JP3749618B2 - Sliding member with excellent wear resistance in the presence of lubricating oil - Google Patents

Sliding member with excellent wear resistance in the presence of lubricating oil Download PDF

Info

Publication number
JP3749618B2
JP3749618B2 JP13829998A JP13829998A JP3749618B2 JP 3749618 B2 JP3749618 B2 JP 3749618B2 JP 13829998 A JP13829998 A JP 13829998A JP 13829998 A JP13829998 A JP 13829998A JP 3749618 B2 JP3749618 B2 JP 3749618B2
Authority
JP
Japan
Prior art keywords
boride
coating
thermal spray
carbide
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13829998A
Other languages
Japanese (ja)
Other versions
JPH11335805A (en
Inventor
孝直 千年
良夫 原田
正直 蓬澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Niigata Power Systems Co Ltd
Original Assignee
Tocalo Co Ltd
Niigata Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd, Niigata Power Systems Co Ltd filed Critical Tocalo Co Ltd
Priority to JP13829998A priority Critical patent/JP3749618B2/en
Publication of JPH11335805A publication Critical patent/JPH11335805A/en
Application granted granted Critical
Publication of JP3749618B2 publication Critical patent/JP3749618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Sliding-Contact Bearings (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗性に優れる摺動部材、とくに表面に密着性が良く潤滑油存在下での耐摩耗性の良好な溶射皮膜を形成してなる内燃機関用摺動部材に関するものである。なお、この発明は、内燃機関以外の機械構造物などに用いられる摺動部材としても好適に用いられる。
【0002】
【従来の技術】
最近、船舶は高速化傾向が強く、そのために船体の軽量化対策が図られている。特に、主内燃機関の軽量化、高出力化は、有力なその対策となり得ることから、シリンダーライナーやピストン, シリンダーヘッドなどの軽量化や高強度化に対する技術が注目を浴びている。たとえば、遠心鋳造法を適用して製造される片状黒鉛鋳鉄と球状黒鉛鋳鉄の複合部材の採用は、強度面において飛躍的な進歩をもたらし、軽量化に寄与した点で刮目すべき技術であった。
【0003】
しかし、この技術は、たしかに高強度化をもたらしたが、耐摩耗性については不十分であることから、たとえば、シリンダライナーなどにあっては、その摺動面を窒化処理して対処していた。従って、耐摩耗性については従来と同等である。
【0004】
一方、摺動部材の耐摩耗性向上対策としては、従来、摺動面に耐摩耗性被覆を施工する方法が研究され、これまでに、Cr, Niなどの電気めっき皮膜を形成する方法として開発されている。しかし、このような金属電気めっき皮膜の形成は、耐摩耗性が不十分なだけでなく、皮膜の密着性が乏しく剥離しやすいこと、および寿命に劣るという問題点があった。
【0005】
これに対し最近、各種部材の表面に、耐摩耗性, 密着性に優れる皮膜を、溶射法によって形成しようとする技術が開発され、次のような各種の提案がある。
(1) 特開昭59−64766 号公報には、金属材料素地に安定化ZrO2にNi−Cr系合金、Al2O3 にNi−B 系合金、B4C にNi−Al系合金、SiC, TiCにCoをそれぞれ添加したのちボールミル中で混合して粒状化した材料などを溶射する方法が開示されている。
(2) 特開昭62−50455 号公報には、被加工材の表面にNi−Alの金属溶射皮膜を形成した後、さらにその上に、金属酸化物, TiC 炭化物あるいはZrB2などの硼化物をポリプロピレン樹脂あるいは珪素樹脂ポリマーからなる複合材料をプラズマ溶射する方法が開示されている。
(3) 特開平1−230760号公報には、金属部材の摺動面に対し、10〜60wt%のFe, Cr, Ni, Co, Moなどの金属または合金と、高融点金属硼化物とからなる溶射層を減圧プラズマ溶射してなる摺動部材が開示されている。
(4) 特開平 4−88159 号公報には、鋼製基材の表面に炭化物を主成分とする溶射皮膜を形成した後、これを硼化処理することによって皮膜の表面近傍および気孔内部を硼化物に変化させてなる部材およびその製造方法が開示されている。
(5) 特開平 4−337046号公報には、炭化物10〜50wt%、硼化物10〜30wt%およびマトリックスとなるB:2 〜4 wt%、Si:6 wt%以下、C:0.1 〜1.0 wt%、Cr:5 〜16wt%、Fe:4 wt%以下、残部がNiからなるNi基自溶合金を粉末化した粉末混合物を溶射する方法が開示されている。
(6) 特開平 7−102357号公報には、各種金属の酸化物, 炭化物, 窒化物, 硼化物およびCrの珪化物のうち少なくとも1種以上の化合物を5〜50 vol%、Feの酸化物を5〜50 vol%含有する材料をプラズマ溶射法によって気孔率1〜10%、厚さ30μm〜2 mmの複合皮膜を形成させた摺動部材が開示されている。
(7) 特開平 7−187826号公報には、炭素粒子, 炭化物, 窒化物, 酸化珪素, サイアロン, 硼化物からなる非酸化物材料5〜80wt%とし、残部が耐火材料より構成される材料を非酸化性のガスをキャリアーとして火炎によって溶射する方法が開示されている。
(8) 特開平 8−104969号公報には、Fe, Ni, Coの1種以上とMoまたはWとの複合硼化物を主体とするセラミックス相と、Fe, Ni, Coの1種以上を主体とする金属結合相からなる材料を造粒後焼結し、これを溶射材料として皮膜を形成する方法が開示されている。
(9) その他、基材の摺動表面に、耐摩耗性溶射皮膜を形成する技術として、特公平 2−17621 号公報、実公平 1−7721号公報、特公平 2−35026 号公報に提案のものなどがある。
【0006】
【発明が解決しようとする課題】
ただし、上記各先行技術については、それぞれ次の示すような問題点があり、実用化が困難であった。
上記(1) に記載の従来技術は、摺動特性が悪く、シリンダーライナーへの適用ができない。
上記(2) に記載の従来技術は、プラスチックを含む溶射皮膜を用いることから粒子間結合力が弱いため、摺動作用を受けたときに粒子の脱落が多いため、相手部材が損傷を受けやすく、また、母材と皮膜の密着力が低いため剥離する危険があり、シリンダーライナー用としては適当でない。
上記(3) に記載の従来技術は、金属をバインダーとする硼化物材料を用い、これを減圧プラズマ溶射法によって皮膜を形成しているが、減圧プラズマ溶射装置は高価であるうえ、大きな被処理部材の処理ができないなどの問題点がある。
上記(4) に記載の従来技術は、炭化物サーメット溶射皮膜を硼化処理することを特徴としているが、処理工程の増加によるコストアップおよび高温の硼化処理によるシリンダーライナー材料強度の劣化の問題がある。
上記(5) に記載の従来技術は、シリンダーライナー摺動部の皮膜として十分でないうえ、雰囲気中の硫黄化合物により腐食されやすいという欠点があった。
【0007】
さらに、上記(6) に記載の従来技術は、各種金属の酸化物, 炭化物, 窒化物, 硼化物に添加するFeの各種化合物の耐熱性、耐食性が十分でないため、これらの材料で形成される溶射皮膜の耐久性が比較的短い欠点がある。
上記(7) に記載の従来技術は、溶射材料として炭素粒子を含んでいるため、溶射熱源中でこれが燃焼して熱源中を飛行中の溶射粒子の流れを乱して衝突エネルギーを低下させるため、粒子間結合力および母材との結合力の低い皮膜が形成されない。また、皮膜中に固体として残留する炭素は、前記現象を一層助長するので、好ましいものではない。
上記(8) に記載の従来技術は、硼化物と金属との複合材料を用いた溶射皮膜であるが、材料的には前記(4) 公報のものと同一であり、この皮膜では本発明の目的とする摺動面用としては性能的に十分でない。
上記(9) に記載した特公平2−17621 号公報開示の高炭素鉄溶射皮膜, 実公平1−7721号公報開示のCr3C2 にNiCr, Ni−CoもしくはCoを添加した炭化物サーメット溶射皮膜、特公平2−35026 号公報開示のNi基自溶合金とCr2O3 を含む酸化物セラミックス溶射皮膜は、それぞれ無処理の摺動面に比較すれば耐摩耗性は向上しているものの、これらの高炭素鋼や炭化物サーメット、酸化物サーメット単独の溶射皮膜だけでは、最近の厳しい摺動部の負荷に対しては性能が十分でなく、なお改善すべき点が残されている。
【0008】
【発明が解決しようとする課題】
以上説明したように、上記各従来技術については次のような解決すべき課題があった。そこで本発明は、先行技術が抱えている下記課題を解決しようとするものである。
(1) 従来のシリンダーライナー摺動面用皮膜は、高負荷条件下にある最近の摺動部材用としては耐摩耗性が不十分である。
(2) 減圧プラズマ溶射法で形成される皮膜は、大気溶射に比較すれば良好な性能を発揮するものと予想されるが、装置が大がかりになるため経済的に不利で、しかも大きな被処理体への皮膜施工ができず、適用部材が限定されると共に、生産性が劣る。
(3) 現在の大気溶射法で得られる皮膜は、密着力, 耐摩耗性, 耐食性ともに不十分であり、また、溶射と他の表面処理との組合せによる方法では、コストアップとなり競争力が低下するため、皮膜特性が良好であっても実用化が困難である。
【0009】
そこで、本発明の目的は、基材との密着性に優れ、かつ皮膜構成粒子相互間の結合力が強く、強度と潤滑油存在下での耐摩耗性に優れる摺動部材被覆用皮膜を開発することにある。
本発明の他の目的は、潤滑油存在下での耐摩耗性に優れ、皮膜の施工によって高負荷条件下でもなお高い信頼性を有し、かつ長寿命の摺動部材を提供することにある。
本発明のさらに他の目的は、生産性に優れると共に安価な摺動部材を提供することにある。
【0010】
【課題を解決するための手段】
本発明では、前述の問題点を解決するため、次のような手段を採用することとした。
(1) シリンダーライナーの如き摺動面を、炭化物および硼化物のセラミック混合物と、Ni, CrおよびCoから選ばれたいずれか1種以上の金属成分とからなる炭硼化物サーメット溶射皮膜にて被覆することにより、優れた耐摩耗性を付与したものである。
(2) 上記炭硼化物サーメット溶射皮膜は、炭化物/硼化物の割合が重量比で0.886.45 の範囲内にあり、そして金属成分の割合い (含有量) が25〜37wt%の範囲内のものを用いることによって、優れた耐摩耗性が付与される。
(3) 上記摺動面に形成した炭硼化物サーメット溶射皮膜は、高速フレーム溶射法に従って施されたものであって、膜厚:30〜800 μm、気孔率:0.1 〜15% (面積率) の構造にすることによって、良好な密着性と優れた耐摩耗性が付与される。
(4) 上記炭硼化物サーメット溶射皮膜中のセラミックスは、炭化物が TiC, ZrC,HfC ,VC, TaC, NbC, WC, B4C, SiCおよびCr3C2 のうちから選ばれたいずれか1種以上の化合物、そして硼化物が、TiB2, ZrB2, HfB2, VB2, TaB2, NbB2, W2B2,CrB2 およびNiB2のうちから選ばれたいずれか1種以上の化合物を用いることにより、優れた耐摩耗性を付与することができる。
【0011】
【発明の実施の形態】
本発明にかかる摺動部材について、鋼鉄製基材の表面に、炭硼化物サーメット溶射皮膜を施工する工程に従って、これの好適実施形態を説明する。
(1) 鋼鉄製基材の前処理
基材は、まずその表面を脱脂し、清浄化した後、グリットブラストによって粗面化処理を施して使用する。
(2) 溶射皮膜の形成工程
工程(1) の処理を施した基材表面に、下記成分の溶射材料を用いて高速フレーム溶射法によって溶射皮膜を形成する。
A.セラミック混合物
▲1▼.炭化物:TiC, ZrC, HfC, VC, TaC, NbC, WC, B4C, SiC, Cr3C2など
▲2▼. 硼化物:TiB2, ZrB2, HfB2, VB2, TaB2, NbB2, W2B2, CrB2, NiB2 など
B.金属 :Ni, Cr, Coおよびこれらの合金
【0012】
上記セラミックスは、溶射後は炭化物(a) と硼化物(b) とが金属をバインダーとして結合した化合物, 即ち炭硼化物サーメットの形態をとるものであり、その混合の割合いは、重量比率(a/b) で0.886.45 の組成からなるものが適している。この比率(a/b) が0.88 より小さいと炭化物添加の効果が小さくなり、一方、この比率(a/b) が6.45 より大きい場合には硼化物添加の効果があらわれにくくなる。
溶射して得られる化合物 (炭硼化物サーメット) は、炭化物を含むため高硬度であるほか、シリンダーライナーのような高温腐食環境下でも耐熱性に優れるほか潤滑油との馴染みがよく、高い摺動特性を発揮する。しかも、硼化物を含むために高硬度であるとともに、炭化物以上の耐熱性、特に耐酸化性に優れている。さらには、炭化物と硼化物とが共存し化合物化した状態にあることから、上記各特性は相乗的に作用し、それぞれの単独成分の特性以上の性能を示すようになる。
【0013】
なお、Ni, Cr, Coなどの金属成分は、溶射熱源中で明瞭な溶融現象を示し、共存する炭化物と硼化物を強固に結合させるバインダー作用を発揮するとともに、基材との密着作用を発揮する。また、セラミック含有溶射皮膜の靱性を向上させるほか、酸やアルカリなどの腐食成分に対しても強い抵抗力を示す。
【0014】
しかし、軟質の金属成分が多量に含まれると、たとえサーメット溶射皮膜であったとしても、耐摩耗性が低下する場合があるほか、摺動特性も悪くなる欠点がある。このため、本発明では、金属成分の含有量を25〜37wt%の範囲に限定することとした。この理由は、金属成分が25wt%より少なくなると炭化物/硼化物の結合力が低下する一方、高速フレーム溶射法の熱源では温度が低いため、基材との密着力も悪くなる。また、この金属成分の量が37wt%以上になると、施工した溶射皮膜の耐摩耗性が悪くなるので好ましくない。
【0015】
炭化物, 硼化物, 金属からなる溶射用材料は、微粉末を造粒した後焼結し、必要に応じてこれを微粉砕して出発材料とするが、粒径は5〜60μmの範囲がよい。その理由は、粒径が5μmよりも小さな微粉では、溶射ガンへの供給が不連続となって皮膜の均一性に欠けることになる。一方、粒径が60μmより大きい粒径では、溶射熱源中で十分に溶融しないため、皮膜中に未溶融粒子として残存し、粒子間結合力が低下する原因となるので好ましくないからである。
【0016】
溶射後のその溶射皮膜の厚さは、30〜800 μmの範囲がよい。その理由は、厚さが30μmより薄い皮膜では均一性に乏しいため、良好な仕上げ寸法が確保できない。一方、厚さが800 μmより厚い皮膜を形成してもその特性に変化はないので、経済的でない。
【0017】
溶射皮膜の気孔率は、 0.1〜15% (面積%) の範囲がよい。その理由は、気孔率が0.1 %以下の溶射皮膜を形成することは大気中の溶射では極めて困難であるほか、無気孔皮膜では却って摺動特性を劣化させるので得策でない。一方、気孔率が15%以上の皮膜では基材に対する密着性が低下するほか、腐食成分の内部侵入が容易となるため耐久性が低下する。
なお、溶射皮膜の気孔率(0.1%〜15%) は、溶射材料の粒径と溶射距離を調整することによって制御することができる。
【0018】
上述した溶射皮膜の性状は、溶射熱源によっても変化する。一般にプラズマを熱源とする溶射法では、溶射材料粒子の加熱溶融には適しているものの、大気中で溶射すると材料粒子の酸化、炭化物粒子では分解も起こるので、得られる溶射皮膜中には酸化物を多く含むこととなる。このため、皮膜を構成する粒子の相互結合力が弱く、また基材との密着性も低くなるため、本発明に係る摺動部材被覆用皮膜としては不適当である。
【0019】
このような理由から、本発明においてブラスト処理表面に被覆する溶射皮膜は、可燃性ガス (含液体燃料) の燃焼フレームを熱源とする溶射法が好適であり、とくに燃料および酸素をともに加圧した状態で燃焼して得られる高速フレーム (High Volocity Oxgen-Fuel Spraying Process = HVOF) が特に有効である。この高速フレーム溶射法の場合、熱源温度は2000℃前後と低いため、溶射粒子の加熱・昇温は十分でないが、フレームの速度は秒速1500〜1800m に達するため、溶射粒子の酸化が著しく抑制されるうえに、速い飛行速度を利用して、基材に対し大きな衝突エネルギーが発生する。それ故に緻密で密着力の大きい溶射皮膜を形成することができる。
【0020】
【実施例】
実施例1
本実施例では、本発明の溶射皮膜の鋳鉄基材に対する密着性と耐熱衝撃性について試験した。
(1) 供試基材:JIS G5501 規定のFC 150 (ねずみ鋳鉄品) から幅50mm×長さ60mm×厚10mmの試験片を切り出し、これを溶射用の基材とした。
(2) 供試溶射材料:表1に、供試した本発明の溶射材料と比較例の溶射材料との化学組成を示した。本発明の溶射材料 (No.1〜4)は、Cr3C2, WC, TiC, ZrC などの炭化物と、TiB2, ZrB2, NiB2, CrB2などの硼化物を含み、Ni, Ni−Cr合金, Cr−Co合金のいずれかを含む炭硼化物サーメット材料であり、炭化物/硼化物の重量比が0.88〜3.33の範囲にある。
これに対し、比較例の溶射材料は、炭化物と硼化物を含むものの、その重量比は0.15〜0.17および4.80(No.8)である。ただ、No.8の溶射材料は、炭化物/硼化物重量比は本発明の範囲内にあるが、金属成分量を多く含む例である。
(3) 溶射法および溶射皮膜厚さ:溶射法として灯油を燃料とする高速フレーム溶射法を用い、ブラスト処理によって粗面化した球状黒鉛鋳鉄製基材上に200 μm厚の溶射皮膜を形成した。
(4) 溶射皮膜の評価方法:皮膜の評価は次に示す方法により実施した。
▲1▼ 皮膜の密着性:JIS H 8666 (セラミック溶射皮膜試験方法) に規定されている皮膜の密着強さの試験により実施した。
▲2▼ 熱衝撃試験:溶射試験片を700 ℃に加熱した電気炉中に15分間放置した後、25℃の水中に投入する操作を1サイクルとして10回繰り返した。ただし、皮膜の剥離面積が全体の5%以上に達した時点で試験を中止して判定した。
【0021】
(5) 試験結果
試験結果を表2に要約して示した。この結果から明らかなように、比較例 (No. 5〜7) は、溶射皮膜の密着強さが35〜55 MPaであり、また、熱衝撃試験では3〜5回の繰返しによって皮膜が剥離した。これに対し、本発明例 (No. 1 〜4) では、溶射皮膜と冶具を固定するために使用した接着剤 (エポキシ系樹脂) 部からの剥離はあったが、溶射皮膜からの剥離は認められなかった。
なお、表中の皮膜の密着性については、接着剤部で剥離する際の最大荷重値を表示したものである。また、本発明については、熱衝撃試験においても10回の加熱−冷却に耐えるなど良好な密着性を示した。
ただし、比較例の皮膜であっても、No. 8の皮膜は、本発明と同等の性能を示した。この原因は、セラミック混合物の配合割合が本発明の範囲内にあることと、金属質成分の割合いを大きくしただけであることから、良好な密着性を示したものと思われる。ただし、金属質成分の多い皮膜は、摺動摩耗によって損耗される割合いが大きく、本発明の目的皮膜として適していない。
【0022】
【表1】

Figure 0003749618
【0023】
【表2】
Figure 0003749618
【0024】
実施例2
実施例1の結果によって、炭化物/硼化物の重量比が本発明が提案する範囲内 (0.886.45)であれば、高速フレーム溶射法によって、密着性に優れ、熱衝撃に対しても大きな抵抗を有することが確認された。そこで、以下の実施例では、炭化物としてCr3C2 、硼化物としてZrB2を選定し、さらに金属成分としてNi−Cr合金に限定して、炭化物/硼化物の重量比を種々変化させた高速フレーム溶射皮膜を形成し、内燃機関のシリンダーライナー用として必要な機械的性質を試験した。
【0025】
表3は、この実施例で使用した溶射材料の化学成分とその記号を示したものである。本発明に適合する溶射材料は、炭化物/硼化物重量比が0.91〜6.45 (記号E,F,G,H,I,M)の範囲にあり、かつ金属質成分の割合も全体の25.0〜36.3%の範囲にある。これに対し比較例 (記号A,B,J,K)は、炭化物/硼化物の重量比が本発明の範囲外にあり、また記号Nの材料は炭化物/硼化物重量比が本発明の範囲内にあるものの、金属質成分の含有量が大きく、発明外の組成を有するものである。なお、記号Oは、この種内燃機関のシリンダーライナー用耐摩耗性表面処理として採用されている窒化処理であり、参考のため供試した。
【0026】
以上の溶射材料を用いて、FC 150 材 (50mm×50mm×10mm厚) 上に高速フレーム溶射法によって200 μm厚に成膜したものを試験片として往復動摩耗試験を実施した。
図1は、往復動摩耗試験の概要を示したものである。すなわち、溶射皮膜1を形成した試験片2を設置し、その上面の中央部に直径8mm×長さ30mmの硬質Crめっきした球状黒鉛鋳鉄製のピン3を接触させ、ピンの上部から荷重 (図外) をかけながら、試験片を左右へ移動させることによって、溶射皮膜とピン材料の摩耗量を測定する試験である。なお、皮膜には給油細管4から潤滑油が滴下されるようになっている。この試験機を用い、下記条件で試験を行った。
荷重: 70kgf
ストローク: 100 mm
摺動速度: 平均 1.5 m/sec (450cpm)
走行距離: 18,000 m (200min)
プレート加熱温度:160 ℃
潤滑油銘柄: JIS K2215 相当品
潤滑油滴下量: 8.5 cc/h
ならし運転: 5 kgf 、0.17m/sec 、10min
【0027】
表4は、往復動摩耗試験結果を試験前後における溶射皮膜とピン接触部の摩耗量をそれぞれ求めて示したものである。この結果から明らかなように、比較例の摩耗量は大きく、これに伴ってピンの摩耗面積が大きくなっている。これに対し、本発明例 (記号E,F,G,H,I,M)および皮膜と接触しているピンとも摩耗量が少なく良好な摺動特性を有することが確かめられた。
【0028】
【表3】
Figure 0003749618
【0029】
【表4】
Figure 0003749618
【0030】
実施例3実施例2に用いた溶射試験片を用い、図1の装置を利用して動摩擦係数の測定を行った。相手材は電気Crめっき材 (直径8mm) 、試験温度160 ℃、荷重70kgf、摺動速度1.5 m/sec 、潤滑油JIS K2215 相当品、滴下量 8.5 ml/h である。
なお、bk実施例に供試した本発明に適合する溶射皮膜は、記号E,G,K、一方、比較例としては記号A,N,Oの溶射皮膜である。
表5は、動摩擦係数の測定を1試料について5回測定し、摩擦係数の最小値と最大値を示したものである。この結果から明らかなように、本発明の溶射皮膜の動摩擦係数は、比較例中最小の摩擦係数を示すO (窒化処理) に比較しても低く、良好な摺動特性を有することが確認された。
【0031】
【表5】
Figure 0003749618
【0032】
実施例4
本実施例では、溶射皮膜の気孔率と耐摩耗性の関係を調査した。
(1) 供試基材: 実施例2と同じもの
(2) 供試溶射材料:表1記載の記号E材料
(3) 溶射法と皮膜の気孔率: 溶射法は、従来同様高速フレーム〜溶射法を用い、溶射材料の粒径を本発明の範囲内で変化させるとともに、溶射距離を変えることによって 0.1〜18%の気孔率を有する皮膜を準備した。
(4) 摩耗試験方法: 図1の試験装置を用い、実施例2の往復摩耗試験条件で溶射皮膜の耐摩耗性と気孔率の関係を調べた。
(5) 試験結果: 皮膜の摩耗量と気孔率との関係を図2に要約した。この結果から明らかなように、皮膜の摩耗量と気孔率は密接な関係にあり、今回の実験の範囲内では気孔率が小さいほど良好な耐摩耗性を示した。本発明部材の用途を勘案し、気孔率 0.1〜15%の範囲の皮膜を本発明の範囲とした。
【0033】
【発明の効果】
以上説明したように、本発明にかかる炭硼化物サーメット溶射皮膜を被成した部材は、基材との密着性および皮膜を構成する溶射粒子の相互結合力が高いうえ、潤滑油が存在する環境で優れた耐摩耗性と低い摩擦係数を示すことが判明した。したがって、かかる溶射皮膜を内燃機関のシリンダーライナー摺動部に施工することによって、高負荷条件下でも高い信頼性と長寿命化が期待できる。
【図面の簡単な説明】
【図1】溶射皮膜の耐摩耗性を調査するために用いた往復動摩耗試験の概要を示したものである。
【図2】実施例4の試験結果を図示したもので、溶射皮膜の気孔率と皮膜の摩耗断面積の関係を示したグラフである。
【符号の説明】
1 供試溶射皮膜
2 鋳鉄製基材
3 電気クロムめっきした焼入れ鋼製ピン
4 潤滑油供給管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding member having excellent wear resistance, and more particularly to a sliding member for an internal combustion engine in which a thermal spray coating having good adhesion to the surface and good wear resistance in the presence of lubricating oil is formed. In addition, this invention is used suitably also as a sliding member used for mechanical structures other than an internal combustion engine.
[0002]
[Prior art]
Recently, there is a strong tendency to increase the speed of ships, and therefore, measures to reduce the weight of the hull are being taken. In particular, reducing the weight and increasing the output of the main internal combustion engine can be an effective countermeasure. Therefore, technologies for reducing the weight and increasing the strength of cylinder liners, pistons, and cylinder heads are attracting attention. For example, the use of a composite material of flake graphite cast iron and spheroidal graphite cast iron manufactured by applying the centrifugal casting method is a remarkable technology in that it has made tremendous progress in terms of strength and contributed to weight reduction. It was.
[0003]
However, although this technology has certainly increased strength, the wear resistance is insufficient. For example, in the case of a cylinder liner, the sliding surface has been treated by nitriding. . Therefore, the wear resistance is equivalent to the conventional one.
[0004]
On the other hand, as a measure to improve the wear resistance of sliding members, a method of applying a wear-resistant coating to the sliding surface has been studied, and so far it has been developed as a method of forming an electroplated film of Cr, Ni, etc. Has been. However, the formation of such a metal electroplating film has problems of not only insufficient wear resistance, but also poor film adhesion and easy peeling, and poor life.
[0005]
On the other hand, recently, a technique for forming a coating having excellent wear resistance and adhesion on the surface of various members by a thermal spraying method has been developed, and the following various proposals have been made.
(1) In Japanese Patent Laid-Open No. 59-64766, a metal material substrate is made of stabilized ZrO 2 with Ni-Cr alloy, Al 2 O 3 with Ni-B alloy, B 4 C with Ni-Al alloy, A method is disclosed in which Co is added to SiC and TiC, followed by thermal spraying of a granulated material mixed in a ball mill.
(2) In Japanese Patent Laid-Open No. 62-50455, a Ni-Al metal spray coating is formed on the surface of a workpiece, and then a boride such as a metal oxide, TiC carbide or ZrB 2 is further formed thereon. Discloses a method of plasma spraying a composite material made of polypropylene resin or silicon resin polymer.
(3) Japanese Patent Application Laid-Open No. 1-2230760 discloses that 10-60 wt% of a metal or alloy such as Fe, Cr, Ni, Co, Mo and a high melting point metal boride with respect to the sliding surface of a metal member. There is disclosed a sliding member formed by subjecting a thermal spray layer to thermal spraying under reduced pressure.
(4) In Japanese Patent Laid-Open No. 4-88159, a thermal spray coating mainly composed of carbide is formed on the surface of a steel base material, and then boronized to form boron near the surface of the coating and inside the pores. A member made into a compound and a method for manufacturing the same are disclosed.
(5) In Japanese Patent Laid-Open No. 4-337046, carbide is 10 to 50 wt%, boride is 10 to 30 wt%, and matrix B is 2 to 4 wt%, Si is 6 wt% or less, and C is 0.1 to 1.0 wt. %, Cr: 5 to 16 wt%, Fe: 4 wt% or less, and a method of spraying a powder mixture obtained by pulverizing a Ni-based self-fluxing alloy composed of Ni in the balance is disclosed.
(6) Japanese Patent Application Laid-Open No. 7-102357 discloses that at least one compound selected from oxides, carbides, nitrides, borides and Cr silicides of various metals is contained in an amount of 5 to 50 vol% and an oxide of Fe. Discloses a sliding member in which a composite film having a porosity of 1 to 10% and a thickness of 30 μm to 2 mm is formed by a plasma spraying method using a material containing 5 to 50 vol%.
(7) In Japanese Patent Laid-Open No. 7-187826, a non-oxide material consisting of carbon particles, carbides, nitrides, silicon oxides, sialons and borides is used in an amount of 5 to 80 wt%, and the balance is made of a refractory material. A method is disclosed in which a non-oxidizing gas is sprayed by a flame using a carrier.
(8) JP-A-8-104969 discloses a ceramic phase mainly composed of a composite boride of one or more of Fe, Ni, Co and Mo or W, and one or more of Fe, Ni, Co. And a method of forming a coating film by using a material composed of a metal binder phase after granulation and sintering, and using this as a thermal spray material.
(9) Other technologies proposed in Japanese Patent Publication No. 2-17621, No. 1-7721, No. 2-335026 as techniques for forming an abrasion-resistant sprayed coating on the sliding surface of the substrate. There are things.
[0006]
[Problems to be solved by the invention]
However, each of the above prior arts has the following problems and is difficult to put into practical use.
The prior art described in (1) above has poor sliding characteristics and cannot be applied to a cylinder liner.
Since the conventional technology described in (2) uses a thermal spray coating containing plastic, the bonding force between the particles is weak, so that the particles often fall off when subjected to a sliding action, so that the mating member is easily damaged. Also, there is a risk of peeling because the adhesion between the base material and the film is low, and it is not suitable for a cylinder liner.
The prior art described in the above (3) uses a boride material having a metal as a binder, and forms a film by a low pressure plasma spraying method. However, the low pressure plasma spraying apparatus is expensive and has a large treatment target. There is a problem that the member cannot be processed.
The prior art described in (4) above is characterized by boriding the carbide cermet sprayed coating. However, there are problems of cost increase due to an increase in the number of treatment steps and deterioration of cylinder liner material strength due to high-temperature boride treatment. is there.
The prior art described in the above (5) has a drawback that it is not sufficient as a coating on the sliding portion of the cylinder liner and is easily corroded by sulfur compounds in the atmosphere.
[0007]
Furthermore, the prior art described in the above (6) is formed of these materials because the heat resistance and corrosion resistance of various compounds of Fe added to oxides, carbides, nitrides and borides of various metals are not sufficient. There is a drawback that the thermal spray coating has a relatively short durability.
In the prior art described in (7) above, since carbon particles are included as the thermal spray material, this burns in the thermal spray heat source and disturbs the flow of the thermal spray particles in flight through the heat source to reduce the collision energy. A film having a low bonding force between particles and a bonding force with a base material is not formed. Also, carbon remaining as a solid in the film is not preferable because it further promotes the phenomenon.
The prior art described in (8) above is a thermal spray coating using a composite material of boride and metal, but the material is the same as that of the above (4), and this coating is the same as that of the present invention. Performance is not sufficient for the intended sliding surface.
The high carbon iron sprayed coating disclosed in Japanese Patent Publication No. 2-17621 described in (9) above, and the carbide cermet sprayed coating obtained by adding NiCr, Ni-Co or Co to Cr 3 C 2 disclosed in Japanese Utility Model Publication No. 1-7721 In addition, the Ni-based self-fluxing alloy disclosed in JP-B-2-35026 and the oxide ceramic sprayed coating containing Cr 2 O 3 are improved in wear resistance as compared with the untreated sliding surfaces, These spray coatings of high carbon steel, carbide cermet, and oxide cermet alone are not sufficient in performance against recent severe sliding load, and there are still points to be improved.
[0008]
[Problems to be solved by the invention]
As described above, each of the conventional techniques has the following problems to be solved. Therefore, the present invention is to solve the following problems of the prior art.
(1) Conventional coatings for cylinder liner sliding surfaces have insufficient wear resistance for modern sliding members under high load conditions.
(2) The coating formed by the low-pressure plasma spraying method is expected to exhibit good performance compared to the atmospheric spraying, but it is economically disadvantageous because of the large equipment, and a large object to be processed The film cannot be applied to the film, the applicable members are limited, and the productivity is inferior.
(3) The coating obtained by the current atmospheric spraying method has insufficient adhesion, wear resistance, and corrosion resistance, and the combination of thermal spraying and other surface treatments increases costs and decreases competitiveness. Therefore, it is difficult to put it to practical use even if the film properties are good.
[0009]
Therefore, the object of the present invention is to develop a coating for coating a sliding member that has excellent adhesion to the base material, a strong bonding force between the particles constituting the coating, and excellent strength and wear resistance in the presence of lubricating oil. There is to do.
Another object of the present invention is to provide a sliding member that has excellent wear resistance in the presence of lubricating oil , has high reliability even under high load conditions, and has a long service life due to the coating. .
Still another object of the present invention is to provide an inexpensive sliding member that is excellent in productivity.
[0010]
[Means for Solving the Problems]
In the present invention, in order to solve the above-mentioned problems, the following means are adopted.
(1) A sliding surface such as a cylinder liner is coated with a carbonized boride cermet spray coating comprising a ceramic mixture of carbide and boride and one or more metal components selected from Ni, Cr and Co. Thus, excellent wear resistance is imparted.
(2) The carbonized boride cermet sprayed coating has a carbide / boride ratio in the range of 0.88 to 6.45 by weight and a metal component ratio (content) in the range of 25 to 37 wt%. By using one, excellent wear resistance is imparted.
(3) The carbonized boride cermet sprayed coating formed on the sliding surface is applied according to the high-speed flame spraying method, and the film thickness is 30 to 800 μm, the porosity is 0.1 to 15% (area ratio) With this structure, good adhesion and excellent wear resistance are imparted.
(4) ceramics of the carbon boride cermet thermal spray coating in the carbides TiC, ZrC, HfC, VC, TaC, NbC, WC, B 4 C, one selected from among SiC and Cr 3 C 2 1 One or more compounds selected from the group consisting of TiB 2 , ZrB 2 , HfB 2 , VB 2 , TaB 2 , NbB 2 , W 2 B 2 , CrB 2 and NiB 2 By using the compound, excellent wear resistance can be imparted.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
About the sliding member concerning this invention, this suitable embodiment is described according to the process of constructing a carbonized boride cermet sprayed coating on the surface of a steel substrate.
(1) Pre-treatment of steel base material The surface of the base material is first degreased and cleaned, and then roughened by grit blasting before use.
(2) Thermal spray coating formation step A thermal spray coating is formed on the surface of the substrate subjected to the process (1) by a high-speed flame spraying method using the following thermal spray materials.
A. Ceramic mixture (1). Carbide: TiC, ZrC, HfC, VC , TaC, NbC, WC, B 4 C, SiC, etc. Cr 3 C 22 borides:. TiB 2, ZrB 2, HfB 2, VB 2, TaB 2, NbB 2 , W 2 B 2 , CrB 2 , NiB 2 etc. Metal: Ni, Cr, Co and their alloys
The above ceramics are in the form of a compound in which carbide (a) and boride (b) are bonded with a metal as a binder after thermal spraying, that is, in the form of a boride cermet. A composition having a composition of 0.88 to 6.45 in a / b) is suitable. If this ratio (a / b) is less than 0.88, the effect of carbide addition is reduced. On the other hand, if this ratio (a / b) is greater than 6.45 , the effect of boride addition is less likely to appear.
The compound (carbonized boride cermet) obtained by thermal spraying has high hardness because it contains carbide. In addition, it has excellent heat resistance even in high-temperature corrosive environments such as cylinder liners, and it is well-familiar with lubricating oil and has high sliding performance. Demonstrate the characteristics. In addition, since it contains a boride, it has high hardness and is excellent in heat resistance, particularly oxidation resistance, compared to carbide. Furthermore, since the carbide and boride coexist and are in a compounded state, the above-mentioned characteristics act synergistically and show performances higher than the characteristics of the individual components.
[0013]
Metal components such as Ni, Cr, and Co show a clear melting phenomenon in the thermal spray heat source, exhibit a binder action that firmly bonds the coexisting carbide and boride, and an adhesion action with the substrate. To do. In addition to improving the toughness of the ceramic-containing thermal spray coating, it also shows strong resistance to corrosive components such as acids and alkalis.
[0014]
However, if a large amount of a soft metal component is contained, even if it is a cermet sprayed coating, there are cases in which the wear resistance may be lowered and the sliding characteristics may be deteriorated. Therefore, in the present invention, it was decided to limit the content of the metal component in the range of 25 ~37wt%. This is because, when the metal component is less than 25 wt%, the carbide / boride bond strength is lowered, while the high temperature flame spraying heat source is low in temperature, and the adhesion to the substrate is also deteriorated. Further, if the amount of the metal component is 37 wt% or more, the abrasion resistance of the applied sprayed coating is deteriorated, which is not preferable.
[0015]
The spraying material consisting of carbide, boride, and metal is sintered after granulating fine powder, and finely pulverizing it as necessary to make the starting material, but the particle size should be in the range of 5-60 μm . The reason for this is that when the particle size is smaller than 5 μm, the supply to the thermal spray gun becomes discontinuous and the film is not uniform. On the other hand, if the particle size is larger than 60 μm, it is not preferable because it does not melt sufficiently in the thermal spraying heat source, and remains as unmelted particles in the coating, causing the interparticle bonding force to decrease.
[0016]
The thickness of the sprayed coating after spraying is preferably in the range of 30 to 800 μm. The reason is that a film with a thickness of less than 30 μm has poor uniformity, so that a good finished dimension cannot be secured. On the other hand, even if a film having a thickness of more than 800 μm is formed, its characteristics are not changed, so that it is not economical.
[0017]
The porosity of the thermal spray coating should be in the range of 0.1-15% (area%). The reason for this is that it is extremely difficult to form a sprayed coating with a porosity of 0.1% or less by spraying in the atmosphere, and a non-porous coating is not advantageous because it deteriorates the sliding characteristics. On the other hand, in the case of a film having a porosity of 15% or more, not only the adhesion to the substrate is lowered, but also the corrosion component is easily penetrated into the interior, so that the durability is lowered.
The porosity (0.1% to 15%) of the thermal spray coating can be controlled by adjusting the particle size and thermal spray distance of the thermal spray material.
[0018]
The properties of the above-mentioned sprayed coating vary depending on the thermal spray heat source. In general, the thermal spraying method using plasma as a heat source is suitable for heating and melting thermal spraying material particles. However, when thermal spraying is performed in the air, the material particles are oxidized and the carbide particles are decomposed. Will be included. For this reason, the mutual bonding force of the particles constituting the film is weak and the adhesiveness with the base material is low, so that it is not suitable as the film for covering a sliding member according to the present invention.
[0019]
For these reasons, the thermal spray coating on the blasted surface in the present invention is preferably a thermal spray method using a combustion flame of combustible gas (liquid-containing fuel) as a heat source, and in particular, both fuel and oxygen are pressurized. A high-speed flame (High Volocity Oxgen-Fuel Spraying Process = HVOF) obtained by burning in a state is particularly effective. In the case of this high-speed flame spraying method, the heat source temperature is as low as around 2000 ° C, so the sprayed particles are not heated or heated sufficiently, but the flame speed reaches 1500-1800m per second, so the oxidation of the sprayed particles is remarkably suppressed. In addition, a large collision energy is generated with respect to the base material by utilizing a high flight speed. Therefore, it is possible to form a thermal spray coating having a dense and high adhesion.
[0020]
【Example】
Example 1
In this example, the thermal spray coating of the present invention was tested for adhesion to a cast iron substrate and thermal shock resistance.
(1) Test base material: A test piece having a width of 50 mm, a length of 60 mm, and a thickness of 10 mm was cut out from FC 150 (a gray cast iron product) defined in JIS G5501, and this was used as a base material for thermal spraying.
(2) Test Spray Material: Table 1 shows the chemical composition of the test spray material of the present invention and the comparative spray material. The thermal spray material (No. 1 to 4) of the present invention includes carbides such as Cr 3 C 2 , WC, TiC, ZrC and borides such as TiB 2 , ZrB 2 , NiB 2 , CrB 2 , Ni, Ni -A carbonized boride cermet material containing either a Cr alloy or a Cr-Co alloy, and the weight ratio of carbide / boride is in the range of 0.88 to 3.33.
On the other hand, although the thermal spray material of a comparative example contains a carbide | carbonized_material and a boride, the weight ratio is 0.15-0.17 and 4.80 (No.8). However, the thermal spray material of No. 8 is an example containing a large amount of metal component although the carbide / boride weight ratio is within the scope of the present invention.
(3) Thermal spraying method and thermal spray coating thickness: Using a high-speed flame spraying method using kerosene as the thermal spraying method, a 200 μm thick thermal spray coating was formed on a spheroidal graphite cast iron base material roughened by blasting. .
(4) Thermal spray coating evaluation method: The coating was evaluated by the following method.
(1) Film adhesion: The film adhesion was tested by the adhesion strength test specified in JIS H 8666 (Ceramic spray coating test method).
{Circle around (2)} Thermal Shock Test: The operation of placing the thermal spray test piece in an electric furnace heated to 700 ° C. for 15 minutes and then putting it in water at 25 ° C. was repeated 10 times as one cycle. However, when the peeled area of the film reached 5% or more of the whole, the test was stopped and judged.
[0021]
(5) Test results The test results are summarized in Table 2. As is clear from this result, in Comparative Examples (Nos. 5 to 7), the adhesion strength of the sprayed coating is 35 to 55 MPa, and in the thermal shock test, the coating was peeled off by repeating 3 to 5 times. . In contrast, in the present invention examples (No. 1 to 4), there was peeling from the adhesive (epoxy resin) part used to fix the thermal spray coating and the jig, but peeling from the thermal spray coating was recognized. I couldn't.
In addition, about the adhesiveness of the film | membrane in a table | surface, the maximum load value at the time of peeling in an adhesive part is displayed. Further, the present invention showed good adhesion such as withstanding 10 heating-cooling in the thermal shock test.
However, even if it was the film of a comparative example, the film of No. 8 showed the performance equivalent to this invention. The reason for this is considered to be good adhesion because the blending ratio of the ceramic mixture is within the range of the present invention and the ratio of the metallic component is increased. However, a film having a large amount of metallic components is not suitable as the target film of the present invention because it has a high rate of wear due to sliding wear.
[0022]
[Table 1]
Figure 0003749618
[0023]
[Table 2]
Figure 0003749618
[0024]
Example 2
According to the results of Example 1, if the weight ratio of carbide / boride is within the range proposed by the present invention ( 0.88 to 6.45 ), the high-speed flame spraying method provides excellent adhesion and great resistance to thermal shock. It was confirmed to have Therefore, in the following examples, Cr 3 C 2 is selected as the carbide, ZrB 2 is selected as the boride, and Ni—Cr alloy is limited as the metal component, and the weight ratio of the carbide / boride is variously changed. A flame sprayed coating was formed to test the mechanical properties required for cylinder liners in internal combustion engines.
[0025]
Table 3 shows chemical components and symbols of the thermal spray material used in this example. Entire spray material compatible with the present invention, the carbide / boride weight ratio 0.9 1 to 6.45 (Symbol E, F, G, H, I, M) is in the range of, and also the ratio of the metallic component It is in the range of 25.0 to 36.3%. In contrast, the comparative examples (symbols A, B, J, K) have a carbide / boride weight ratio outside the scope of the present invention, and the material of the symbol N has a carbide / boride weight ratio within the scope of the present invention. Although it is inside, the content of the metallic component is large and it has a composition outside the invention. Note that symbol O is a nitriding treatment employed as a wear-resistant surface treatment for cylinder liners of this type of internal combustion engine, and was used for reference.
[0026]
Using the above thermal spray material, a reciprocating wear test was carried out using an FC 150 material (50 mm x 50 mm x 10 mm thick) deposited by high-speed flame spraying to a thickness of 200 µm.
FIG. 1 shows an outline of the reciprocating wear test. That is, a test piece 2 on which a thermal spray coating 1 is formed is installed, and a hard Cr-plated spheroidal graphite cast iron pin 3 having a diameter of 8 mm and a length of 30 mm is brought into contact with the center of the upper surface, and a load is applied from above the pin (see FIG. In this test, the amount of wear of the thermal spray coating and the pin material is measured by moving the test piece to the left and right while In addition, lubricating oil is dripped from the oil supply thin tube 4 to the film. Using this testing machine, the test was performed under the following conditions.
Load: 70kgf
Stroke: 100 mm
Sliding speed: Average 1.5 m / sec (450cpm)
Mileage: 18,000 m (200min)
Plate heating temperature: 160 ℃
Lubricant brand: JIS K2215 or equivalent Lubricating oil drop rate: 8.5 cc / h
Run-in operation: 5 kgf, 0.17 m / sec, 10 min
[0027]
Table 4 shows the results of the reciprocating wear test by determining the wear amounts of the thermal spray coating and the pin contact portion before and after the test. As is clear from this result, the wear amount of the comparative example is large, and the wear area of the pin is increased accordingly. In contrast, the present invention embodiment have a (Symbol E, F, G, H, I, M) and good sliding properties with pin wear amount is small in contact with the film was confirmed.
[0028]
[Table 3]
Figure 0003749618
[0029]
[Table 4]
Figure 0003749618
[0030]
Example 3 Using the thermal spray test piece used in Example 2, the dynamic friction coefficient was measured using the apparatus shown in FIG. The mating material is an electro-Cr plated material (diameter 8 mm), test temperature 160 ° C., load 70 kgf, sliding speed 1.5 m / sec, lubricating oil JIS K2215 equivalent, drop rate 8.5 ml / h.
Incidentally, the thermal spray coating compatible with the present invention that the tested bk example, Symbol E, G, K, whereas a thermal spray coating of symbols A, N, O is a comparative example.
Table 5 shows the minimum value and the maximum value of the friction coefficient obtained by measuring the dynamic friction coefficient five times for one sample. As is apparent from the results, the thermal friction coefficient of the thermal spray coating of the present invention is low even when compared with O (nitriding treatment), which shows the minimum friction coefficient in the comparative example, and it is confirmed that it has good sliding characteristics. It was.
[0031]
[Table 5]
Figure 0003749618
[0032]
Example 4
In this example, the relationship between the porosity of the thermal spray coating and the wear resistance was investigated.
(1) Test substrate: Same as Example 2
(2) Test sprayed material: Symbol E material listed in Table 1
(3) Thermal spraying method and coating porosity: The thermal spraying method uses a high-speed flame to thermal spraying method as before, and changes the particle size of the thermal spraying material within the range of the present invention and changes the spraying distance to 0.1 to 18 A film having a porosity of% was prepared.
(4) Wear test method: Using the test apparatus shown in FIG. 1, the relationship between the wear resistance of the thermal spray coating and the porosity was investigated under the reciprocating wear test conditions of Example 2.
(5) Test results: Fig. 2 summarizes the relationship between the wear amount of the coating and the porosity. As is clear from this result, the wear amount of the film and the porosity are closely related, and within the range of this experiment, the smaller the porosity, the better the wear resistance. Considering the use of the member of the present invention, a film having a porosity in the range of 0.1 to 15% was defined as the scope of the present invention.
[0033]
【The invention's effect】
As described above, the member coated with the carbonized boride cermet sprayed coating according to the present invention has high adhesion to the base material and a high mutual bonding force between the sprayed particles constituting the coating, and an environment in which lubricating oil exists. It was found to exhibit excellent wear resistance and low coefficient of friction. Therefore, by applying such a thermal spray coating on the cylinder liner sliding portion of the internal combustion engine, high reliability and long life can be expected even under high load conditions.
[Brief description of the drawings]
FIG. 1 shows an outline of a reciprocating wear test used for investigating the wear resistance of a thermal spray coating.
FIG. 2 is a graph showing the test results of Example 4, showing the relationship between the porosity of the thermal spray coating and the wear cross-sectional area of the coating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Test spray coating 2 Cast iron base material 3 Electrochromic plated hardened steel pin 4 Lubricating oil supply pipe

Claims (1)

摺動面を、TiC,ZrC,HfC,VC,TaC,NbC,WC,B C,SiCおよびCr のうちから選ばれたいずれか1種以上の炭化物およびTiB ,ZrB ,HfB ,VB ,TaB ,NbB ,W ,CrB およびNiB のうちから選ばれたいずれか1種以上の硼化物のセラミック混合物と、Ni,CrおよびCoのうちから選ばれたいずれか1種以上の金属成分が、炭化物/硼化物の混合割合が重量比で0.88〜6.45の範囲内にあり、そして金属成分の割合が25〜37wt%の範囲内にあり、これらは共存して化合物化しており、かつ気孔率が0.1〜15%(面積率)の炭硼化物サーメット溶射皮膜にて被覆したことを特徴とする潤滑油存在下での耐摩耗性に優れる摺動部材。The sliding surface is made of at least one carbide selected from TiC, ZrC, HfC, VC, TaC, NbC, WC, B 4 C, SiC, and Cr 3 C 2 , and TiB 2 , ZrB 2 , HfB. 2 , VB 2 , TaB 2 , NbB 2 , W 2 B 5 , CrB 2 and NiB 2 selected from any one or more of a boride ceramic mixture and Ni, Cr and Co Any one or more metal components have a carbide / boride mixture ratio in the range of 0.88 to 6.45 by weight and a metal component ratio in the range of 25 to 37 wt%. These are coexisting and compounded, and are coated with a carbonized boride cermet sprayed coating having a porosity of 0.1 to 15% (area ratio), and wear resistance in the presence of lubricating oil Excellent sliding member
JP13829998A 1998-05-20 1998-05-20 Sliding member with excellent wear resistance in the presence of lubricating oil Expired - Fee Related JP3749618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13829998A JP3749618B2 (en) 1998-05-20 1998-05-20 Sliding member with excellent wear resistance in the presence of lubricating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13829998A JP3749618B2 (en) 1998-05-20 1998-05-20 Sliding member with excellent wear resistance in the presence of lubricating oil

Publications (2)

Publication Number Publication Date
JPH11335805A JPH11335805A (en) 1999-12-07
JP3749618B2 true JP3749618B2 (en) 2006-03-01

Family

ID=15218643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13829998A Expired - Fee Related JP3749618B2 (en) 1998-05-20 1998-05-20 Sliding member with excellent wear resistance in the presence of lubricating oil

Country Status (1)

Country Link
JP (1) JP3749618B2 (en)

Also Published As

Publication number Publication date
JPH11335805A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
TWI405873B (en) Method of preparing wear-resistant coating layer comprising metal matrix composite and coating layer prepared by using the same
DK1564309T3 (en) Piston ring and thermal spray coating for use therein, and method of making them
CA2186172C (en) Thermally depositing a composite coating on aluminum substrate
CA2751250C (en) Coatings, composition, and method related to non-spalling low density hardface coatings
EP2413006B1 (en) Piston ring
JP2004510050A (en) Thermal coating of piston rings for mechanically alloyed powders.
US20080131686A1 (en) Environmentally friendly wear resistant carbide coating
US7964239B2 (en) Bearing material coated slide member and method for manufacturing the same
EP2402474B1 (en) Piston ring
US20070099015A1 (en) Composite sliding surfaces for sliding members
JP2007314839A (en) Spray deposit film for piston ring, and the piston ring
JP2001503816A (en) Coated wear-resistant parts of internal combustion engines, in particular piston rings and methods for their production
Barbezat Thermal spray coatings for tribological applications in the automotive industry
JPH05331694A (en) Composite plated nonferrous metallic material for machine structure
JP2004300528A (en) Sliding parts and brake disc rotor
JP5853307B2 (en) Brake disc rotor and manufacturing method thereof
JP3749618B2 (en) Sliding member with excellent wear resistance in the presence of lubricating oil
ChandraYadaw et al. Comparative study of surface coating for automotive application—a review
JP3547583B2 (en) Cylinder liner
US6652991B1 (en) Ductile NiAl intermetallic compositions
Barbezat Importance of surface preparation technology prior to coating deposition on cylinder bores for high performance engines
Ranjan et al. Morphological, microstructural, and mechanical study of FGM coatings prepared using the HVOF technique
JPH03172681A (en) Piston ring and manufacture thereof
WO2014127110A1 (en) Thermally sprayed wear-resistant piston ring coating
CAKMAKKAYA INVESTIGATION OF CORROSION AND MICROSTRUCTURE PROPERTIES OF GRAY (LAMELLITE GRAPHITE) CAST IRON COATED WITH HVOF METHOD.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041112

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees