JP3749048B2 - Square sealed battery and manufacturing method thereof - Google Patents

Square sealed battery and manufacturing method thereof Download PDF

Info

Publication number
JP3749048B2
JP3749048B2 JP27393399A JP27393399A JP3749048B2 JP 3749048 B2 JP3749048 B2 JP 3749048B2 JP 27393399 A JP27393399 A JP 27393399A JP 27393399 A JP27393399 A JP 27393399A JP 3749048 B2 JP3749048 B2 JP 3749048B2
Authority
JP
Japan
Prior art keywords
sealing body
sealing
sealed battery
battery
shaft body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27393399A
Other languages
Japanese (ja)
Other versions
JP2001093485A (en
Inventor
敬 長瀬
太計男 浜松
雅雄 井上
英之 浅沼
直義 樋之津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27393399A priority Critical patent/JP3749048B2/en
Priority to US09/670,193 priority patent/US6579640B1/en
Priority to EP00121056A priority patent/EP1089363A1/en
Priority to TW089119918A priority patent/TW465135B/en
Priority to CNB001331124A priority patent/CN1227755C/en
Priority to HU0003779A priority patent/HUP0003779A3/en
Priority to KR1020000056889A priority patent/KR100718386B1/en
Publication of JP2001093485A publication Critical patent/JP2001093485A/en
Application granted granted Critical
Publication of JP3749048B2 publication Critical patent/JP3749048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は角形密閉電池とその製造方法に関し、特に封口体の構造の改良技術に関する。
【0002】
【従来の技術】
近年、携帯電話に代表されるように個人向け携帯型デジタル端末(PDA)などの小型電子機器が急速に普及しつつある。これらの電子機器には比較的長時間の連続使用に耐えうる性能が要求されるため、その電源として小型ながら高いエネルギー密度の電池を開発すべく研究がなされている。
【0003】
このような背景に伴い、上記電子機器には角形アルカリ蓄電池などの角形密閉電池が用いられる傾向にある。角形アルカリ蓄電池は他の形式のものに比べて単位体積当たりの電気容量が大きいなどの優れた特徴を持っている。
ここで図5は、角形アルカリ蓄電池の一例である角形ニッケル水素蓄電池の構成を示す部分断面図である。当該ニッケル水素蓄電池10は、外装缶20、発電要素200、封口体30等から主として構成される。そのサイズは、例えば厚み6.1mm×幅17.0mm×高さ35.5mmである。
【0004】
外装缶20、封口体30はともにニッケル鋼板をプレス成形してなるものであり、金属製の電池筐体を構成する。このうち封口体30の主面上には約3.5mm角程度の電極端子31(当図では正極端子)が一つ配置されている。正極端子31では電池内部側で筒状部材313(図6参照)がガスケット312を介してカシメ処理されており、この部分で正極端子31と封口体30との間の密閉性が確保されている。
【0005】
発電要素200は、短冊状の正極板201、セパレータ202、負極板203を重ね、これらに電解液を含浸したものであり、外装缶20に収納される。負極板203は、ニッケル鋼板からなるパンチングメタルの表面に水素吸蔵合金が活物質として塗布されている。また正極板201は、ニッケル鋼板からなるパンチングメタルの表面に水酸化ニッケルなどを主成分とする活物質が塗布されている。
【0006】
このうち正極板201は、タブ2010、正極集電体303を介して正極端子31と電気的に接続される。
封口体30はスペーサ21と絶縁板302が対向するように外装缶20の開口部15に配置され、当該開口部15の縁周に沿ってレーザ溶接される。これにより、外装缶20の内部は封止される。
【0007】
ここで図6は封口体30の詳細図である。(a)は封口体30の正面図、(b)はA-A’部分断面図、(c)は裏面図をそれぞれ表す。(b)のように端子キャップ310の内部には弾性ゴムからなる弁体316が内蔵されており、通常時は通気口315の周辺を押圧して電池内部を密閉している。そして電池の内圧が一定以上に上昇すると、ガス圧により当該弁体316は上部へ圧縮され、電池内部のガスが排気口311から排気される。これにより電池の内圧は低下し、弁体316は再び元の位置に復帰する。
【0008】
このような角形アルカリ蓄電池は、厚みを小さくしてスリム化が図られているが、現在もさらなる小型化が要求されている。
【0009】
【発明が解決しようとする課題】
しかしながら、封口体の幅(x方向幅)を小さくしてスリム化を行おうとすれば、当該幅方向両端の封口体の周縁端部が正極端子に近づくことになる。一般に封口体と外装缶の開口部とはレーザ溶接などの方法によって加熱封止するため、正極端子のガスケットなどの樹脂部品中心が溶接箇所に近い位置にあると、熱影響を受けて変形するおそれがある。特に、正極端子31の筒状部材313付近が加熱されるとガスケット312が変形してしまい、電池内部の密閉性が失われ易くなって電池性能が劣化する原因ともなりうる。
【0010】
本発明はこのような課題に鑑みてなされたものであって、その目的は、電池の密閉性を損なうことなく、よりスリム化が可能な角形密閉電池とその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明は発電要素を外装缶に収納し、当該外装缶の開口部に対し封口体を加熱封止してなる角形密閉電池であって、封口体にはその主面から外側に筒状に突出した突出部が備えられるとともに、軸体がガスケットを介して前記突出部に挿設されることにより電極端子が構成され、前記突出部の先端において、前記軸体がカシメ処理により突出部に固定されているものとした。
【0012】
このように、封口体の主面上よりも高い突出部で軸体がガスケットを介して固定されるため、従来のように封口体と外装缶の開口部を加熱封止する際に熱影響を受けにくくなる。したがって、その分電池幅を小さくしてもガスケットの損傷を抑制することができ、角形密閉電池を良好にスリム化することができる。
また本発明は、電極端子のサイズが比較的大きくなりやすいカシメ処理によって、封口体と電極端子とを連結する場合に適用すると、電池内部における電極端子の形状が従来よりも簡単になるため、例えば電極端子に電極タブを直付けすることが可能になるなどの効果が得られる。
【0013】
さらに本発明は、封口体と外装缶がともに金属製で、かつ当該両者がレーザ溶接されることにより電池内部が密閉される場合においても、ガスケットなどの樹脂部品が熱影響を受けにくくなるため、電池をスリム化しても高い密閉性を維持することができる。
なお前記突出部は、具体的には封口体主面よりも1ミリ以上突出させるのが望ましいことが、後述の実施例により明らかになっている。
【0014】
【発明の実施の形態】
1.実施の形態1
1-1.角形ニッケル水素蓄電池の構成
図1は、実施の形態1に係る角形ニッケル水素(Ni-H)蓄電池60(以下、「電池60」と称する)の外観斜視図である。本電池60は前述した従来型の角形ニッケル水素蓄電池10とほぼ同様の発電要素を有しているが、封口体40付近の構成が従来と明確に異なる特徴を持つ。
【0015】
すなわち当図のように、本電池60では封口体40の主面上から突出した正極端子41と、当該正極端子41とは別個に安全弁42が設けられている。本実施の形態では、正極(電極)端子41と安全弁42をそれぞれ独立して設けている。
なお封口体40の縁周は、外装缶50の開口部51とレーザ溶接され、電池内部が密閉されている。また安全弁42の弁キャップ421は封口板401に直付けされているため、正極端子41とは逆に負極性を帯びるようになっている。
【0016】
ここで、図2は封口体40の詳細図である。(a)は封口体40の正面図、(b)はB-B’部分断面図、(c)は裏面図をそれぞれ表す。
安全弁42は、B-B’部分断面図(b)に示すように弁キャップ421中に弾性ゴムからなる弁体423を内蔵しており、開口部402、排気穴422を通して電池内部と連通しているが、通常は弁体423が開口部402の周辺を押圧して密閉閉塞している。また(a)に示す弁キャップ421は封口板401に溶接などによって直付け固定されており、封口板401および外装缶50と同じ極性(負極性)に帯電される。
【0017】
次に挙げる図3は、正極端子41を中心とする構造を詳細に示す封口体40の部分断面図である。正極端子41は、封口板401を絞り加工してなる筒状の突出部412において、端子リベット411が頭部を電池内側に向けた状態でリング414にはめ込まれた構成であって、端子リベット411とリング414の間にガスケット413等が介挿されて作製されている。
【0018】
具体的には、端子リベット411は電池の内側方向から絶縁板410、封口板401、ガスケット413、リング414に順次通され、端子リベット411の軸の先端がカシメ処理され、変形部4111となってリング414と連結している。この正極端子41は内部に安全弁を内蔵しない構成のため、従来のように安全弁内蔵型の端子に比べて非常にコンパクトでありながら、簡単な部品構造で作ることが可能となっている。
【0019】
なお絶縁板410とガスケット413はナイロン樹脂、また端子リベット411、リング414等はニッケル鋼からそれぞれなる。
絶縁板410は、発電要素200を外装缶50内で固定するようにz方向に厚みを有しており、その中央部で端子リベット411を取り付けるために、B-B’断面に沿って逆凹字型の形状(図2参照)を有している。前記突出部412は、その先端部4121のエッジ断面が傾斜するように、縁が尖鋭に成形されており、これによって前記カシメ処理時に先端部4121がガスケット413に食い込んで電池内部の気密性を良好に確保する働きをなす。また当該カシメ処理時に端子リベット411の頭部に形成されたフック部4112が絶縁板410に食い込み、端子リベット411と絶縁板410との間の一層の気密性を確保する。ここで図中、4113はカシメ処理時に生じた打ち込み跡である。
【0020】
このように電池50では、従来では封口板401付近で行っていたカシメ処理を正極端子41の先端で主として行うため、封口板401付近で正極端子41にかかる構造が簡単で済む。
なお、突出部412の部材厚みは封口板401の他の部分の厚みよりも薄く加工され、熱放散性が良くなるように図られている。
【0021】
以上の電池50によれば、突出部412によって正極端子41が封口板401の主面から一定の距離をおいて構成されるので、これに伴いガスケット413などの樹脂部品の電池の密閉に関する部位が従来に比べて封口体40の縁周から遠くなり、外装缶50の開口部51のレーザ溶接時に熱影響を受けにくくなる。したがって、電池60をスリム化しても正極端子40の構成部品が変形するのが防止され、良好に電池内部の密閉性が保たれるので、優れた性能を有する電池60とすることができる。このような効果は、特に本電池60のように電池筐体401、50が金属製であって、両者が高熱のレーザ溶接によって封止され、正極端子41周辺の樹脂部品に熱影響が出やすい場合に有効である。
【0022】
また、本実施の形態1ではさらに、安全弁42(詳しくは弁キャップ421)が封口板401と一体になっており、負極性に帯電している。このことから安全弁42を負極端子として用いることもできる。これにより本電池60は、封口体上に二つの極性の電極端子が並設されていることになり、複数の電池60を連結する場合などに使い勝手が良くなっている。このように電池60は、スリム化しても優れた性能を呈するものである。
【0023】
2.実施の形態2
2-1.角形ニッケル水素蓄電池電池(封口体付近)の構成
図4は、実施の形態2に係る角形ニッケル水素蓄電池の封口体70の構造を示す図である。当図に示すように、本実施の形態2が前記実施の形態1と異なる点は、正極端子が封口板701の中心に配置されている点にある。本発明では、従来に比べて正極端子71を中心とする構成が非常にコンパクトであるため、当実施の形態1と同様の効果を確保しつつ、さらに正極端子71の位置を封口板701上で変更することも可能になっている。この融通性は、電池のスリム化に加え、その用途に合わせた電池の形状設計に柔軟に対応できる効果を奏すると思われる。
【0024】
3.角形ニッケル水素蓄電池の作製方法
次に、上記した各実施の形態の角形ニッケル水素蓄電池の作製方法について、その一例を説明する。
3-1.外装缶の作製
外装缶は、ここではニッケルメッキ鋼板(厚み0.45mm)を打ち抜き金型を用いて、深絞り加工により成形し作製する。外装缶のサイズの一例としては、従来型のもの(図5)よりもさらに小型化を図り、鋼板厚み約0.4mm、最終厚み4.2mm×幅26.0mm×高さ35.0mmとすることができる。
【0025】
3-2.封口体の作製
封口体の封口板は、例えばニッケルメッキ鋼板を打ち抜き金型により所定の形状に作製することができる。ただし、突出部については深絞り加工処理を行って形成する。ここでは突出部の突出量を封口板の表面から1mm程度とし、その鋼板厚みを0.2mmとする。またこのとき突出部の先端のエッジ断面を研ぎ出し加工などにより傾斜させる。
【0026】
封口板が成形できたら、次に樹脂製のガスケット、絶縁板を介してニッケル鋼製の端子リベット、リング(直径約3.0mm)をそれぞれ突出部に通し、カシメ処理にて端子リベットの先端を変形させて固定し、これにより正極端子を完成する。
さらに、エチレン-プロピレン(EPDM)製の円柱形弾性ゴムからなる弁体(直径2.1mm)を封口板の通気孔に押圧しつつ、ニッケル鋼製の弁キャップ(約3mm角)を上から封口板に固定し、負極端子を兼ねる安全弁を完成する。
【0027】
以上で封口体が作製される。
3-3.発電要素の作製
ニッケル鋼板からなるパンチングメタルに水酸化ニッケルを主成分とする正極活物質を塗布して正極板を作製し、当該パンチングメタルに水素吸蔵合金を塗布したものを負極板としてそれぞれ作製する。そしてナイロン樹脂からなる多孔性シートのセパレータを介しながら、これらの極板を交互に積層し、発電要素とする。このとき負極板および正極板の各パンチングメタルにタブを取付ておく。なお、発電要素の最外主面にはセパレータもしくは負極板(電極端子と異なる極性)が位置するようにする。負極板が最外主面に位置する場合には、直接負極板が外装缶と接触するため負極タブは付けなくてもよい。
【0028】
3-4.電池の完成
外装缶に前記作製した発電要素を収納し、正極板より延出するタブをスポット溶接などにより正極端子に接続する。その後外装缶内に30wt%の水酸化カリウム(KOH)水溶液よりなる電解液を注液する。そして外装缶の開口部に封口体を配置し、両者の境界付近をレーザ溶接することによって封止し、電池内部を密閉する。
【0029】
これにより、角形ニッケル水素蓄電池が完成される。
なお、本実施の形態では電極端子と発電要素の正極板のタブを先に接続(溶接)しておき、その後端子リベットを封口板に通して固定するようにしてもよい。こうすると、封口板に固定された電極端子に発電要素を接続するよりも作業性が良くなり、歩留まりが改善されるといった効果が期待できる。
【0030】
4.実施例とその評価
4-1.電池の作製
本発明の効果を調べるため、実施例として実施の形態2の角形ニッケル水素蓄電池を作製した。基本的な仕様は下記の通りとし、突出部の高さが0.5mm、1.0mm、2.0mmのものについてそれぞれ10000個作製した。
【0031】
また、従来型の突出部を持たない(すなわち突出部の高さが0.0mmの)角形ニッケル水素蓄電池についても比較例として10000個作製した。
電池外寸;鋼板厚み0.4mm、厚み4.2mm×幅26.0mm×高さ35.0mm
公称容量;650mAh
4-2.性能評価実験
上記作製した各電池について、リーク発生(内部封止性)評価実験を行った。具体的には各電池を0.1Cで16時間充電し、その後1時間休止を挟んで0.2Cで電圧が1.0Vになるまで放電(約5時間)させた。これを肉眼による観察もしくはフェノールフタレイン溶液の変色(透明→赤色)によって判定し、リークが発生している電池か否かを調べた。
【0032】
これらの実験結果をまとめたのが次の表1である。
【表1】

Figure 0003749048
4-3.実験結果の考察
上記表1から明らかなように、実施例では確実に従来よりもリーク発生数が抑制されていることが分かった。また突出部の高さが高いほどリーク発生数が少なく改善されている。本発明の突出部による効果、すなわち封口体と外装缶の開口部のレーザ溶接時に、ガスケットの変形が有効に防止されるため、電池の密閉性が良好に保たれていることが窺える。
【0033】
なお、この実験の実施例では突出部の高さが0.5mmのものに比べて1.0mm以上のものが優れた性能を呈した。したがって本発明の効果を十分に得るためには、突出部の高さを1.0mm以上突出させるのが望ましいと言える。
5.その他の事項
上記各実施の形態ではニッケル水素蓄電池について例を示したが、本発明は当然ながらこれに限定するものではなく、ニッケル・カドミウム蓄電池や、Liイオン電池などの非水電解液を用いる他の種類の角形密閉電池であってもよい。
【0034】
また電極端子を正極、安全弁を負極にそれぞれ帯電させる例を示したが、この逆極性の構成であってもよい。
さらに、正極端子と安全弁の位置は上記各実施の形態の位置に限るものではない。ただし、生産性の向上や組電池としての使いやすさを考慮すれば、封口体上に前記両者を並設するのが望ましいと思われる。
【0035】
さらに、本発明の電池のサイズは実施例で作製したものに限定するものではなく、これ以外のサイズであってもよい。ここで本発明は、電池の厚み(x方向厚み)については、現行の金属製外装缶と封口体を有する角形密閉電池の厚みが約6mm程度であって、この厚み以下よりも小さくする場合に特に有効であることが発明者らによって明らかにされている。また正極端子の径(リング414の直径)は、実施例の3.0mmよりさらに小さくすることも可能である。
【0036】
また、実施の形態では正極端子と安全弁が別個に配設された例を示したが、突出部の内部に安全弁を内蔵してこれらを一体構成としても構わない。但し、この安全弁内蔵型の電極端子は構成が複雑になりやすい性質があり、部品構成の点からも小型化が難しい場合があるため、角形密閉電池をスリム化するためには実施の形態に示したように、電極端子と安全弁を別個に配設するのが望ましい。
【0037】
【発明の効果】
以上のことから明らかなように、本発明発電要素を外装缶に収納し、当該外装缶の開口部に対し封口体を加熱封止してなる角形密閉電池であって、封口体にはその主面から外側に筒状に突出した突出部が備えられるとともに、軸体がガスケットを介して前記突出部に挿設されることにより電極端子が構成され、前記突出部の先端において、前記軸体がカシメ処理により突出部に固定されて構成されるので、従来のように封口体と外装缶の開口部の加熱封止時にガスケットが熱影響を受けて変形するのが防止される。したがって、密閉角形電池をスリム化しても電池の密閉性を良好に維持することができる。
【0038】
このような効果は、特に外装缶と封口体が金属製で両者をレーザ溶接する場合や、電極端子のサイズが比較的大きくなりやすいカシメ処理によって、封口体と電極端子とを連結する場合などに有効である。
【図面の簡単な説明】
【図1】本発明の実施の形態1の角形ニッケル水素蓄電池の外観斜視図である。
【図2】 前記角形ニッケル水素蓄電池の封口体を示す図である。
(a)
封口体の上部から見下ろした正面図である。
(b)
封口体の一部断面図である。
(c)
封口体の裏面図である。
【図3】正極端子付近の断面図である。
【図4】本発明の実施の形態2の角形ニッケル水素蓄電池の封口体を示す図である。
【図5】 従来型の角形ニッケル水素蓄電池の主要構成を示す一部断面斜視図である。
【図6】従来型の角形ニッケル水素蓄電池の封口体を示す図である。
(a)
封口体の上部から見下ろした正面図である。
(b)
封口体の一部断面図である。
(c)
封口体の裏面図である。
【符号の説明】
40、70 封口体
41、71 正極端子
42、72 安全弁
50 外装缶
60 角形アルカリ蓄電池
401、701 封口板
402、702 開口部
410、710 絶縁板
411、711 端子リベット
412 突出部
413 ガスケット
414 リング
421 弁キャップ
422 排気穴
423、723 弁体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rectangular sealed battery and a method for manufacturing the same, and particularly to a technique for improving the structure of a sealing body.
[0002]
[Prior art]
In recent years, small electronic devices such as portable digital terminals (PDA) for personal use, as represented by mobile phones, are rapidly spreading. Since these electronic devices are required to have performance capable of withstanding continuous use over a relatively long period of time, research has been conducted to develop a small but high energy density battery as a power source.
[0003]
With such a background, a prismatic sealed battery such as a prismatic alkaline storage battery tends to be used for the electronic device. The prismatic alkaline storage battery has excellent features such as a larger electric capacity per unit volume than other types.
Here, FIG. 5 is a partial cross-sectional view showing a configuration of a prismatic nickel metal hydride storage battery which is an example of a prismatic alkaline storage battery. The nickel metal hydride storage battery 10 is mainly composed of an outer can 20, a power generation element 200, a sealing body 30, and the like. The size is, for example, thickness 6.1 mm × width 17.0 mm × height 35.5 mm.
[0004]
Both the outer can 20 and the sealing body 30 are formed by press-molding a nickel steel plate, and constitute a metal battery casing. Among these, on the main surface of the sealing body 30, one electrode terminal 31 (a positive electrode terminal in this figure) of about 3.5 mm square is disposed. In the positive electrode terminal 31, the cylindrical member 313 (see FIG. 6) is caulked through the gasket 312 on the inner side of the battery, and the sealing property between the positive electrode terminal 31 and the sealing body 30 is secured in this portion. .
[0005]
The power generation element 200 is formed by stacking a strip-shaped positive electrode plate 201, a separator 202, and a negative electrode plate 203 and impregnating them with an electrolytic solution, and is housed in the outer can 20. In the negative electrode plate 203, a hydrogen storage alloy is applied as an active material to the surface of a punching metal made of a nickel steel plate. The positive electrode plate 201 has a punching metal surface made of a nickel steel plate coated with an active material mainly composed of nickel hydroxide.
[0006]
Among these, the positive electrode plate 201 is electrically connected to the positive electrode terminal 31 via the tab 2010 and the positive electrode current collector 303.
The sealing body 30 is disposed in the opening 15 of the outer can 20 so that the spacer 21 and the insulating plate 302 face each other, and is laser-welded along the periphery of the opening 15. Thereby, the inside of the outer can 20 is sealed.
[0007]
Here, FIG. 6 is a detailed view of the sealing body 30. (A) is the front view of the sealing body 30, (b) represents AA 'partial sectional drawing, (c) represents a back view, respectively. As shown in FIG. 6B, a valve body 316 made of elastic rubber is built in the terminal cap 310, and normally the periphery of the vent 315 is pressed to seal the inside of the battery. When the internal pressure of the battery rises above a certain level, the valve body 316 is compressed upward by the gas pressure, and the gas inside the battery is exhausted from the exhaust port 311. As a result, the internal pressure of the battery decreases, and the valve body 316 returns to the original position again.
[0008]
Such prismatic alkaline storage batteries have been reduced in thickness to be slimmed down, but there is still a demand for further downsizing.
[0009]
[Problems to be solved by the invention]
However, if the width of the sealing body (width in the x direction) is reduced and slimming is performed, the peripheral edge of the sealing body at both ends in the width direction approaches the positive electrode terminal. In general, the sealing body and the opening of the outer can are heat-sealed by a method such as laser welding, so if the center of the resin part such as the gasket of the positive terminal is close to the welding location, it may be deformed by the influence of heat. There is. In particular, when the vicinity of the cylindrical member 313 of the positive electrode terminal 31 is heated, the gasket 312 is deformed, and the sealing performance inside the battery is easily lost, which may cause deterioration in battery performance.
[0010]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a prismatic sealed battery that can be made slimmer without impairing the sealing performance of the battery, and a manufacturing method thereof.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a rectangular sealed battery in which a power generation element is housed in an outer can, and the sealing body is heat-sealed with respect to the opening of the outer can. Rutotomoni provided with a protrusion protruding in a cylindrical shape outwardly from the surface, the electrode terminal is constituted by the shaft body is inserted into the protrusion via a gasket, at the tip of the projecting portion, the shaft body Was fixed to the protrusion by caulking .
[0012]
In this way, the shaft body is fixed via the gasket at the protruding portion higher than the main surface of the sealing body, so that when the sealing body and the opening of the outer can are heat-sealed as in the past, there is a thermal effect. It becomes difficult to receive. Therefore, even if the battery width is reduced accordingly, damage to the gasket can be suppressed, and the rectangular sealed battery can be satisfactorily slimmed.
In addition, the present invention is applied to a case where the sealing body and the electrode terminal are connected by caulking treatment in which the size of the electrode terminal is likely to be relatively large. The effect that it becomes possible to attach an electrode tab directly to an electrode terminal is acquired.
[0013]
Furthermore, the present invention is such that both the sealing body and the outer can are made of metal, and even when the inside of the battery is hermetically sealed by laser welding of the both, resin parts such as gaskets are less susceptible to heat, Even if the battery is slimmed, high sealing performance can be maintained.
In addition, it is clear from the examples described later that the projecting part is desirably projected by 1 mm or more from the main surface of the sealing body.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1. Embodiment 1
1-1. Configuration of prismatic nickel metal hydride storage battery FIG. 1 is an external perspective view of a prismatic nickel metal hydride (Ni—H) storage battery 60 (hereinafter referred to as “battery 60”) according to the first embodiment. The battery 60 has substantially the same power generation element as the conventional prismatic nickel metal hydride storage battery 10 described above, but has a feature that the configuration in the vicinity of the sealing body 40 is clearly different from the conventional one.
[0015]
That is, as shown in the figure, the battery 60 is provided with a positive terminal 41 protruding from the main surface of the sealing body 40 and a safety valve 42 separately from the positive terminal 41. In the present embodiment, the positive electrode (electrode) terminal 41 and the safety valve 42 are provided independently.
The periphery of the sealing body 40 is laser-welded with the opening 51 of the outer can 50 to seal the inside of the battery. Further, since the valve cap 421 of the safety valve 42 is directly attached to the sealing plate 401, it has a negative polarity opposite to the positive terminal 41.
[0016]
Here, FIG. 2 is a detailed view of the sealing body 40. (A) is a front view of the sealing body 40, (b) is a BB 'partial sectional view, and (c) is a back view.
The safety valve 42 incorporates a valve body 423 made of elastic rubber in a valve cap 421 as shown in a partial cross-sectional view BB ′, and communicates with the inside of the battery through the opening 402 and the exhaust hole 422. However, normally, the valve body 423 presses the periphery of the opening 402 and is hermetically closed. Further, the valve cap 421 shown in (a) is directly fixed to the sealing plate 401 by welding or the like, and is charged to the same polarity (negative polarity) as the sealing plate 401 and the outer can 50.
[0017]
Next, FIG. 3 is a partial cross-sectional view of the sealing body 40 showing in detail the structure centered on the positive electrode terminal 41. The positive electrode terminal 41 has a configuration in which a terminal rivet 411 is fitted into a ring 414 with a head portion facing the inside of a battery in a cylindrical projecting portion 412 formed by drawing a sealing plate 401. A gasket 413 or the like is inserted between the ring 414 and the ring 414.
[0018]
Specifically, the terminal rivet 411 is sequentially passed through the insulating plate 410, the sealing plate 401, the gasket 413, and the ring 414 from the inside of the battery, and the tip end of the shaft of the terminal rivet 411 is caulked to form a deformed portion 4111. It is connected to the ring 414. Since the positive terminal 41 does not incorporate a safety valve therein, the positive terminal 41 can be made with a simple component structure while being very compact as compared with a conventional terminal incorporating a safety valve.
[0019]
The insulating plate 410 and the gasket 413 are made of nylon resin, and the terminal rivets 411 and the ring 414 are made of nickel steel.
The insulating plate 410 has a thickness in the z direction so as to fix the power generating element 200 in the outer can 50, and in order to attach the terminal rivet 411 at the center thereof, the insulating plate 410 is reversely concave along the BB ′ cross section. It has a letter shape (see FIG. 2). The protruding portion 412 has a sharp edge so that the edge cross section of the leading end portion 4121 is inclined. As a result, the leading end portion 4121 bites into the gasket 413 during the caulking process, thereby improving the airtightness inside the battery. To ensure that Further, the hook portion 4112 formed on the head of the terminal rivet 411 bites into the insulating plate 410 during the caulking process, and further airtightness between the terminal rivet 411 and the insulating plate 410 is secured. Here, in the figure, reference numeral 4113 denotes a drive mark generated during the caulking process.
[0020]
As described above, in the battery 50, the caulking process, which has been conventionally performed near the sealing plate 401, is mainly performed at the tip of the positive electrode terminal 41, so that the structure of the positive electrode terminal 41 near the sealing plate 401 can be simplified.
In addition, the member thickness of the protrusion part 412 is processed thinner than the thickness of the other part of the sealing board 401, and it is aimed at improving heat dissipation.
[0021]
According to the battery 50 described above, since the positive electrode terminal 41 is configured with a certain distance from the main surface of the sealing plate 401 by the protrusion 412, a portion related to sealing of the battery of resin parts such as the gasket 413 is associated with this. Compared to the prior art, the distance from the peripheral edge of the sealing body 40 is less likely to be affected by heat during laser welding of the opening 51 of the outer can 50. Therefore, even if the battery 60 is slimmed, the components of the positive electrode terminal 40 are prevented from being deformed, and the airtightness inside the battery is well maintained, so that the battery 60 having excellent performance can be obtained. In particular, the battery housings 401 and 50 are made of metal as in the case of the present battery 60 and both are sealed by high-temperature laser welding, so that the resin parts around the positive electrode terminal 41 are likely to be affected by heat. It is effective in the case.
[0022]
Further, in the first embodiment, the safety valve 42 (specifically, the valve cap 421) is integrated with the sealing plate 401 and is negatively charged. Therefore, the safety valve 42 can be used as a negative terminal. As a result, the present battery 60 has two polar electrode terminals arranged side by side on the sealing body, and is convenient when a plurality of batteries 60 are connected. Thus, the battery 60 exhibits excellent performance even if it is slimmed.
[0023]
2. Embodiment 2
2-1. Configuration of prismatic nickel-metal hydride storage battery (near the sealing body) FIG. 4 is a diagram showing the structure of the sealing body 70 of the prismatic nickel-metal hydride storage battery according to the second embodiment. As shown in the figure, the second embodiment is different from the first embodiment in that the positive electrode terminal is arranged at the center of the sealing plate 701. In the present invention, since the configuration centered on the positive electrode terminal 71 is very compact compared to the conventional case, the position of the positive electrode terminal 71 is further positioned on the sealing plate 701 while ensuring the same effect as in the first embodiment. It is also possible to change. This versatility seems to have the effect of flexibly adapting to the shape design of the battery according to its use, in addition to slimming the battery.
[0024]
3. Manufacturing method of prismatic nickel metal hydride storage battery Next, an example of the manufacturing method of the prismatic nickel metal hydride storage battery of each of the above-described embodiments will be described.
3-1. Production of exterior can The exterior can is produced by forming a nickel-plated steel plate (thickness 0.45 mm) by deep drawing using a punching die. As an example of the size of the outer can, the size of the outer can is further reduced as compared with the conventional type (FIG. 5), and the steel plate thickness is about 0.4 mm, the final thickness is 4.2 mm × the width is 26.0 mm × the height is 35.0 mm. be able to.
[0025]
3-2. Production of Sealing Body The sealing plate of the sealing body can be produced, for example, by punching a nickel-plated steel plate into a predetermined shape. However, the protrusion is formed by performing a deep drawing process. Here, the protruding amount of the protruding portion is about 1 mm from the surface of the sealing plate, and the thickness of the steel plate is 0.2 mm. At this time, the edge cross section at the tip of the projecting portion is sharpened by, for example, sharpening.
[0026]
Once the sealing plate has been formed, pass the nickel steel terminal rivet and ring (diameter: about 3.0 mm) through the resin gasket and insulating plate, respectively, and insert the tip of the terminal rivet by caulking. The positive terminal is completed by deforming and fixing.
In addition, a nickel steel valve cap (approx. 3mm square) is sealed from above while a valve body (diameter: 2.1mm) made of cylindrical elastic rubber made of ethylene-propylene (EPDM) is pressed against the vent hole of the sealing plate. A safety valve that is fixed to the plate and also serves as the negative terminal is completed.
[0027]
Thus, the sealing body is produced.
3-3. Production of power generation element A positive electrode plate is prepared by applying a positive electrode active material mainly composed of nickel hydroxide to a punching metal made of a nickel steel plate, and a negative electrode plate obtained by applying a hydrogen storage alloy to the punching metal. Respectively. Then, these electrode plates are alternately laminated through a porous sheet separator made of nylon resin to form a power generation element. At this time, a tab is attached to each punching metal of the negative electrode plate and the positive electrode plate. Note that a separator or a negative electrode plate (polarity different from that of the electrode terminal) is positioned on the outermost main surface of the power generation element. When the negative electrode plate is located on the outermost main surface, the negative electrode tab does not need to be attached because the negative electrode plate directly contacts the outer can.
[0028]
3-4. Completion of the battery The power generation element produced above is housed in an outer can, and a tab extending from the positive electrode plate is connected to the positive electrode terminal by spot welding or the like. Thereafter, an electrolytic solution made of a 30 wt% potassium hydroxide (KOH) aqueous solution is poured into the outer can. And a sealing body is arrange | positioned in the opening part of an armored can, and sealing is carried out by laser welding the boundary vicinity of both, and the inside of a battery is sealed.
[0029]
Thereby, a square nickel metal hydride storage battery is completed.
In this embodiment, the electrode terminal and the tab of the positive electrode plate of the power generation element may be connected (welded) first, and then the terminal rivet may be fixed through the sealing plate. If it carries out like this, workability | operativity will improve rather than connecting an electric power generation element to the electrode terminal fixed to the sealing board, and the effect that a yield is improved can be anticipated.
[0030]
4. Example and its Evaluation 4-1. Production of Battery In order to examine the effect of the present invention, a prismatic nickel metal hydride storage battery of Embodiment 2 was produced as an example. The basic specifications were as follows, and 10,000 protrusions were produced for the protrusions having heights of 0.5 mm, 1.0 mm, and 2.0 mm, respectively.
[0031]
In addition, as a comparative example, 10,000 square-shaped nickel metal hydride storage batteries having no conventional protrusions (that is, the protrusions having a height of 0.0 mm) were manufactured.
Battery outer dimension: steel plate thickness 0.4mm, thickness 4.2mm x width 26.0mm x height 35.0mm
Nominal capacity: 650 mAh
4-2. Performance Evaluation Experiment A leak generation (internal sealing property) evaluation experiment was performed for each of the batteries produced above. Specifically, each battery was charged at 0.1 C for 16 hours, and then discharged (approximately 5 hours) until the voltage reached 1.0 V at 0.2 C with a pause of 1 hour. This was determined by observation with the naked eye or by discoloration of the phenolphthalein solution (transparent to red) to determine whether the battery had a leak.
[0032]
The results of these experiments are summarized in Table 1 below.
[Table 1]
Figure 0003749048
4-3. Consideration of Experimental Results As is clear from Table 1 above, it was found that the number of leak occurrences was surely suppressed in the examples as compared with the prior art. Further, the higher the height of the protruding portion, the smaller the number of leaks and the improvement. Since the deformation of the gasket is effectively prevented during the effect of the protrusion of the present invention, that is, the laser welding of the opening of the sealing body and the outer can, it can be seen that the battery is well sealed.
[0033]
In this experimental example, a projection having a height of 1.0 mm or more exhibited superior performance as compared with a projection having a height of 0.5 mm. Therefore, it can be said that in order to sufficiently obtain the effects of the present invention, it is desirable to project the height of the projecting portion by 1.0 mm or more.
5. Other Matters In the above embodiments, examples of nickel-metal hydride storage batteries have been shown. However, the present invention is not limited to this example, and non-aqueous electrolytes such as nickel-cadmium storage batteries and Li-ion batteries are used. Another type of square sealed battery may be used.
[0034]
In addition, although the example in which the electrode terminal is charged to the positive electrode and the safety valve is charged to the negative electrode has been shown, a configuration of this reverse polarity may be used.
Furthermore, the positions of the positive terminal and the safety valve are not limited to the positions of the above embodiments. However, considering the improvement of productivity and the ease of use as an assembled battery, it seems desirable to arrange both of them on the sealing body.
[0035]
Furthermore, the size of the battery of the present invention is not limited to that produced in the examples, and other sizes may be used. In the present invention, the thickness of the battery (x-direction thickness) is about 6 mm when the thickness of the current rectangular outer battery having a metal outer can and a sealing body is smaller than this thickness. The inventors have shown that this is particularly effective. Further, the diameter of the positive electrode terminal (the diameter of the ring 414) can be made smaller than 3.0 mm in the embodiment.
[0036]
In the embodiment, the positive terminal and the safety valve are separately provided. However, the safety valve may be built in the projecting portion and may be integrated. However, this safety valve built-in electrode terminal tends to be complicated in configuration, and it may be difficult to reduce the size in terms of component configuration. Therefore, in order to reduce the size of the square sealed battery, it is shown in the embodiment. As described above, it is desirable to arrange the electrode terminal and the safety valve separately.
[0037]
【The invention's effect】
As is apparent from the above, the present invention is a rectangular sealed battery in which the power generation element is housed in an outer can and the sealing body is heat-sealed with respect to the opening of the outer can. Rutotomoni provided with a protrusion protruding in a cylindrical shape outward from the main surface, the electrode terminal is constituted by the shaft body is inserted into the protrusion via a gasket, at the tip of the projecting portion, the shaft Since the body is configured to be fixed to the protruding portion by caulking, it is possible to prevent the gasket from being deformed due to heat influence during the heat sealing of the sealing body and the opening of the outer can as in the prior art. Therefore, even if the sealed prismatic battery is slimmed, the sealing performance of the battery can be maintained well.
[0038]
Such an effect is particularly useful when the outer can and the sealing body are made of metal and both are laser welded, or when the sealing body and the electrode terminal are connected by caulking, which tends to make the electrode terminal size relatively large. It is valid.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a prismatic nickel metal hydride storage battery according to a first embodiment of the present invention.
FIG. 2 is a view showing a sealing body of the prismatic nickel metal hydride storage battery.
(A)
It is the front view looked down from the upper part of a sealing body.
(B)
It is a partial cross section figure of a sealing body.
(C)
It is a reverse view of a sealing body.
FIG. 3 is a cross-sectional view in the vicinity of a positive electrode terminal.
FIG. 4 is a diagram showing a sealing body of a prismatic nickel metal hydride storage battery according to a second embodiment of the present invention.
FIG. 5 is a partial cross-sectional perspective view showing the main configuration of a conventional prismatic nickel metal hydride storage battery.
FIG. 6 is a view showing a sealing body of a conventional prismatic nickel metal hydride storage battery.
(A)
It is the front view looked down from the upper part of a sealing body.
(B)
It is a partial cross section figure of a sealing body.
(C)
It is a reverse view of a sealing body.
[Explanation of symbols]
40, 70 Sealing body 41, 71 Positive terminal 42, 72 Safety valve 50 Exterior can 60 Square alkaline storage battery 401, 701 Sealing plate 402, 702 Opening 410, 710 Insulating plate 411, 711 Terminal rivet 412 Projection 413 Gasket 414 Ring 421 Valve Cap 422 Exhaust holes 423, 723 Valve body

Claims (12)

発電要素を外装缶に収納し、当該外装缶の開口部に対し封口体を加熱封止してなる角形密閉電池であって、
封口体にはその主面から外側に筒状に突出した突出部が備えられるとともに、軸体がガスケットを介して前記突出部に挿設されることにより電極端子が構成され、
前記突出部の先端において、前記軸体がカシメ処理により突出部に固定されていることを特徴とす角形密閉電池。
A prismatic sealed battery in which a power generation element is housed in an outer can and the sealing body is heat-sealed with respect to the opening of the outer can,
The sealing body is provided with a protruding portion that protrudes in a cylindrical shape outward from the main surface, and an electrode terminal is configured by inserting a shaft body into the protruding portion via a gasket,
At the tip of the projecting portion, prismatic sealed battery characterized in that it is fixed to the projecting portion and the shaft body by caulking processing.
封口体と外装缶がともに金属製であり、当該両者がレーザ溶接されて外装缶の開口部が封止された構成であることを特徴とする請求項1に記載の角形密閉電池。  2. The rectangular sealed battery according to claim 1, wherein both the sealing body and the outer can are made of metal, and both are laser welded to seal the opening of the outer can. 前記突出部は、封口体の主面から外側に1ミリ以上突出していることを特徴とする請求項1または2に記載の角形密閉電池。  3. The prismatic sealed battery according to claim 1, wherein the projecting portion projects 1 mm or more outward from the main surface of the sealing body. 前記突出部の部材厚みが、封口体の他の部分の厚みよりも薄く形成されていることを特徴とする請求項1〜3のいずれかに記載の角形密閉電池。  4. The prismatic sealed battery according to claim 1, wherein a member thickness of the protruding portion is formed thinner than a thickness of the other part of the sealing body. 前記突出部は、その先端縁が尖鋭に形成され、当該突出部の先端をガスケットに食い込ませて封口体と軸体との間が封止された構成であることを特徴とする請求項1〜4のいずれかに記載の角形密閉電池。  The protruding portion has a configuration in which a tip end edge thereof is sharply formed and a gap between a sealing body and a shaft body is sealed by biting a leading end of the protruding portion into a gasket. The square sealed battery according to any one of 4. 前記軸体は、電池内部側にフック部を備えた頭部を有するリベット状部材であって、当該軸体が絶縁板を貫通して封口体の突出部と固定され、フック部が絶縁板に食い込ませて封口体と軸体との間が封止された構成であることを特徴とする請求項1〜5のいずれかに記載の角形密閉電池。  The shaft body is a rivet-like member having a head portion provided with a hook portion on the battery inner side, the shaft body penetrates the insulating plate and is fixed to the protruding portion of the sealing body, and the hook portion is attached to the insulating plate. 6. The prismatic sealed battery according to claim 1, wherein a space between the sealing body and the shaft body is sealed by biting. 前記電極端子の軸体はガスケットにより封口体側と絶縁され、封口体上に前記電極端子とは別個に復帰式安全弁が配設されていることを特徴とする請求項1〜6のいずれかに記載の角形密閉電池。  The shaft body of the electrode terminal is insulated from the sealing body side by a gasket, and a resettable safety valve is disposed on the sealing body separately from the electrode terminal. Square sealed battery. 封口体にその主面上から電池外部方向に向かって筒状の突出部を形成する第一ステップと、
突出部にガスケットを介して軸体を挿通し、前記突出部の先端において、カシメ処理により前記軸体を前記突出部に固定する第二ステップと、
発電要素を外装缶に収納し、当該外装缶の開口部を前記封口体で加熱封止する第三ステップと
を備える角形密閉電池の製造方法。
A first step of forming a cylindrical protrusion from the main surface of the sealing body toward the outside of the battery;
A second step of inserting a shaft body into the projecting portion through a gasket and fixing the shaft body to the projecting portion by caulking at the tip of the projecting portion ;
And a third step of storing the power generation element in an outer can and heat-sealing the opening of the outer can with the sealing body.
前記第一ステップにおいて、突出部の厚みを封口体の他の部分よりも薄く形成することを特徴とする請求項に記載の角形密閉電池の製造方法。The method for manufacturing a rectangular sealed battery according to claim 8 , wherein, in the first step, the thickness of the protrusion is formed thinner than the other part of the sealing body. 前記第一ステップにおいて、突出部の先端のエッジ断面が傾斜するように絞り加工にて形成し、
前記第二ステップにおいて、突出部の先端をガスケットに食い込ませることを特徴とする請求項8または9に記載の角形密閉電池の製造方法。
In the first step, formed by drawing so that the edge cross section of the tip of the protrusion is inclined,
The method for manufacturing a rectangular sealed battery according to claim 8 or 9 , wherein, in the second step, the tip of the protruding portion is bitten into the gasket.
前記第二ステップにおいて、電池内部側にフック部を備えた頭部を有するリベット状部材の軸体を用い、当該軸体を絶縁板を貫通させて封口体の突出部と固定すると共に、フック部を絶縁板に食い込ませることを特徴とする請求項10のいずれかに記載の角形密閉電池の製造方法。In the second step, a shaft body of a rivet-like member having a head portion provided with a hook portion on the battery inner side is used, and the shaft body is fixed to the projecting portion of the sealing body through the insulating plate, and the hook portion The method for manufacturing a rectangular sealed battery according to any one of claims 8 to 10 , wherein the insulating plate is bitten. 前記第三ステップにおいて、金属製の封口体を金属製の外装缶の開口部に填めた後、両者をレーザ溶接して封止することを特徴とする請求項11のいずれかに記載の角形密閉電池の製造方法。In the third step, after wearing metallic sealing body into the opening of the metal outer can, according to one of claims 8 to 11, characterized in that sealing by laser welding both A method for manufacturing a rectangular sealed battery.
JP27393399A 1999-09-28 1999-09-28 Square sealed battery and manufacturing method thereof Expired - Fee Related JP3749048B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP27393399A JP3749048B2 (en) 1999-09-28 1999-09-28 Square sealed battery and manufacturing method thereof
US09/670,193 US6579640B1 (en) 1999-09-28 2000-09-26 Sealed rectangular battery and manufacturing method for the same
TW089119918A TW465135B (en) 1999-09-28 2000-09-27 Sealed rectangular battery and manufacturing method for the same
CNB001331124A CN1227755C (en) 1999-09-28 2000-09-27 Sealed rectangular batteries and manufacture thereof
EP00121056A EP1089363A1 (en) 1999-09-28 2000-09-27 Sealed rectangular battery and manufacturing method for the same
HU0003779A HUP0003779A3 (en) 1999-09-28 2000-09-27 Sealed rectangular battery and manufacturing method for the same
KR1020000056889A KR100718386B1 (en) 1999-09-28 2000-09-28 Sealed rectangular battery and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27393399A JP3749048B2 (en) 1999-09-28 1999-09-28 Square sealed battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001093485A JP2001093485A (en) 2001-04-06
JP3749048B2 true JP3749048B2 (en) 2006-02-22

Family

ID=17534604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27393399A Expired - Fee Related JP3749048B2 (en) 1999-09-28 1999-09-28 Square sealed battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3749048B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984359B2 (en) * 2001-08-08 2012-07-25 パナソニック株式会社 Sealed battery and its sealing plate
US7479349B2 (en) * 2002-12-31 2009-01-20 Cardiac Pacemakers, Inc. Batteries including a flat plate design
JP4888735B2 (en) * 2008-07-23 2012-02-29 トヨタ自動車株式会社 Sealed battery
JP6024095B2 (en) 2010-12-10 2016-11-09 株式会社Gsユアサ Electric storage element, method for manufacturing electric storage element, and method for manufacturing terminal
JP5699578B2 (en) 2010-12-10 2015-04-15 株式会社Gsユアサ battery
JP5920650B2 (en) 2010-12-28 2016-05-18 株式会社Gsユアサ Electricity storage element
JP5945904B2 (en) * 2010-12-28 2016-07-05 株式会社Gsユアサ Method for manufacturing power storage element
JP2012164634A (en) 2011-01-20 2012-08-30 Gs Yuasa Corp Electric storage element
JP6011344B2 (en) 2011-01-31 2016-10-19 株式会社Gsユアサ Electricity storage element
US8748034B2 (en) 2011-04-14 2014-06-10 Gs Yuasa International Ltd. Battery including baffling member including one of projecting portion and recessed portion extending from lid plate
JP6179089B2 (en) * 2011-11-29 2017-08-16 株式会社Gsユアサ Power storage device and method for manufacturing power storage device
JP6213372B2 (en) * 2014-05-19 2017-10-18 トヨタ自動車株式会社 Secondary battery and method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP2001093485A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
KR100718386B1 (en) Sealed rectangular battery and manufacturing method for the same
JP4259890B2 (en) Sealed storage battery
JP3749048B2 (en) Square sealed battery and manufacturing method thereof
JP2006269423A (en) Lithium secondary battery
CN210743993U (en) Top cap assembly, secondary battery, battery module and device
US20060068273A1 (en) Cap assembly having a vent plate and rechargeable battery with same
JP2007080598A (en) Sealed square battery
JP4023962B2 (en) Square sealed battery
US11881591B2 (en) Venting device and method for manufacturing the same
JP2019153580A (en) Battery can for battery
JP4243148B2 (en) Sealed storage battery
JP2010157503A (en) Secondary battery
JP3584656B2 (en) Method of manufacturing sealing plate for prismatic nonaqueous electrolyte battery
JP2002216709A (en) Sealed battery and manufacturing method of the same
JP4233830B2 (en) Flat rectangular battery
KR101446153B1 (en) Cap assembly for secondary battery, secondary battery using the same, and method for manufacturing the secondary battery
JP3926147B2 (en) battery
CN115275456A (en) Battery and battery packaging method
CN111213258A (en) Energy storage device
JP4354750B2 (en) Battery and manufacturing method thereof
JP2003045395A (en) Hermetically sealed storage battery
JP3023677U (en) Sealed battery cap assembly
JP2002246009A (en) Alkaline storage battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JPH0773860A (en) Manufacture of square alkaline battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

LAPS Cancellation because of no payment of annual fees