JP3749187B2 - Adiabatic demagnetizing refrigerator - Google Patents

Adiabatic demagnetizing refrigerator Download PDF

Info

Publication number
JP3749187B2
JP3749187B2 JP2002038837A JP2002038837A JP3749187B2 JP 3749187 B2 JP3749187 B2 JP 3749187B2 JP 2002038837 A JP2002038837 A JP 2002038837A JP 2002038837 A JP2002038837 A JP 2002038837A JP 3749187 B2 JP3749187 B2 JP 3749187B2
Authority
JP
Japan
Prior art keywords
refrigerator
heat transfer
cooled
heat
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002038837A
Other languages
Japanese (ja)
Other versions
JP2003240384A (en
Inventor
憲一 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002038837A priority Critical patent/JP3749187B2/en
Publication of JP2003240384A publication Critical patent/JP2003240384A/en
Application granted granted Critical
Publication of JP3749187B2 publication Critical patent/JP3749187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

【0001】
【発明の属する技術分野】
本発明は、非磁性の容器に格納された作業物質の持つエントロピーが、磁場依存性を持つことを利用して、被冷却物を冷却するようにされた断熱消磁冷凍機に係り、特に、常磁性塩の断熱消磁による冷凍に用いるのに好適な、必要な化学耐性を確保しつつ、作業物質と被冷却物間の伝熱性能を向上させて、冷凍能力を向上することが可能な断熱消磁冷凍機に関する。
【0002】
【従来の技術】
磁気冷凍機の一つに、ある一定の温度における磁気モーメントの系の不規則性の程度を表わすエントロピーが、磁場を作用させると、磁気モーメントが部分的に整列して低下するという原理に基づく断熱消磁冷凍機がある。この断熱消磁冷凍機は、熱の作業物質である磁性体の持つエントロピーが、磁場依存性を持つことを利用して、被冷却物を冷却する(特開平9−145195参照)。
【0003】
この断熱消磁冷凍機は、図1に例示する如く、例えばX線検出器のような被冷却物10を冷却するための、例えば常磁性塩からなる作業物質14が格納された非磁性の容器(ソルトピルと称する)12と、前記作業物質14を磁化するための、例えば超伝導磁石16と、前記ソルトピル12を補助冷却するための、排熱用の補助冷凍機(例えば液体ヘリウム、ギフォードマクマホン(GM)冷凍機、スターリング冷凍機等)18と、前記ソルトピル12に対する補助冷凍機18の熱的な接続状態をオン・オフするためのヒートスイッチ20と、これらを収容するための断熱真空槽22とを備えている。
【0004】
この断熱消磁冷凍機においては、まず、補助冷凍機18により断熱真空槽22の内部を液体ヘリウム温度程度まで冷却する。次いで、10分間程度、超伝導磁石16を励磁すると共に、ヒートスイッチ20をオンとして、補助冷凍機18により磁化熱を捨てる。次いで、ヒートスイッチ20をオフとし、ソルトピル12を熱的に孤立させ、超伝導磁石16を消磁することによって、30〜50mK程度の極低温が24時間程度得られる。
【0005】
ここで、作業物質14は、目的とする温度によって異なるが、10〜100mKの場合、常磁性塩が用いられる。例えば、50mK前後であれば、磁気転移温度が20mK程度の鉄明バンFe(NH4)SO4・12H2O(以下FAA)、30mK前後であれば、磁気転移温度が10mK程度のクロムカリ明バンCrK(SO4)・12H2O(以下CPA)といった物質が用いられる。
【0006】
このような物質では、結晶水が失われると、結晶構造が変化して、磁気的性質も変わってしまうために、被冷却物10に直接接触させて、断熱真空槽22内に設置するわけにはいかないため、非磁性の容器であるソルトピル12に格納した状態で使用する。そこで、結晶と被冷却物10を熱的につなぐ伝熱部材30が必要とされる。更に、伝熱損失を減らすために、伝熱部材30に直接、作業物質14の結晶を成長させることが望ましい。
【0007】
一方、結晶成長は、硫酸酸性水溶液から、再結晶法で析出させる。即ち、伝熱部材30は、まず、硫酸耐性を持たなければならない。更に、酸化還元電位を勘案して、作業物質と電子のやり取りをしない物質でなければならない。
【0008】
更に、冷凍機としての構造体を形成するために、いくつかの部品と接合する必要があるが、溶接(TIG、電子ビーム、レーザーなど)を用いる。このため、溶接性も材料選択の要素となる。
【0009】
伝熱部材30としては、熱の良導体である銅を用いることが一般的であるが、例えばFAAが作業物質であれば、FAAの硫酸酸性水溶液と銅が接触すると、銅は硫酸耐性を持つので、硫酸には溶けないが、三価の鉄イオンと銅の酸化還元電位を比較すると、次式に示す如くとなり、銅が溶け出す方向に反応が進む。
【0010】
Fe3+ + e =Fe2+ …0.771V
Cu2+ + 2e=Cu …0.337V
2Fe3+ + Cu=2Fe2++Cu2+…0.434V …(1)
【0011】
この対策としては、銅に金メッキを施すことが可能であるが、次に挙げるような問題をもっている。
【0012】
即ち、もともと、メッキは高々10μmオーダーの層を作るだけであるので、図2に示す如く、母材32の表面にそれ以上の凹凸がある場合には、メッキ34でカバーされない場所32Aができる。特に、角線の場合、図3に示す如く、角部32Cは、元来メッキが付き難いことが一般に知られている。
【0013】
更に、メッキの場合、母材との接触部分が合金化しており、純度が下がっているため、リサイクルも困難である等の問題点を有しいた。
【0014】
超低温での伝熱部材で、変動磁場に晒される場所は、渦電流による発熱を回避するために、薄い板や細い線状の銅が用いられる。断熱消磁冷凍機において、常磁性体塩と接する場所は、正に変動磁場に晒される場所であるから、銅線が用いられることが多い。前述の表面の状況やメッキの付き具合は、線材になっても同じである。
【0015】
又、メッキの場合には、図4に示すような線材の束や、図5に示すような平板の積層の場合には、メッキ液が奥まで浸透しなかったり、逆に、例えばシアン入りの酸であるメッキ液が間に残ることがある。
【0016】
この結果、例え金メッキを施した銅製部材であっても、銅の溶出は避けられず、銅が溶けてしまうことで、熱が流れる断面積が小さくなるだけでなく、本来目的としない結晶が析出することになり、当然磁気的性質が異なるので、冷凍機としての性能にも悪影響を及ぼす。
【0017】
又、銀も、熱の良導体であるが、程度は異なるものの、同様の現象が発生する。
【0018】
なお、金や銀の単体のソリッド線を用いることも考えられるが、前者は熱伝導が悪く、重いという問題があり、後者は、熱伝導が良すぎて溶接ができないという問題がある。
【0019】
本発明は、前記従来の問題点を解決するべくなされたもので、化学耐性を損なうことなく伝熱性能を向上して、冷凍性能を向上すると共に、母材の全表面がクラッドにより確実にカバーされるようにすることを課題とする。
【0020】
【課題を解決するための手段】
本発明は、非磁性の容器に格納された作業物質の持つエントロピーが、磁場依存性を持つことを利用して、被冷却物を冷却するようにされた断熱消磁冷凍機において、前記作業物質と被冷却物を結ぶ伝熱部材に、作業物質の溶液と接触する外側のクラッドが化学耐性の高い貴金属、内側の母材が熱伝導性の高い金属からなり、該内側の母材の面粗度が、前記外側のクラッドの厚みより小さい値にされたクラッド材を用いることにより、前記課題を解決したものである。
【0022】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0023】
本実施形態は、図1に示したような従来例と同様の断熱消磁冷凍機において、図6(縦断面図)、図7(図6のVII-VII線に沿う横断面図)及び図8(同じくVIII-VIII線に沿う横断面図)に示す如く、そのソルトピル12内の、表面に常磁性体(例えば鉄明バン)結晶を成長させて、被冷却物10へ熱を伝える多数の伝熱部材40を、図9(縦断面図)及び図10(横断面図)に示す如く、母材である熱伝導性の高い銅線42の周囲を、例えば加圧接着や圧延によって、貴金属である金44で被覆したクラッド材としたものである。
【0024】
図6乃至8において、50は、例えば銅製のクロスピース、52は、該クロスピース50を連結するねじシャフト、54は、例えばFRP製のキャップ、56は、被冷却物と接触されるサーマルリンク、58は、伝熱部材40を固定するためのグリッドプレート、60は、結晶作成時の注入口である。
【0025】
このようにして、ソルトピル12内の伝熱部材40を、金クラッド44を施した銅線42とすることによって、伝熱部材40の化学耐性については、全く問題がなくなる。又、母材の面粗度をクラッドの厚みより十分小さな値にしてクラッドした材料を用いるので、加工過程で山谷が押しつぶされており、場所によってカバーされる、されないという問題は生じない。更に、図9に示す金44と下地42の接合部46は、クラッド材にする過程が、熱間加工であるため、拡散接合状態となり、密着度も良好である。従って、金と下地間の熱の流れも良好である。
【0026】
これにより、常磁性体結晶と非冷却物を熱的によくつなぐことが可能となる。
【0027】
更に、全体を金とする場合に比べて軽量とすることができ、例えば人工衛星等に乗せる場合に有効である。
【0028】
なお、前記実施形態においては、伝熱物質40が銅線の回りに金をクラッドしたものとされていたが、母材やクラッド材の種類はこれに限定されず、例えば母材を銀としたり、クラッド材を金以外の貴金属材料とすることも可能である。
【0029】
又、金は化学耐性が良好であるので、酸、アルカリ中や、酸化還元性雰囲気での熱交換、伝熱部材にも用いることができる。
【0030】
【発明の効果】
本発明によれば、伝熱部材の化学耐性を損なうことなく、伝熱性能を向上することができ、冷凍能力を向上することができる。又、クラッド材はメッキ材よりも物質的な純度が保証されているので、リサイクルも容易である等の優れた効果を有する。
【図面の簡単な説明】
【図1】断熱消磁冷凍機の全体構成を示す概略図
【図2】金メッキを施した従来の伝熱部材の問題点を説明するための縦断面図
【図3】同じく母材が角線である場合の問題点を説明するための横断面図
【図4】従来の多数配設された伝熱部材の問題点を説明するための、伝熱部材が線材である場合を示す横断面図
【図5】同じく平板の積層状態を示す横断面図
【図6】本発明に係る断熱消磁冷凍機のソルトピルの実施形態を示す縦断面図
【図7】図6のVII-VII線に沿う横断面図
【図8】図6のVIII-VIII線に沿う横断面図
【図9】前記実施形態で用いられている伝熱部材の構成を示す縦断面図
【図10】同じく横断面図
【符号の説明】
10…被冷却物
12…ソルトピル(容器)
14…作業物質
16…超伝導磁石
18…補助冷凍機
20…ヒートスイッチ
22…断熱真空槽
30、40…伝熱部材
42…銅線(母材)
44…金クラッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adiabatic demagnetization refrigerator configured to cool an object to be cooled by utilizing the fact that entropy of a working substance stored in a non-magnetic container has a magnetic field dependency, Adiabatic demagnetization that can improve the refrigeration capacity by improving the heat transfer performance between the work substance and the object to be cooled, while ensuring the necessary chemical resistance, suitable for refrigeration by adiabatic demagnetization of magnetic salt It relates to a refrigerator.
[0002]
[Prior art]
In one of the magnetic refrigerators, the entropy representing the degree of irregularity of the system of magnetic moments at a certain temperature is adiabatic based on the principle that when a magnetic field is applied, the magnetic moments are partially aligned and lowered. There is a degaussing refrigerator. This adiabatic demagnetization refrigerator cools an object to be cooled by utilizing the magnetic field dependence of the entropy of a magnetic material, which is a thermal work substance (see JP-A-9-145195).
[0003]
As illustrated in FIG. 1, this adiabatic demagnetization refrigerator is a non-magnetic container (for example, a paramagnetic salt containing a working substance 14 for cooling an object 10 to be cooled such as an X-ray detector). A salt pill (12), a superconducting magnet (16) for magnetizing the working material (14), and an auxiliary refrigerator for exhaust heat (for example, liquid helium, Gifford McMahon (GM) for auxiliary cooling of the salt pill (12)) ) Refrigerator, Stirling chiller, etc.) 18, a heat switch 20 for turning on / off the thermal connection state of the auxiliary chiller 18 to the salt pill 12, and an adiabatic vacuum chamber 22 for housing them I have.
[0004]
In this adiabatic demagnetization refrigerator, first, the interior of the adiabatic vacuum chamber 22 is cooled to about the liquid helium temperature by the auxiliary refrigerator 18. Next, the superconducting magnet 16 is excited for about 10 minutes, the heat switch 20 is turned on, and the magnetizing heat is discarded by the auxiliary refrigerator 18. Next, the heat switch 20 is turned off, the salt pill 12 is thermally isolated, and the superconducting magnet 16 is demagnetized, whereby a cryogenic temperature of about 30 to 50 mK is obtained for about 24 hours.
[0005]
Here, although the working substance 14 varies depending on the target temperature, a paramagnetic salt is used in the case of 10 to 100 mK. For example, if it is around 50 mK, the iron transition van Fe (NH4) SO4 · 12H2O (hereinafter referred to as FAA) having a magnetic transition temperature of about 20 mK, and if it is around 30 mK, the chromium transition vane CrK (SO4) having a magnetic transition temperature of about 10 mK. -Substances such as 12H2O (hereinafter CPA) are used.
[0006]
In such a material, when crystal water is lost, the crystal structure changes and the magnetic properties also change. Therefore, the material is placed in the adiabatic vacuum chamber 22 in direct contact with the object 10 to be cooled. Since it does not exist, it is used in the state stored in the salt pill 12 which is a non-magnetic container. Therefore, a heat transfer member 30 that thermally connects the crystal and the object to be cooled 10 is required. Furthermore, it is desirable to grow crystals of the working material 14 directly on the heat transfer member 30 in order to reduce heat transfer loss.
[0007]
On the other hand, crystal growth is precipitated from a sulfuric acid aqueous solution by a recrystallization method. That is, the heat transfer member 30 must first have resistance to sulfuric acid. Furthermore, it must be a substance that does not exchange electrons with the working substance in consideration of the oxidation-reduction potential.
[0008]
Furthermore, in order to form a structure as a refrigerator, it is necessary to join several parts, but welding (TIG, electron beam, laser, etc.) is used. For this reason, weldability is also an element of material selection.
[0009]
As the heat transfer member 30, it is common to use copper which is a good conductor of heat. For example, if FAA is a working substance, when the sulfuric acid aqueous solution of FAA comes into contact with copper, copper has resistance to sulfuric acid. Although it does not dissolve in sulfuric acid, the oxidation-reduction potentials of trivalent iron ions and copper are compared as shown in the following formula, and the reaction proceeds in the direction of copper dissolution.
[0010]
Fe 3+ + e = Fe 2 + … 0.771V
Cu 2+ + 2e = Cu ... 0.337V
2Fe 3+ + Cu = 2Fe 2+ + Cu 2 + ... 0.434 V (1)
[0011]
As a countermeasure, gold can be plated on copper, but it has the following problems.
[0012]
That is, originally, the plating only forms a layer of the order of 10 μm at most. Therefore, as shown in FIG. 2, when the surface of the base material 32 has more irregularities, a place 32A not covered with the plating 34 is formed. In particular, in the case of a square line, as shown in FIG. 3, it is generally known that the corner portion 32C is inherently difficult to be plated.
[0013]
Furthermore, in the case of plating, the contact portion with the base material is alloyed, and the purity is lowered, so that there are problems such as difficulty in recycling.
[0014]
In a heat transfer member at an extremely low temperature, a thin plate or thin linear copper is used in a place exposed to a varying magnetic field in order to avoid heat generation due to eddy current. In an adiabatic demagnetizing refrigerator, the place in contact with the paramagnetic salt is a place that is exposed to a fluctuating magnetic field, and thus a copper wire is often used. The above-mentioned surface conditions and plating conditions are the same even when the wire is used.
[0015]
In the case of plating, in the case of a bundle of wire rods as shown in FIG. 4 or a laminate of flat plates as shown in FIG. 5, the plating solution does not penetrate deeper, or conversely, for example, containing cyan. An acid plating solution may remain in between.
[0016]
As a result, even if it is a copper member plated with gold, elution of copper is unavoidable, and melting of copper not only reduces the cross-sectional area through which heat flows, but also precipitates crystals that are not originally intended. Of course, the magnetic properties are different, which adversely affects the performance of the refrigerator.
[0017]
Silver is also a good conductor of heat, but the same phenomenon occurs although the degree is different.
[0018]
Although it is conceivable to use a single solid wire of gold or silver, the former has a problem that heat conduction is poor and heavy, and the latter has a problem that heat conduction is too good to be welded.
[0019]
The present invention has been made to solve the above-mentioned conventional problems, and improves heat transfer performance without impairing chemical resistance, improves refrigeration performance, and reliably covers the entire surface of the base material with the cladding. The challenge is to make it happen.
[0020]
[Means for Solving the Problems]
The present invention is an adiabatic demagnetization refrigerator configured to cool an object to be cooled by utilizing the fact that entropy of a working substance stored in a non-magnetic container has a magnetic field dependency, and the working substance and a heat transfer member connecting the object to be cooled, the precious metal outer cladding is highly chemical resistant to contact with a solution of the working substance, Ri is the inside of the preform Do of a highly thermally conductive metal, surface roughness of the inner side of the base material By using a clad material whose degree is smaller than the thickness of the outer clad , the above problem is solved.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
This embodiment is a heat insulating demagnetization refrigerator similar to the conventional example as shown in FIG. 1, and FIG. 6 (vertical sectional view), FIG. 7 (transverse sectional view taken along line VII-VII in FIG. 6) and FIG. As shown in (a cross-sectional view taken along the line VIII-VIII), a paramagnetic material (for example, iron-light vane) crystal is grown on the surface of the salt pill 12 to transfer heat to the object 10 to be cooled. As shown in FIG. 9 (longitudinal sectional view) and FIG. 10 (transverse sectional view), the thermal member 40 is made of a noble metal around, for example, pressure bonding or rolling, around a copper wire 42 having high thermal conductivity as a base material. A clad material covered with a certain gold 44 is used.
[0024]
6 to 8, 50 is a cross piece made of copper, for example, 52 is a screw shaft for connecting the cross piece 50, 54 is a cap made of FRP, for example, 56 is a thermal link to be in contact with an object to be cooled, Reference numeral 58 denotes a grid plate for fixing the heat transfer member 40, and reference numeral 60 denotes an injection port for crystal production.
[0025]
Thus, by making the heat transfer member 40 in the salt pill 12 the copper wire 42 with the gold clad 44, there is no problem with respect to the chemical resistance of the heat transfer member 40. Further, since a material clad with the surface roughness of the base material set to a value sufficiently smaller than the thickness of the clad is used, there is no problem that peaks and valleys are crushed in the processing process and are not covered by places. Furthermore, the bonding portion 46 between the gold 44 and the base 42 shown in FIG. 9 is in a diffusion bonding state because the process of forming a clad material is hot working, and the degree of adhesion is also good. Therefore, the heat flow between the gold and the base is also good.
[0026]
Thereby, it becomes possible to thermally connect the paramagnetic crystal and the non-cooled material well.
[0027]
Furthermore, it can be made lighter than the case where the whole is made of gold, and is effective, for example, when it is mounted on an artificial satellite or the like.
[0028]
In the embodiment, the heat transfer material 40 is clad with gold around the copper wire. However, the type of the base material and the clad material is not limited to this, and for example, the base material is silver. The clad material can be a noble metal material other than gold.
[0029]
Further, since gold has good chemical resistance, it can be used for heat exchange and heat transfer members in an acid, alkali, or oxidation-reduction atmosphere.
[0030]
【The invention's effect】
According to the present invention, the heat transfer performance can be improved and the refrigerating capacity can be improved without impairing the chemical resistance of the heat transfer member. Further, since the clad material has a higher material purity than that of the plated material, the clad material has excellent effects such as easy recycling.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the overall configuration of an adiabatic demagnetization refrigerator. FIG. 2 is a longitudinal sectional view for explaining the problems of a conventional heat transfer member plated with gold. FIG. 4 is a cross-sectional view for explaining a problem in a certain case. FIG. 4 is a cross-sectional view showing a case where the heat transfer member is a wire for explaining a problem of a conventional heat transfer member arranged in large numbers. 5 is a cross-sectional view showing the laminated state of flat plates. FIG. 6 is a vertical cross-sectional view showing an embodiment of a salt pill of an adiabatic demagnetization refrigerator according to the present invention. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 6. FIG. 9 is a vertical cross-sectional view showing the configuration of the heat transfer member used in the embodiment. FIG. Explanation】
10 ... object to be cooled 12 ... salt pill (container)
14 ... Working material 16 ... Superconducting magnet 18 ... Auxiliary refrigerator 20 ... Heat switch 22 ... Insulating vacuum tank 30, 40 ... Heat transfer member 42 ... Copper wire (base material)
44 ... Gold cladding

Claims (1)

非磁性の容器に格納された作業物質の持つエントロピーが、磁場依存性を持つことを利用して、被冷却物を冷却するようにされた断熱消磁冷凍機において、
前記作業物質と被冷却物を結ぶ伝熱部材に、作業物質の溶液と接触する外側のクラッドが化学耐性の高い貴金属、内側の母材が熱伝導性の高い金属からなり、該内側の母材の面粗度が、前記外側のクラッドの厚みより小さい値にされたクラッド材を用いたことを特徴とする断熱消磁冷凍機。
In the adiabatic demagnetization refrigerator designed to cool the object to be cooled by utilizing the magnetic field dependence of the entropy of the working substance stored in the non-magnetic container,
A heat transfer member connecting the working substance and the object to be cooled, the precious metal outer cladding is highly chemical resistant to contact with a solution of working medium, Ri Do from the inside of the high base material thermal conductivity metal, the inner mother A heat insulating demagnetizing refrigerator using a clad material having a surface roughness less than the thickness of the outer clad .
JP2002038837A 2002-02-15 2002-02-15 Adiabatic demagnetizing refrigerator Expired - Fee Related JP3749187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038837A JP3749187B2 (en) 2002-02-15 2002-02-15 Adiabatic demagnetizing refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038837A JP3749187B2 (en) 2002-02-15 2002-02-15 Adiabatic demagnetizing refrigerator

Publications (2)

Publication Number Publication Date
JP2003240384A JP2003240384A (en) 2003-08-27
JP3749187B2 true JP3749187B2 (en) 2006-02-22

Family

ID=27780048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038837A Expired - Fee Related JP3749187B2 (en) 2002-02-15 2002-02-15 Adiabatic demagnetizing refrigerator

Country Status (1)

Country Link
JP (1) JP3749187B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516042A (en) * 2007-02-12 2010-05-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003240384A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
US5216580A (en) Optimized integral heat pipe and electronic circuit module arrangement
JPH10330936A (en) Opposite target type sputtering device
CN101694802B (en) Electrically conductive shield for refrigerator
JP3749187B2 (en) Adiabatic demagnetizing refrigerator
JP2006324325A (en) Super-conducting magnet apparatus
US4537033A (en) Cryogenic magnet systems
EP0223265B1 (en) A method for manufacturing the working material used in a magnetic refrigerator
JP7010283B2 (en) Heat exchanger, heat exchange system and heat exchange method
JP2013098549A (en) Heat conducting component, manufacturing method therefor, refrigeration system and mri equipment
JPH04242901A (en) Magnetic body material for magnetic refrigeration
JP2003324013A (en) Oxide superconductor current lead
JP2002064014A (en) Superconductive current lead
Arjun et al. Efficient Adiabatic Demagnetization Refrigeration to below 50 mK with Ultrahigh-Vacuum-Compatible Ytterbium Diphosphates A YbP 2 O 7 (A= Na, K)
JP2949003B2 (en) Cryogenic equipment
JP2000018744A (en) Pulse-pipe-type refrigerator and magnetic-shielding-type refrigeration system
CN110993143A (en) Compact superconductive neutron polarization turner
JPS6383235A (en) Manufacture of working substance for magnetic refrigeration
CN117308400A (en) Magnetic heating module for extremely low-temperature heat-insulating demagnetizing refrigerator
CN219243961U (en) Crystal thermal bridge structure
WO2014048984A1 (en) Heat conducting device, cooling apparatus, and magnetic resonance system
CN211742688U (en) Compact superconductive neutron polarization turner
JPH0878507A (en) Silicon wafer holder for semiconductor production system
CN117308399A (en) Extremely low temperature magnetism hot mould piece
JPH0745423A (en) Superconducting magnet for mri device
JPS59151479A (en) Superconductive magnet device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees