 1 is made to have an uneven shape with an appropriate roughness, a decelerating force is generated in the swirling flow 7 of the molten metal 3 along the bottom surface of the inner wall, and the swirling flow 7a above the bottom surface of the inner wall Compared with this, the turning speed decreases. Then, since the centrifugal force of the molten metal 3 swirling along the bottom surface is smaller than the centrifugal force of the molten metal 3 swirling upward, the balance of the holding container 1 along the inner wall side surface of the holding container 1 is balanced. The molten metal 3 moves from the upper side to the bottom side, and a secondary vertical circulation flow 8 is generated. The secondary vertical circulation flow 8 flows from the side surface toward the center of the bottom surface on the bottom surface of the inner wall, and the secondary vertical circulation flow 8 gathered at the center of the bottom surface extends from the bottom surface along the central axis of the holding container 1. A gentle upwelling flow 9 is generated toward the molten metal surface.
[0015]
FIG. 2 schematically shows the flow state of the molten metal 3 in the holding container 1 when the holding container 1 is horizontally rotated around the vertical center line in the holding container 1 having a cylindrical inner wall side surface. . When the holding container 1 containing the molten metal 3 therein is rotated in the horizontal direction, the molten metal 3 also starts to turn in the rotation direction of the holding container 1 due to friction between the molten metal 3 and the inner wall of the holding container 1. At that time, if the bottom surface of the inner wall of the holding container 1 is made to have an uneven shape with an appropriate roughness, a greater driving force due to friction acts on the molten metal 3 in the vicinity of the bottom surface of the inner wall, and the molten metal 3 along the bottom surface of the inner wall The swirling flow 7 has a swirling speed higher than that of the swirling flow 7a above the bottom of the inner wall. Then, since the centrifugal force of the molten metal 3 swirling along the bottom surface becomes larger than the centrifugal force of the molten metal 3 swirling upward, the balance of the holding container 1 along the inner wall side surface of the holding container 1 is balanced. The molten metal 3 moves from the bottom side to the upper side, and a secondary vertical circulation flow 8 is generated. The secondary vertical circulation flow 8 flows from the side surface toward the center side of the molten metal surface on the molten metal 3 surface, and the secondary vertical circulation flow gathered at the center of the molten metal surface reaches the central axis of the holding vessel 1. It descends along to reach the bottom surface of the inner wall. On the bottom surface of the inner wall, the flow is directed from the center of the bottom surface toward the side surface. In this secondary vertical circulation flow 8, the flow from the bottom surface toward the molten metal surface along the side surface of the holding container 1 becomes a gentle upwelling flow 9.
[0016]
In the present invention, the shape of the bottom surface of the inner wall of the holding container is made uneven, a driving force is generated by friction on the molten metal near the bottom surface of the inner wall, and the molten metal in the holding container is horizontally aligned using a moving magnetic field generator. Since it is swiveled or the holding vessel is rotated horizontally and the secondary circulating flow in the vertical direction generated at that time is used, a gentle upwelling flow may be generated over a wide area of the molten metal surface in the holding vessel. it can. By stirring the molten metal by this stirring method, inclusions in the molten metal are transported to the molten metal surface along with the upwelling flow and absorbed by the slag floating on the molten metal surface. It can be quickly separated from the metal.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 3 is a diagram showing an example of the embodiment of the present invention, and is a schematic longitudinal sectional view showing the relationship between the holding container and the moving magnetic field generator, and FIG. 4 is a plan view taken along the line XX ′ in FIG. FIG. 5 is a schematic cross-sectional view, FIG. 5 is a schematic plan view showing the bottom of the inner wall of the holding container shown in FIG. 3, and FIG.
[0018]
As shown in FIG. 3, molten metal 3 such as molten steel is accommodated in a cylindrical holding container 1 whose inner wall side surface 1 b is cylindrical, and slag 4 generated in a refining process or the like is floating on the molten metal 3. . As shown in FIGS. 5 and 6, a convex portion 5 having a height H and a width D is provided on the inner wall bottom surface 1 a of the holding container 1 so as to protrude from the flat portion 6.
[0019]
A moving magnetic field generator 2 is installed around the holding container 1 so that the magnetic field moves in a horizontal direction so as to surround the holding container 1. The moving magnetic field generator 2 allows the molten metal 3 in the holding container 1 to be moved. It is swung horizontally. In FIG. 4, the moving magnetic field generator 2 is installed so as to surround half of the outer peripheral length of the holding container 1, but this is in consideration of the equipment cost. A horizontal swirling flow can be obtained. Of course, the moving magnetic field generator 2 may be installed on the entire circumference of the holding container 1, and the installation range is shortened within a range in which a horizontal swirling flow can be obtained. Also good.
[0020]
Using the holding container 1 and the moving magnetic field generator 2, a magnetic field is applied to the molten metal 3 by the moving magnetic field generator 2. The molten metal 3 to which the magnetic field moving in the horizontal direction is applied starts to move in the horizontal direction along the inner wall side surface 1b, and forms the swirl flow shown in FIG.
[0021]
As described above, the swirl flow along the inner wall bottom surface 1a is decelerated by the convex portion 5, and the swirl speed is reduced as compared with the swirl flow above the inner wall bottom surface 1a. Then, the centrifugal force of the molten metal 3 swirling along the inner wall bottom surface 1a becomes smaller than the centrifugal force of the molten metal 3 swirling at a position above the inner wall bottom surface 1a. The molten metal 3 moves from the upper side of the holding container 1 to the inner wall bottom surface 1a side along the side surface 1b, and a secondary vertical circulation flow is generated. This secondary vertical circulation flow is a flow from the inner wall bottom surface 1b toward the center side of the inner wall bottom surface 1a on the inner wall bottom surface 1a, and the secondary vertical circulation flow collected at the center of the inner wall bottom surface 1a A gentle upwelling flow is formed over a wide area of the molten metal surface from the inner wall bottom surface 1a toward the molten metal surface along the central axis.
[0022]
By stirring the molten metal 3 in this way, it becomes possible to continuously generate a gentle upwelling flow at the center of the molten metal surface in the holding container 1, and the molten metal 3 is stirred by this method. Then, the inclusions contained in the molten metal 3 can be quickly removed without the slag 4 floating on the molten metal 3 being caught in the molten metal 3.
[0023]
FIG. 7 is a view showing an example of another embodiment of the present invention, and is a schematic longitudinal sectional view showing a holding container and an apparatus for horizontally rotating the holding container.
[0024]
As shown in FIG. 7, wheels 11 are provided in the circumferential direction on the lower surface of the base 10 on which the holding container 1 is placed, and teeth (not shown) provided on the peripheral edge of the base 10, The platform 10 is rotated horizontally by a rotating device including a gear 14 meshing with the teeth, an electric motor 12 for driving the gear 14, and a speed reducer 13. The holding container 1 is placed on the base plate 10 so that the vertical center line of the holding container 1 and the center of rotation of the base plate 10 approximately coincide with each other, and held at a rotational speed of several to several tens of times per minute. The container 1 can be turned horizontally. The apparatus for horizontally rotating the holding container 1 is not limited to the above-described apparatus, and any apparatus may be used as long as it has a function of horizontally rotating the holding container 1.
[0025]
The inner wall side surface 1b of the holding container 1 containing the molten metal 3 is cylindrical, and the inner wall bottom surface 1a of the holding container 1 has a height of H and a width of D as shown in FIGS. The convex portion 5 is provided so as to protrude from the flat portion 6. On the molten metal 3, the slag 4 produced | generated in the refining process etc. has floated.
[0026]
The holding container 1 is horizontally rotated using such a holding container 1 and a rotating device. The molten metal 3 existing in the vicinity of the inner wall bottom surface 1a and the inner wall side surface 1b of the holding container 1 starts to move in the horizontal direction along the inner wall side surface 1b with the horizontal rotation of the holding container 1, and turns as shown in FIG. Form a flow.
[0027]
As described above, the swirl flow along the inner wall bottom surface 1a is accelerated by the convex portion 5, and the swirl speed is increased as compared with the swirl flow above the inner wall bottom surface 1a. Then, the centrifugal force of the molten metal 3 swirling along the inner wall bottom surface 1a is larger than the centrifugal force of the molten metal 3 swirling at a position above the inner wall bottom surface 1a. The molten metal 3 moves from the inner wall bottom surface 1a side of the holding container 1 toward the upper side along the side surface 1b, and a secondary vertical circulation flow is generated. This secondary vertical circulation flow is a flow from the inner wall side surface 1b side toward the center side of the molten metal surface on the molten metal 3 surface, and the secondary vertical circulation flow collected at the center of the molten metal surface is the central axis of the holding vessel 1 Along the inner wall bottom surface 1a. The inner wall bottom surface 1a flows from the center side toward the inner wall side surface 1b, and the secondary vertical circulation flow that has reached the inner wall side surface 1b follows the inner wall side surface 1b of the holding container 1. Then, a gentle upwelling flow is formed over a wide area of the molten metal surface from the inner wall bottom surface 1a toward the molten metal surface.
[0028]
By stirring the molten metal 3 in this way, it becomes possible to continuously generate a gentle upwelling flow around the molten metal surface in the holding container 1, and the molten metal 3 is stirred by this method. Then, the inclusions contained in the molten metal 3 can be quickly removed without the slag 4 floating on the molten metal 3 being caught in the molten metal 3.
[0029]
In addition, the shape of the convex part 5 for decelerating the swirl | vortex flow of the molten metal 3 is not restricted to the shape shown in FIG.5 and FIG.6, If it is the shape which makes the driving force by friction act on the molten metal 3, Any shape is acceptable. However, the driving force acting on the molten metal 3 varies depending on the capacity of the holding container 1 and the area of the inner wall bottom surface 1a even if the convex portion 5 has the same shape. It is important to obtain the shape in advance by a model experiment or the like.
[0030]
【Example】
[Example 1]
Using a ladle containing 250 tons of molten steel as a holding container, the molten steel was stirred by the method of the present invention by a combination of a ladle and a moving magnetic field generator as shown in FIG. The convex part shown in FIG.5 and FIG.6 is installed in the inner wall bottom face of a ladle, and the height (H) of a convex part is 0.15 m, and width (D) is 0.6 m (D in this example). 1 = D 2 ). The diameter of the inner wall bottom surface of the ladle is 3.2 m, the height of the inner wall side surface is 3.9 m, and the inner wall diameter of the upper end is 3.9 m.
[0031]
The molten steel produced from the converter is refined by an RH vacuum degassing apparatus, C: 0.005 mass% (hereinafter referred to as “%”) or less, Mn: 0.025% or less, Si: 0.04% Hereinafter, molten steel of S: 0.035% or less, P: 0.008 to 0.020%, Al: 0.020 to 0.050%, N: 0.0060% or less was manufactured. On this molten steel, CaO—Al 2 O 3 —SiO 2 —MgO slag was floating. The ladle containing the molten steel was stirred using a linear moving magnetic field generator before casting by a continuous casting machine. Table 1 shows the specifications of the moving magnetic field generator used.
[0032]
[Table 1]
Figure 0003750515
[0033]
While stirring the molten steel in a horizontal direction with a moving magnetic field generator, an analytical sample is taken from a position about 1 m deep from the molten steel surface position in the ladle at intervals of 2 minutes, and the total oxygen amount serving as an indicator of the amount of inclusions is obtained. analyzed. The result is shown in FIG. FIG. 8 also shows the results of investigating the transition of the total oxygen amount in the molten steel when the molten steel is simply left in the ladle without stirring. As is clear from FIG. 8, when the present invention is carried out, the total oxygen amount is remarkably reduced. By stirring for 20 minutes according to the method of the present invention, the total oxygen amount is reduced to half the amount when left standing. It was possible to reduce.
[Example 2]
Using a ladle containing 250 tons of molten steel as a holding container, the molten steel was stirred by the method of the present invention by a combination of a ladle and a rotating device as shown in FIG. The convex part shown in FIG.5 and FIG.6 is installed in the inner wall bottom face of a ladle, and the height (H) of a convex part is 0.15 m, and width (D) is 0.6 m (D in this example). 1 = D 2 ). The diameter of the inner wall bottom surface of the ladle is 3.2 m, the height of the inner wall side surface is 3.9 m, and the inner wall diameter of the upper end is 3.9 m.
[0034]
The molten steel produced from the converter is refined with an RH vacuum degasser, C: 0.005% or less, Mn: 0.025% or less, Si: 0.04% or less, S: 0.035% or less , P: 0.008 to 0.020%, Al: 0.020 to 0.050%, N: 0.0060% or less of molten steel was manufactured. On this molten steel, CaO—Al 2 O 3 —SiO 2 —MgO slag was floating. The ladle containing the molten steel was rotated using the ladle rotating device of FIG. 7 before casting by the continuous casting machine. The rotation speed was 10 rotations per minute.
[0035]
Analyze samples from a position about 1 m deep from the surface of the molten steel in the ladle at an interval of 2 minutes while horizontally rotating the ladle with a ladle rotating device, and analyze the total oxygen amount as an indicator of the amount of inclusions did. The result is shown in FIG. FIG. 9 also shows the results of investigating the transition of the total oxygen content in the molten steel when the molten steel is simply left in the ladle without stirring. As is clear from FIG. 9, when the present invention is carried out, the reduction of the total oxygen amount is remarkable. By stirring for 26 minutes according to the method of the present invention, the total oxygen amount is reduced to half the amount when left standing. It was possible to reduce.
[0036]
【The invention's effect】
In the present invention, the bottom surface of the inner wall of the holding container that stores the molten metal is made uneven, and the horizontal swirling flow along the bottom surface of the inner wall is decelerated, and the secondary vertical circulation flow in the holding container is positively used. Therefore, a gentle upwelling flow can be generated over a wide range of the molten metal surface in the container. Therefore, by stirring the molten metal by this method, inclusions in the molten metal can be quickly removed without entraining the slag floating on the molten metal surface in the molten metal.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a flow state of molten metal when molten metal in a holding container is swung.
FIG. 2 is a diagram schematically showing a flow state of molten metal when a holding container is horizontally rotated.
FIG. 3 is a schematic longitudinal sectional view showing an example of an embodiment of the present invention.
4 is a schematic cross-sectional view taken along the line XX ′ in FIG.
5 is a schematic plan view showing the bottom surface of the inner wall of the holding container shown in FIG. 3. FIG.
6 is a schematic longitudinal sectional view taken along arrow YY ′ in FIG. 5;
FIG. 7 is a schematic longitudinal sectional view showing an example of another embodiment of the present invention.
8 is a graph showing the transition of the total oxygen amount of molten steel during stirring in Example 1. FIG.
9 is a graph showing the transition of the total oxygen content of molten steel during stirring in Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Holding container 2 Moving magnetic field generator 3 Molten metal 4 Slag 5 Convex part 6 Flat part 7 Swirling flow 8 Secondary vertical circulation flow 9 Upwelling flow 10 Base 11 Wheel 12 Electric motor 13 Reduction gear 14 Gear

Claims (2)

内壁側面が円筒状である保持容器に収容された溶融金属の攪拌方法であって、保持容器の内壁底面形状を凹凸のある形状として、保持容器の内壁底面に沿って流動する溶融金属に摩擦による駆動力を生じさせるようにし、保持容器の外部に設置した移動磁場発生装置を用いて、保持容器内の溶融金属に保持容器の側面に沿って水平方向に移動する磁場を印加することを特徴とする溶融金属の攪拌方法。A method for stirring molten metal contained in a holding container having a cylindrical inner wall side surface, wherein the shape of the inner wall bottom surface of the holding container is made uneven, and the molten metal flowing along the inner wall bottom surface of the holding container is caused by friction. A driving magnetic force is generated, and a moving magnetic field generator installed outside the holding container is used to apply a magnetic field that moves horizontally along the side surface of the holding container to the molten metal in the holding container. A method for stirring molten metal. 内壁側面が円筒状である保持容器に収容された溶融金属の攪拌方法であって、保持容器の内壁底面形状を凹凸のある形状として、保持容器の内壁底面に沿って流動する溶融金属に摩擦による駆動力を生じさせるようにし、保持容器の鉛直方向の実質的な中心線を軸として保持容器を水平回転させることを特徴とする溶融金属の攪拌方法。A method for stirring molten metal contained in a holding container having a cylindrical inner wall side surface, wherein the shape of the inner wall bottom surface of the holding container is made uneven, and the molten metal flowing along the inner wall bottom surface of the holding container is caused by friction. A method for stirring molten metal, characterized in that a driving force is generated and the holding container is horizontally rotated about the vertical center line of the holding container as an axis.
JP2000354277A 2000-11-21 2000-11-21 Method of stirring molten metal Expired - Fee Related JP3750515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000354277A JP3750515B2 (en) 2000-11-21 2000-11-21 Method of stirring molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000354277A JP3750515B2 (en) 2000-11-21 2000-11-21 Method of stirring molten metal

Publications (2)

Publication Number Publication Date
JP2002153944A JP2002153944A (en) 2002-05-28
JP3750515B2 true JP3750515B2 (en) 2006-03-01

Family

ID=18826898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000354277A Expired - Fee Related JP3750515B2 (en) 2000-11-21 2000-11-21 Method of stirring molten metal

Country Status (1)

Country Link
JP (1) JP3750515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673969B (en) * 2015-01-22 2016-08-31 河北钢铁股份有限公司承德分公司 The method and apparatus of slag liquid directed flow in a kind of promotion half ladle

Also Published As

Publication number Publication date
JP2002153944A (en) 2002-05-28

Similar Documents

Publication Publication Date Title
Zhang et al. Large inclusions in plain-carbon steel ingots cast by bottom teeming
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP3750515B2 (en) Method of stirring molten metal
CA2122421A1 (en) Purification of molten aluminum using upper and lower impellers
JP2018066031A (en) Manufacturing method of high cleanliness steel
JPH07268437A (en) Method for removing nonmetallic inclusion in molten metal by ceramic filter plate and device therefor
KR930009387B1 (en) Method of and apparatus for removing non-metallic inclusions from molten metal
JP2003207283A (en) Method and device for mixing molten metal
JPS62134150A (en) Method for preventing intrusion of nonmetallic inclusion during pouring of molten metal
JP4816138B2 (en) Ladle refining method and ladle refining furnace
JP2000202603A (en) Method for continuously casting molten steel
JPH0647691B2 (en) Method of reducing inclusions in molten steel
JPS6338514A (en) Method for removing inclusion by centrifugal force
JP3589075B2 (en) Ladle for molten metal and method for refining molten metal
JP2006255759A (en) Method for continuously casting steel
JP7200811B2 (en) Steel continuous casting method
JP2005014047A (en) Method and device for removing inclusion in molten metal
RU2247156C2 (en) Method of treatment of metal melt in ladle and device for realization of this method
JPH0128931Y2 (en)
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JPH06220523A (en) Method for refining molten steel in ladle
JPH11320054A (en) Continuous caster and continuous casting method
JPH07148558A (en) Method for removing non-metallic inclusion in molten steel with refractory filter
JP6052436B2 (en) Method for preventing hot metal after desulphurization
JPH0488113A (en) Method for refining molten steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees