JP3749193B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3749193B2
JP3749193B2 JP2002084982A JP2002084982A JP3749193B2 JP 3749193 B2 JP3749193 B2 JP 3749193B2 JP 2002084982 A JP2002084982 A JP 2002084982A JP 2002084982 A JP2002084982 A JP 2002084982A JP 3749193 B2 JP3749193 B2 JP 3749193B2
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
refrigerant path
pass
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002084982A
Other languages
Japanese (ja)
Other versions
JP2003279192A (en
Inventor
信太郎 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002084982A priority Critical patent/JP3749193B2/en
Publication of JP2003279192A publication Critical patent/JP2003279192A/en
Application granted granted Critical
Publication of JP3749193B2 publication Critical patent/JP3749193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ドライ運転可能に構成された空気調和装置に関する。
【0002】
【従来の技術】
一般に、圧縮機と、第1熱交換部及び第2熱交換部を有する室内熱交換器とを備え、第1熱交換部と第2熱交換部との間に電動式膨張弁を設け、ドライ運転可能に構成された空気調和装置が知られている。
【0003】
例えば、図4に示すように、多パス(例えば2パス)の冷媒経路37を有し、冷房運転時に蒸発器、ドライ運転時に凝縮器として機能する第1熱交換部31Aと、多パス(例えば2パス)の冷媒経路38を有し、冷房運転時及びドライ運転時に蒸発器として機能する第2熱交換部31Bとを備えた室内熱交換器31を具備し、第1熱交換部31Aと第2熱交換部31Bとの間に、電動式膨張弁35を設けた空気調和装置が知られている。
【0004】
ドライ運転時は電動式膨張弁35の開度を調整して冷媒を膨張し、冷房運転時は電動式膨張弁35を全開して冷媒を流すようにしている。尚、冷房運転時は、所定の冷凍能力(冷房能力)にすべく図示を省略した圧縮機の運転周波数(即ち、圧縮機の能力)を制御している。
【0005】
【発明が解決しようとする課題】
上述の空気調和装置を冷房運転した場合、圧力損失がない理想状態であれば、図5に示すモリエル線図を参照して、サイクルA−B−E−H−Iを辿るが、各冷媒経路37を流れてきた冷媒は合流して電動式膨張弁35を流れるので、この電動式膨張弁35において圧力損失が生じ、電動式膨張弁35の冷媒流入側の冷媒の圧力(蒸発温度)、即ち、第1熱交換部31Aの冷媒の圧力(蒸発温度)が高くなり、冷房能力が低下するため、この冷房能力の低下を補うべく図示を省略した圧縮機の運転周波数を上げる(即ち、圧縮機の能力を上げる)制御を行うので、冷房のCOP(成績係数)が低下する。
【0006】
そこで、冷房運転を重視して、第2熱交換部31Bの能力を第1熱交換部31A能力よりも大きくすると、冷房運転する場合、図5に示すモリエル線図を参照して、サイクルA−C−E−H−Iを辿り、冷房能力が向上する(冷房のCOPが向上する)が、ドライ運転する場合、室内への空気の吹き出し温度が空気の吸い込み温度よりも低下してしまうという問題がある。
【0007】
また、逆に、ドライ運転を重視して、第1熱交換部31Aの能力を第2熱交換部31Bの能力よりも大きくすると、ドライ運転時は除湿が支障なく行われ、室内への空気の吹き出し温度の低下を防止することはできるが、冷房運転する場合、図5に示すモリエル線図を参照して、サイクルA−C−F−H−Iを辿り、第1熱交換部31Aの冷媒の圧力(蒸発温度)が高いため(サイクルC−F)、冷房能力が低下し、この冷房能力の低下を補うべく図示を省略した圧縮機の運転周波数を上げる(即ち、圧縮機の能力を上げる)制御を行うので、冷房のCOPが向上しないという問題がある。
【0008】
本発明の目的は、上述の事情を考慮してなされたものであり、冷房運転時のCOP(成績係数)の向上を図り、ドライ運転時の室内への空気の吹き出し温度の低下を防止することができる空気調和装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1に記載の発明は、圧縮機と、ドライ運転時に上流に位置する第1熱交換部及びその下流に位置する第2熱交換部を有する室内熱交換器とを備え、前記第1熱交換部と前記第2熱交換部との間に膨張機構を設け、ドライ運転可能に構成された空気調和装置において、前記第1熱交換部は、第1冷媒経路及び第2冷媒経路を備え、第1冷媒経路及び第2冷媒経路の間には、ドライ運転時に室内への空気の吹出温度が許容される範囲を超えない程度に圧力損失が設定された冷媒を減圧する減圧手段を設けたことを特徴とするものである。
【0010】
請求項2に記載の発明は、請求項1に記載の発明において、前記第1冷媒経路及び前記第2冷媒経路が夫々多パスの冷媒経路であり、前記減圧手段が単パスの冷媒経路であることを特徴とするものである。
【0011】
請求項3に記載の発明は、請求項1又は2に記載の発明において、前記第1熱交換部の能力は、前記第2熱交換部の能力よりも大きいことを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0015】
図1は、本発明に係る空気調和装置の一実施の形態を示す回路図である。
【0016】
この図1に示すように、空気調和装置10は室外機11及び室内機12を有してなり、室外機11の室外冷媒配管14と室内機12の室内冷媒配管15とが、連結配管16及び17を介して連結されている。
【0017】
上記室外機11は室外に配置される。室外冷媒配管14には、圧縮機18が配設されるとともに、この圧縮機18の吸込側にアキュムレータ19が配設され、圧縮機18の吐出側に四方弁20が配設され、この四方弁20側に室外熱交換器21、第1膨張機構としての第1電動式膨張弁22が順次配設されて構成される。室外熱交換器21には、この室外熱交換器21へ向かって送風する室外ファン23(例えば、プロペラファン)が隣接して配置されている。
【0018】
上記の四方弁20は冷房またはドライ運転時に実線で示すように切り換えられ、暖房運転時に点線で示すように切り換えられる。
【0019】
室内機12はそれぞれ室内に設置され、室内冷媒配管15に室内熱交換器31が配設される。この室内熱交換器31には、これらの室内熱交換器31から室内へ送風する室内ファン33(例えば、クロスフローファン)が隣接して配置されている。
【0020】
室内熱交換器31は、図2に示すように、第1熱交換部31Aと第2熱交換部31Bとからなる。第1熱交換部31Aは、多パス(例えば2パス)の冷媒経路37を有し、冷房運転時に蒸発器、ドライ運転時に凝縮器として機能する。また、第2熱交換部31Bは、多パス(例えば2パス)の冷媒経路38を有し、冷房運転時及びドライ運転時に蒸発器として機能する。第1熱交換部31Aと第2熱交換部31Bとの間には、第2膨張機構としての第2電動式膨張弁35(膨張機構)が設けられている。
【0021】
空気調和装置10には、図示しない制御装置が備えられており、この制御装置は、室外機11における圧縮機18の運転周波数、四方弁20の切り換え、室外ファン23の回転数及び第1電動式膨張弁22の開度をそれぞれ制御する。また、制御装置は、室内機12の室内ファン33の回転数及び第2電動式膨張弁35の開度を制御する。つまり、制御装置は、四方弁20を切り換えることにより、空気調和装置10を冷房運転又は暖房運転に設定する。また、要求される空調負荷に応じて、冷房運転時は所定の冷房能力、暖房運転時は所定の暖房能力にすべく圧縮機18の運転周波数等を制御する。
【0022】
次に、運転動作について説明する。
【0023】
図示しない制御装置は、図示しないリモートコントローラ等により冷房運転が選択して指令された場合には、室外機11の圧縮機18を起動させる。これにより、圧縮機18から吐出された冷媒は、実線の矢印で示すように、四方弁20を経て、室外熱交換器21に流入し、ここから流出した冷媒は、第1電動式膨張弁22で膨張された後、連結配管17を介して、室内機12に流入する。そして、室内熱交換器31で蒸発して、連結配管16、四方弁20の順に流れ、アキュムレータ19を経て圧縮機18に戻される。この室内熱交換器31により、室内機12内へ導かれた室内空気が冷却されて室内を冷房する。
【0024】
また、図示しない制御装置は、リモートコントローラ等によりドライ運転が選択して指令された場合には、室外機11の圧縮機18を起動させる。これにより、圧縮機18から吐出された冷媒は、実線の矢印で示すように、四方弁20を経て、室外熱交換器21に流入し、ここから流出した冷媒は、第1電動式膨張弁22を経た後、連結配管17を介して、室内機12に流入する。そして、室内熱交換器31の第1熱交換部31A(図2)で凝縮し、第2電動式膨張弁35で膨張し、第2熱交換部31B(図2)で蒸発して、連結配管16、四方弁20の順に流れ、アキュムレータ19を経て圧縮機18に戻される。この第1熱交換部31Aで室内から吸い込んだ空気を暖めるとともに、第2熱交換部31Bで室内から吸い込んだ空気を冷却して除湿し、これら空気を混合することで、適度な温度の空気を室内に吹き出して、室内を除湿する。
【0025】
また、リモートコントローラ等により暖房運転が選択して指令された場合には、圧縮機18から吐出された冷媒は、点線の矢印で示すように、四方弁20を経て、連結配管16を通って室内機12に流入する。そして、室内熱交換器31、連結配管17、第1電動式膨張弁22の順に流れ、室外熱交換器21に流入し、ここから流出した冷媒は、四方弁20を経た後、アキュムレータ19を経て圧縮機18に戻される。これにより、室内熱交換器31が凝縮器として機能し、この室内熱交換器31により、室内機12内へ導かれた室内空気が加熱されて室内を暖房する。
【0026】
本実施の形態において、図2を参照すると、室内熱交換器31の第1熱交換部31Aの多パス(例えば2パス)の冷媒経路37には、冷媒の減圧を目的とする配管(以下、「減圧用配管」という。)32が設けられている。
【0027】
この減圧用配管32の内径や形状、長さは、所定の圧力損失となるように設定されている。例えば、この減圧用配管32は、多パス(例えば2パス)の冷媒経路37を流れる冷媒が減圧用配管32の冷房・ドライ運転時の入口側で合流し、この減圧用配管32の冷房・ドライ運転時の出口側で再び分流するように設けられている。即ち、多パス(例えば2パス)の冷媒経路37は、冷房・ドライ運転時の第1熱交換部31Aの冷媒の入口側の多パス(例えば2パス)の第1冷媒経路37Aと、冷房・ドライ運転時の第1熱交換部31Aの冷媒の出口側の多パス(例えば2パス)の第2冷媒経路37Bとからなり、多パス(例えば2パス)の第1冷媒経路37Aと第2冷媒経路37Bとが単パスの冷媒経路(減圧用配管32)でつながれている。
【0028】
減圧用配管32における所定の圧力損失は、ドライ運転時に室内への空気の吹き出し温度が冷えて不快感を与えない程度に設定される。即ち、所定の圧力損失は、ドライ運転時に室内への空気の吹き出し温度が許容される範囲を超えない程度に設定される。したがって、この減圧用配管32における所定の圧力損失は、大きくする必要はなく、減圧用配管32は短くて済む。即ち、省スペース化を図ることができる。
【0029】
具体的に、第1熱交換部31Aは、図示は省略するが、平行に配設した複数のフィンに、伝熱管を複数挿通し、その伝熱管の開放端を適宜接続して多パス(例えば2パス)の冷媒経路37が形成される。そして、減圧用配管32は、この伝熱管の開放端に接続される。
【0030】
尚、減圧用配管は各冷媒経路37毎に設けてもよい。この場合、減圧用配管は、例えば、各冷媒経路37における伝熱管よりも細く設定される。また、この減圧用配管の代わりにキャピラリチューブ、あるいは第1熱交換部31Aのフィンに挿通した伝熱管であってもよい。伝熱管を利用した場合は、配管を第1熱交換部31Aの外部に増設する必要がない。
【0031】
従来の構成では、図4を参照して、冷房運転を重視して、第2熱交換部31Bの能力を第1熱交換部31A能力よりも大きくすると、冷房運転する場合、図3に示すモリエル線図を参照して、サイクルA−C−E−H−Iを辿り、冷房能力が向上する(冷房のCOP(成績係数)が向上する)が、ドライ運転する場合、室内への空気の吹き出し温度が空気の吸い込み温度よりも低下してしまう。また、逆に、ドライ運転を重視して、第1熱交換部31Aの能力を第2熱交換部31Bの能力よりも大きくすると、ドライ運転時は除湿が支障なく行われ、室内への空気の吹き出し温度の低下を防止することはできるが、冷房運転する場合、図3に示すモリエル線図を参照して、サイクルA−C−F−H−Iを辿り、第1熱交換部31Aの冷媒の圧力(蒸発温度)が高いため(サイクルC−F)、冷房能力が低下し、この冷房能力の低下を補うべく図示を省略した圧縮機の運転周波数を上げる(即ち、圧縮機の能力を上げる)制御を行うので、冷房のCOPが向上しない。
【0032】
本実施の形態では、第1熱交換部31Aが第2熱交換部31Bよりも大きい。つまり、第1熱交換部31A及び第2熱交換部31Bは、ドライ運転を重視した場合の熱交換器の大きさである。具体的には、第1熱交換部31Aのフィンを挿通する伝熱管の本数が第2熱交換部31Bのフィンを挿通する伝熱管の本数よりも多い。即ち、第1熱交換部31Aの能力が第2熱交換部31Bの能力よりも大きい。そして、減圧用配管32は、ドライ運転時に室内への空気の吹き出し温度が冷えすぎず、冷房運転時に第1熱交換部31Aの冷房能力が向上するように冷媒経路37の所定の箇所に設けられる。
【0033】
図3に示す冷房運転時のモリエル線図における太線(サイクルA−C−D−G−H−I)は、室内熱交換器31が蒸発器として機能した場合を示す。
【0034】
第1熱交換部31Aに流入した冷媒は、まず、多パス(例えば2パス)の第1冷媒経路37Aを通過して蒸発する(図3中、サイクルA−C)。このように多パスとすることで、冷房運転時は効率よく冷媒を蒸発させることができ、ドライ運転時は効率よく冷媒を凝縮することができる。
【0035】
そして、減圧用配管32の入口側で冷媒が合流して、減圧用配管32を通過することで圧力損失が生じ、冷媒が減圧される(図3中、サイクルC−D)。つまり、多パスから単パスとすることで圧力損失が生じ、冷媒が減圧される。
【0036】
次に減圧用配管32で減圧された冷媒は、再び分流されて多パス(例えば2パス)第2冷媒経路37Bを通過して蒸発する(図3中、サイクルD−G)。即ち、単パスから多パスとなり、さらに減圧されているので、冷房運転時は従来のドライ重視の第1熱交換部よりも効率よく冷媒を蒸発させることができ、また、ドライ運転時は従来の冷房重視の第1熱交換部よりも効率よく冷媒を凝縮することができる。
【0037】
第1熱交換部31Aの冷媒経路37から流出した冷媒は、合流して第2電動式膨張弁35を通過することで減圧される(図3中、サイクルG−H)。尚、第2電動式膨張弁35の上流側にある減圧用配管32で冷媒が減圧されているため、この第2電動式膨張弁35における圧力損失は小さくなる。
【0038】
そして、第2熱交換部31Bの冷媒経路38を通過することで蒸発する(図3中、サイクルH−I)。
【0039】
以上、本実施の形態によれば、第1熱交換部31Aの冷媒経路37に冷媒を減圧する減圧用配管32を設けたことから、この第1熱交換部31Aにおける冷媒の蒸発温度(圧力)は、従来のドライ運転を重視した場合の室内熱交換器31と比較して、減圧用配管32により減圧されて低くなるので、冷房運転時は冷房能力が向上して冷房のCOPが向上し、ドライ運転時は室内への空気の吹き出し温度が冷えすぎることはない。
【0040】
また、本実施の形態によれば、第1熱交換部31Aの能力が第2熱交換部31Bの能力よりも大きいことから、従来の冷房運転を重視した場合の室内熱交換器と比較して、ドライ運転を行う場合の凝縮能力、即ち、第1熱交換部31Aが大きいので、ドライ運転時の室内への空気の吹き出し温度の低下を防止することができる。
【0041】
また、本実施の形態によれば、減圧用配管32は、第1熱交換部31Aの伝熱管の開放端に接続して形成することができるから、接続作業が容易である。
【0042】
尚、本実施の形態では、第1熱交換部31Aが多パス(例えば、2パス)の冷媒経路37を有する場合について説明したが、これに限るものではなく、第1熱交換部が単パス(1パス)の冷媒経路を有する場合であっても適応できることは言うまでもない。この場合、第1熱交換部の単パスの冷媒経路には、この冷媒経路よりも圧力損失の大きい減圧用配管が設けられる。また、この減圧用配管の代わりにキャピラリチューブ、あるいは第1熱交換部のフィンに挿通した伝熱管であってもよい。
【0043】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0044】
【発明の効果】
本発明に係る空気調和装置によれば、冷房運転時のCOP(成績係数)の向上を図ることができ、ドライ運転時の室内への空気の吹き出し温度の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明に係る空気調和装置の一実施の形態を示す冷媒回路図である。
【図2】図1の空気調和装置の室内熱交換器の説明図である。
【図3】図1の空気調和装置を冷房運転した場合のサイクルを示すモリエル線図である。
【図4】従来の空気調和装置の室内熱交換器の説明図である。
【図5】従来の空気調和装置を冷房運転した場合のサイクルを示すモリエル線図である。
【符号の説明】
10 空気調和装置
18 圧縮機
31 室内熱交換器
31A 第1熱交換部
31B 第2熱交換部
32 減圧用配管(減圧手段、単パスの冷媒経路)
37 多パスの冷媒経路
37A 多パスの第1冷媒経路
37B 多パスの第2冷媒経路
35 第2電動式膨張弁(膨張機構)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner configured to be capable of dry operation.
[0002]
[Prior art]
In general, a compressor and an indoor heat exchanger having a first heat exchange part and a second heat exchange part are provided, and an electric expansion valve is provided between the first heat exchange part and the second heat exchange part, An air conditioner configured to be operable is known.
[0003]
For example, as shown in FIG. 4, the first heat exchanging portion 31A has a multi-pass (for example, two-pass) refrigerant path 37, functions as an evaporator during cooling operation, and functions as a condenser during dry operation, and multi-pass (for example, 2 path) refrigerant path 38, and includes an indoor heat exchanger 31 including a second heat exchange unit 31B that functions as an evaporator during cooling operation and dry operation, and includes the first heat exchange unit 31A and the first heat exchange unit 31A. There is known an air conditioner in which an electric expansion valve 35 is provided between the two heat exchange units 31B.
[0004]
During the dry operation, the opening of the electric expansion valve 35 is adjusted to expand the refrigerant, and during the cooling operation, the electric expansion valve 35 is fully opened to allow the refrigerant to flow. During the cooling operation, the operation frequency (that is, the compressor capacity) of the compressor (not shown) is controlled so as to obtain a predetermined refrigeration capacity (cooling capacity).
[0005]
[Problems to be solved by the invention]
When the above-described air conditioner is in a cooling operation, if it is in an ideal state with no pressure loss, the cycle A-B-E-H-I is traced with reference to the Mollier diagram shown in FIG. Since the refrigerant that has flown through 37 joins and flows through the electric expansion valve 35, pressure loss occurs in the electric expansion valve 35, and the refrigerant pressure (evaporation temperature) on the refrigerant inflow side of the electric expansion valve 35, that is, Since the refrigerant pressure (evaporation temperature) in the first heat exchanging portion 31A increases and the cooling capacity decreases, the operating frequency of the compressor (not shown) is increased to compensate for this decrease in cooling capacity (that is, the compressor The COP (coefficient of performance) for cooling is reduced.
[0006]
Therefore, if the cooling operation is regarded as important and the capacity of the second heat exchanging part 31B is made larger than the capacity of the first heat exchanging part 31A, in the case of the cooling operation, referring to the Mollier diagram shown in FIG. Following C-E-H-I, cooling capacity is improved (cooling COP is improved), but in a dry operation, the problem is that the air blowing temperature into the room is lower than the air suction temperature. There is.
[0007]
Conversely, if importance is attached to the dry operation and the capacity of the first heat exchanging part 31A is made larger than the capacity of the second heat exchanging part 31B, dehumidification is performed without trouble during the dry operation, Although it is possible to prevent the blowing temperature from being lowered, when performing the cooling operation, referring to the Mollier diagram shown in FIG. 5, the cycle A-C-F-H-I is followed, and the refrigerant of the first heat exchange unit 31A Since the pressure (evaporation temperature) is high (cycle C-F), the cooling capacity is reduced, and the operating frequency of the compressor (not shown) is increased to compensate for this reduction in cooling capacity (that is, the capacity of the compressor is increased). ) Since the control is performed, there is a problem that the COP of the cooling is not improved.
[0008]
The object of the present invention has been made in consideration of the above-mentioned circumstances, and aims to improve the COP (coefficient of performance) during cooling operation and prevent a decrease in the temperature of air blown into the room during dry operation. An object of the present invention is to provide an air-conditioning apparatus that can perform the above.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 includes a compressor, and an indoor heat exchanger having a first heat exchange section located upstream during a dry operation and a second heat exchange section located downstream thereof , and the first heat In the air conditioner configured to provide an expansion mechanism between the exchange unit and the second heat exchange unit and configured to be capable of dry operation, the first heat exchange unit includes a first refrigerant path and a second refrigerant path, Between the first refrigerant path and the second refrigerant path, there is provided a depressurizing means for depressurizing the refrigerant whose pressure loss is set to such an extent that the air blowing temperature into the room does not exceed an allowable range during dry operation. It is characterized by.
[0010]
According to a second aspect of the present invention, in the first aspect of the invention, the first refrigerant path and the second refrigerant path are each a multi-pass refrigerant path, and the decompression means is a single-pass refrigerant path. It is characterized by this.
[0011]
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the capacity of the first heat exchange section is larger than the capacity of the second heat exchange section .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a circuit diagram showing an embodiment of an air conditioner according to the present invention.
[0016]
As shown in FIG. 1, the air conditioner 10 includes an outdoor unit 11 and an indoor unit 12, and an outdoor refrigerant pipe 14 of the outdoor unit 11 and an indoor refrigerant pipe 15 of the indoor unit 12 are connected to a connecting pipe 16 and 17 are connected.
[0017]
The outdoor unit 11 is disposed outdoors. A compressor 18 is disposed in the outdoor refrigerant pipe 14, an accumulator 19 is disposed on the suction side of the compressor 18, and a four-way valve 20 is disposed on the discharge side of the compressor 18. An outdoor heat exchanger 21 and a first electric expansion valve 22 as a first expansion mechanism are sequentially arranged on the 20 side. An outdoor fan 23 (for example, a propeller fan) that blows air toward the outdoor heat exchanger 21 is disposed adjacent to the outdoor heat exchanger 21.
[0018]
The four-way valve 20 is switched as indicated by a solid line during cooling or dry operation, and is switched as indicated by a dotted line during heating operation.
[0019]
Each indoor unit 12 is installed indoors, and an indoor heat exchanger 31 is disposed in the indoor refrigerant pipe 15. In the indoor heat exchanger 31, an indoor fan 33 (for example, a cross flow fan) for blowing air from the indoor heat exchanger 31 to the room is disposed adjacently.
[0020]
As shown in FIG. 2, the indoor heat exchanger 31 includes a first heat exchange part 31A and a second heat exchange part 31B. The first heat exchange unit 31A includes a multi-pass (for example, two-pass) refrigerant path 37, and functions as an evaporator during the cooling operation and as a condenser during the dry operation. The second heat exchanging section 31B has a multi-pass (for example, two passes) refrigerant path 38 and functions as an evaporator during the cooling operation and the dry operation. A second electric expansion valve 35 (expansion mechanism) as a second expansion mechanism is provided between the first heat exchange unit 31A and the second heat exchange unit 31B.
[0021]
The air conditioner 10 is provided with a control device (not shown). The control device operates the compressor 18 in the outdoor unit 11, switches the four-way valve 20, the rotational speed of the outdoor fan 23, and the first electric type. The opening degree of the expansion valve 22 is controlled. Further, the control device controls the rotation speed of the indoor fan 33 of the indoor unit 12 and the opening degree of the second electric expansion valve 35. That is, the control device sets the air conditioner 10 to the cooling operation or the heating operation by switching the four-way valve 20. Further, according to the required air conditioning load, the operating frequency of the compressor 18 is controlled so as to obtain a predetermined cooling capacity during the cooling operation and a predetermined heating capacity during the heating operation.
[0022]
Next, the driving operation will be described.
[0023]
A control device (not shown) activates the compressor 18 of the outdoor unit 11 when a cooling operation is selected and commanded by a remote controller (not shown) or the like. As a result, the refrigerant discharged from the compressor 18 flows into the outdoor heat exchanger 21 via the four-way valve 20 as indicated by the solid line arrow, and the refrigerant flowing out of the refrigerant flows through the first electric expansion valve 22. And then flows into the indoor unit 12 through the connecting pipe 17. Then, it evaporates in the indoor heat exchanger 31, flows in the order of the connecting pipe 16 and the four-way valve 20, and returns to the compressor 18 through the accumulator 19. The indoor heat exchanger 31 cools the indoor air guided into the indoor unit 12 and cools the room.
[0024]
The control device (not shown) activates the compressor 18 of the outdoor unit 11 when a dry operation is selected and commanded by a remote controller or the like. As a result, the refrigerant discharged from the compressor 18 flows into the outdoor heat exchanger 21 via the four-way valve 20 as indicated by the solid line arrow, and the refrigerant flowing out of the refrigerant flows into the first electric expansion valve 22. After passing through, it flows into the indoor unit 12 through the connecting pipe 17. And it condenses with the 1st heat exchange part 31A (FIG. 2) of the indoor heat exchanger 31, expands with the 2nd electric expansion valve 35, evaporates with the 2nd heat exchange part 31B (FIG. 2), and is connected piping. 16 and the four-way valve 20 flow in this order, and return to the compressor 18 via the accumulator 19. While the air sucked from the room is warmed by the first heat exchanging part 31A, the air sucked from the room is cooled and dehumidified by the second heat exchanging part 31B. It blows out into the room and dehumidifies the room.
[0025]
Further, when the heating operation is selected and commanded by a remote controller or the like, the refrigerant discharged from the compressor 18 passes through the four-way valve 20 and passes through the connecting pipe 16 as shown by the dotted arrow in the room. Flows into the machine 12. The refrigerant flows in the order of the indoor heat exchanger 31, the connecting pipe 17, and the first electric expansion valve 22, flows into the outdoor heat exchanger 21, and flows out of the refrigerant through the four-way valve 20 and then through the accumulator 19. Returned to the compressor 18. Thereby, the indoor heat exchanger 31 functions as a condenser, and the indoor heat led to the indoor unit 12 is heated by the indoor heat exchanger 31 to heat the room.
[0026]
In the present embodiment, referring to FIG. 2, a multi-pass (for example, two-pass) refrigerant path 37 of the first heat exchanging portion 31 </ b> A of the indoor heat exchanger 31 is provided with a pipe (hereinafter, referred to as refrigerant decompression). (Referred to as “decompression piping”) 32.
[0027]
The inner diameter, shape, and length of the decompression pipe 32 are set to have a predetermined pressure loss. For example, in the decompression pipe 32, the refrigerant flowing through the multi-pass (for example, two passes) refrigerant path 37 merges at the inlet side during the cooling / drying operation of the decompression pipe 32. It is provided to divert again at the exit side during operation. That is, the multi-pass (for example, two-pass) refrigerant path 37 includes a multi-pass (for example, two-pass) first refrigerant path 37A on the refrigerant inlet side of the first heat exchange unit 31A during the cooling / dry operation, The multi-pass (for example, two passes) second refrigerant path 37B on the refrigerant outlet side of the first heat exchange unit 31A during the dry operation, and the multi-pass (for example, two passes) first refrigerant path 37A and the second refrigerant. The path 37B is connected by a single-pass refrigerant path (decompression pipe 32).
[0028]
The predetermined pressure loss in the decompression pipe 32 is set to such an extent that the temperature of the air blown into the room during the dry operation is cooled and does not cause discomfort. That is, the predetermined pressure loss is set to such an extent that the temperature of air blown into the room during the dry operation does not exceed the allowable range. Therefore, the predetermined pressure loss in the decompression pipe 32 does not need to be increased, and the decompression pipe 32 may be short. That is, space saving can be achieved.
[0029]
Specifically, the first heat exchanging portion 31 </ b> A is not illustrated, but a plurality of heat transfer tubes are inserted into a plurality of fins arranged in parallel, and the open ends of the heat transfer tubes are appropriately connected to form multiple paths (for example, A two-pass refrigerant path 37 is formed. The decompression pipe 32 is connected to the open end of the heat transfer pipe.
[0030]
A decompression pipe may be provided for each refrigerant path 37. In this case, the decompression pipe is set to be narrower than the heat transfer pipe in each refrigerant path 37, for example. Further, instead of this decompression pipe, a capillary tube or a heat transfer pipe inserted into the fin of the first heat exchange section 31A may be used. When a heat transfer tube is used, it is not necessary to add a pipe outside the first heat exchange unit 31A.
[0031]
In the conventional configuration, referring to FIG. 4, when the cooling operation is emphasized and the capacity of the second heat exchanging part 31B is made larger than the capacity of the first heat exchanging part 31A, the Mollier shown in FIG. Referring to the diagram, the cycle A-C-E-H-I is followed and the cooling capacity is improved (the cooling COP (coefficient of performance) is improved). The temperature drops below the air intake temperature. Conversely, if importance is attached to the dry operation and the capacity of the first heat exchanging part 31A is made larger than the capacity of the second heat exchanging part 31B, dehumidification is performed without trouble during the dry operation, Although it is possible to prevent the blowing temperature from decreasing, in the case of cooling operation, referring to the Mollier diagram shown in FIG. 3, the cycle A-C-F-H-I is followed, and the refrigerant in the first heat exchange unit 31A Since the pressure (evaporation temperature) is high (cycle C-F), the cooling capacity is reduced, and the operating frequency of the compressor (not shown) is increased to compensate for this reduction in cooling capacity (that is, the capacity of the compressor is increased). ) Since the control is performed, the COP of the cooling is not improved.
[0032]
In the present embodiment, the first heat exchange unit 31A is larger than the second heat exchange unit 31B. That is, the first heat exchange unit 31A and the second heat exchange unit 31B are the size of the heat exchanger when the dry operation is emphasized. Specifically, the number of heat transfer tubes that pass through the fins of the first heat exchange unit 31A is larger than the number of heat transfer tubes that pass through the fins of the second heat exchange unit 31B. That is, the capacity of the first heat exchange unit 31A is greater than the capacity of the second heat exchange unit 31B. The decompression pipe 32 is provided at a predetermined location in the refrigerant path 37 so that the temperature of the air blown into the room during the dry operation is not excessively cooled and the cooling capacity of the first heat exchange unit 31A is improved during the cooling operation. .
[0033]
The thick line (cycle A-C-D-G-H-I) in the Mollier diagram during the cooling operation shown in FIG. 3 shows the case where the indoor heat exchanger 31 functions as an evaporator.
[0034]
The refrigerant that has flowed into the first heat exchange unit 31A first evaporates by passing through the first refrigerant path 37A having multiple paths (for example, two paths) (cycle AC in FIG. 3). By using multiple passes in this way, the refrigerant can be efficiently evaporated during the cooling operation, and the refrigerant can be efficiently condensed during the dry operation.
[0035]
And a refrigerant | coolant merges in the inlet side of the piping 32 for pressure reduction, a pressure loss arises by passing through the piping 32 for pressure reduction, and a refrigerant | coolant is pressure-reduced (in FIG. 3, cycle CD). That is, pressure loss is caused by changing from multiple passes to a single pass, and the refrigerant is decompressed.
[0036]
Next, the refrigerant depressurized by the depressurizing pipe 32 is diverted again and passes through a multi-pass (for example, two-pass) second refrigerant path 37B to evaporate (cycle DG in FIG. 3). That is, since the single pass is changed to multiple passes and the pressure is further reduced, the refrigerant can be evaporated more efficiently during the cooling operation than the conventional first heat exchange unit that places importance on dryness. It is possible to condense the refrigerant more efficiently than the first heat exchanging unit that places importance on cooling.
[0037]
The refrigerant that has flowed out of the refrigerant path 37 of the first heat exchanging portion 31A joins and passes through the second electric expansion valve 35 to be decompressed (cycle GH in FIG. 3). Since the refrigerant is decompressed by the decompression pipe 32 on the upstream side of the second electric expansion valve 35, the pressure loss in the second electric expansion valve 35 is reduced.
[0038]
And it evaporates by passing the refrigerant path 38 of the 2nd heat exchange part 31B (in FIG. 3, cycle HI).
[0039]
As described above, according to the present embodiment, the depressurizing pipe 32 for depressurizing the refrigerant is provided in the refrigerant path 37 of the first heat exchanging portion 31A. Therefore, the evaporation temperature (pressure) of the refrigerant in the first heat exchanging portion 31A. Compared with the indoor heat exchanger 31 in the case where importance is attached to the conventional dry operation, since the pressure is reduced by the pressure reducing pipe 32, the cooling capacity is improved during the cooling operation, and the COP of the cooling is improved. During dry operation, the temperature of air blown into the room will not be too cold.
[0040]
Moreover, according to this Embodiment, since the capability of 31 A of 1st heat exchange parts is larger than the capability of 2nd heat exchange part 31B, compared with the indoor heat exchanger at the time of attaching importance to the conventional cooling operation. Since the condensation capacity in the dry operation, that is, the first heat exchanging portion 31A is large, it is possible to prevent the temperature of air blown into the room during the dry operation from being lowered.
[0041]
Further, according to the present embodiment, the decompression pipe 32 can be formed by being connected to the open end of the heat transfer tube of the first heat exchanging portion 31A, so that the connection work is easy.
[0042]
In the present embodiment, the case where the first heat exchange unit 31A has the multi-pass (for example, two-pass) refrigerant path 37 has been described. However, the present invention is not limited to this, and the first heat exchange unit is a single pass. Needless to say, the present invention can be applied even when the refrigerant path has (one pass). In this case, the single-pass refrigerant path of the first heat exchange unit is provided with a decompression pipe having a larger pressure loss than the refrigerant path. Further, instead of the decompression pipe, a capillary tube or a heat transfer pipe inserted through the fin of the first heat exchange section may be used.
[0043]
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.
[0044]
【The invention's effect】
With the air conditioner according to the present invention, it is possible to improve the COP (coefficient of performance) during the cooling operation, and to prevent the temperature of the air blown out into the room during the dry operation.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner according to the present invention.
FIG. 2 is an explanatory view of an indoor heat exchanger of the air conditioner of FIG.
FIG. 3 is a Mollier diagram showing a cycle when the air-conditioning apparatus of FIG. 1 is in cooling operation.
FIG. 4 is an explanatory diagram of an indoor heat exchanger of a conventional air conditioner.
FIG. 5 is a Mollier diagram showing a cycle when a conventional air-conditioning apparatus is in a cooling operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Air conditioning apparatus 18 Compressor 31 Indoor heat exchanger 31A 1st heat exchange part 31B 2nd heat exchange part 32 Pipe for pressure reduction (pressure reduction means, refrigerant path of single pass)
37 Multi-pass refrigerant path 37A Multi-pass first refrigerant path 37B Multi-pass second refrigerant path 35 Second electric expansion valve (expansion mechanism)

Claims (3)

圧縮機と、ドライ運転時に上流に位置する第1熱交換部及びその下流に位置する第2熱交換部を有する室内熱交換器とを備え、前記第1熱交換部と前記第2熱交換部との間に膨張機構を設け、ドライ運転可能に構成された空気調和装置において、
前記第1熱交換部は、第1冷媒経路及び第2冷媒経路を備え、
第1冷媒経路及び第2冷媒経路の間には、ドライ運転時に室内への空気の吹出温度が許容される範囲を超えない程度に圧力損失が設定された冷媒を減圧する減圧手段を設けたことを特徴とする空気調和装置。
A compressor, and an indoor heat exchanger having a first heat exchange part located upstream during the dry operation and a second heat exchange part located downstream thereof , the first heat exchange part and the second heat exchange part In an air conditioner configured to provide an expansion mechanism between and dry operation,
The first heat exchange unit includes a first refrigerant path and a second refrigerant path,
Between the first refrigerant path and the second refrigerant path, there is provided a depressurizing means for depressurizing the refrigerant whose pressure loss is set to such an extent that the air blowing temperature into the room does not exceed an allowable range during dry operation. An air conditioner characterized by.
前記第1冷媒経路及び前記第2冷媒経路が夫々多パスの冷媒経路であり、前記減圧手段が単パスの冷媒経路であることを特徴とする請求項1に記載の空気調和装置。 2. The air conditioner according to claim 1, wherein each of the first refrigerant path and the second refrigerant path is a multi-pass refrigerant path, and the decompression unit is a single-pass refrigerant path . 前記第1熱交換部の能力は、前記第2熱交換部の能力よりも大きいことを特徴とする請求項1又は2に記載の空気調和装置。 The air conditioner according to claim 1 or 2, wherein the capacity of the first heat exchange unit is greater than the capacity of the second heat exchange unit .
JP2002084982A 2002-03-26 2002-03-26 Air conditioner Expired - Fee Related JP3749193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084982A JP3749193B2 (en) 2002-03-26 2002-03-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084982A JP3749193B2 (en) 2002-03-26 2002-03-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003279192A JP2003279192A (en) 2003-10-02
JP3749193B2 true JP3749193B2 (en) 2006-02-22

Family

ID=29232103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084982A Expired - Fee Related JP3749193B2 (en) 2002-03-26 2002-03-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP3749193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091140B (en) * 2021-05-25 2022-04-29 中国工商银行股份有限公司 Multilayer coil air conditioning unit and coil position adjusting method

Also Published As

Publication number Publication date
JP2003279192A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
JP2010060274A (en) Multichannel heat exchanger with dissimilar flow
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
JP5749210B2 (en) Air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JP2005273923A (en) Air conditioner
JP2008121996A (en) Air conditioner
JP3749193B2 (en) Air conditioner
JP2003214723A (en) Air conditioner
JP3724011B2 (en) Air conditioner
JP3677887B2 (en) Air conditioner
JPH10196984A (en) Air conditioner
JP2002364873A (en) Air conditioner
WO2021014520A1 (en) Air-conditioning device
JP3885063B2 (en) Air conditioner
JP2006153321A (en) Heat pump type air conditioner
JP2008121995A (en) Air conditioner
JP7450807B2 (en) air conditioner
JPH10253188A (en) Air conditioner
JP2001330309A (en) Air conditioner
JP2002340397A (en) Air conditioner
JP3596513B2 (en) Air conditioner
JP4608828B2 (en) Air conditioner, dehumidifier, and throttle mechanism
JPH11248290A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050927

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees