JP3748727B2 - Operation control method for water supply device - Google Patents

Operation control method for water supply device Download PDF

Info

Publication number
JP3748727B2
JP3748727B2 JP02726699A JP2726699A JP3748727B2 JP 3748727 B2 JP3748727 B2 JP 3748727B2 JP 02726699 A JP02726699 A JP 02726699A JP 2726699 A JP2726699 A JP 2726699A JP 3748727 B2 JP3748727 B2 JP 3748727B2
Authority
JP
Japan
Prior art keywords
pump
pressure
pumps
water supply
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02726699A
Other languages
Japanese (ja)
Other versions
JP2000227093A5 (en
JP2000227093A (en
Inventor
薫 中島
博和 浜田
昇 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP02726699A priority Critical patent/JP3748727B2/en
Publication of JP2000227093A publication Critical patent/JP2000227093A/en
Publication of JP2000227093A5 publication Critical patent/JP2000227093A5/ja
Application granted granted Critical
Publication of JP3748727B2 publication Critical patent/JP3748727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/029Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のポンプを用いて給水を行う可変速給水装置に係り、特に複数のポンプを負荷水量の変動に応じて追加解列するポンプの運転制御方法に関する。
【0002】
【従来の技術】
例えば集合住宅等に水道水を供給する場合には、水道本管から供給される水を一旦受水槽に受け、これをポンプを用いて加圧して集合住宅の各戸の末端給水栓に供給する。このような用途の給水装置として、図5に示すものが知られている。この給水装置は、水道本管(図示しない)に接続された受水槽10に水を一旦貯え、2台のポンプP1,P2を用いて吐出集合管12から末端の需要家の給水栓(図示しない)に給水を行うものである。ここでポンプは、少なくとも1台を可変速運転により回転速度を変化させ、ポンプ吐出側の圧力を一定、又は末端の需要家までの管路損失を含めて、需要家側で圧力が一定となるように可変速運転をしている。そして、ポンプを2台並列に配置したのは、負荷水量が少ない場合にはポンプ1台で供給し、負荷水量が増大してポンプ1台では不十分な場合には2台のポンプを並列して運転する必要があるためである。このため、負荷水量に対応させてポンプの追加解列制御が採用されている。
【0003】
図5に示す給水装置においては、多少の締切運転を行っても故障しない複数のポンプP1,P2と、ポンプの吐出側の吐出集合管12内の圧力を検出する圧力センサ14と、ポンプの運転制御を行う制御盤15とを備える。そして圧力センサ14でポンプの吐出圧力を検出して、このポンプの吐出圧力を目標圧力となるようにポンプの回転速度を変化させる可変速運転制御を行っている。この可変速運転は、負荷水量が少なくポンプが1台運転である場合には、そのポンプにより可変速運転が行われる。負荷水量が増大してポンプが2台運転となる場合には、1台のポンプは定速運転を行い、他の1台のポンプが可変速運転で負荷水量の増減に係わらずポンプ吐出圧力を目標値となるように運転制御している。従って、係る給水装置においては負荷水量の増加に対応してポンプ1台運転からポンプをもう1台追加する追加動作、及びポンプ2台運転時に負荷水量が減少した場合に1台を停止させる解列動作が必要となってくる。
【0004】
この追加解列動作を適切に行う方法として、吐出集合管12にフローリレー16を設け、ポンプ1台の定格供給水量等の所定水量以上の場合にはポンプの追加動作を行い、水量が所定水量以下の場合にはフローリレー16がこれを検出して解列動作を行う方法である。このフローリレー16は、例えばマグネット付きフロートによりリードスイッチを動作させ信号を出力するもので、この信号を制御盤12に伝達する。そして、制御盤12においては、タイマ等で一定時間水量の状態を検出し、これにより負荷水量が所定値以上であることが確認された場合には、ポンプの追加運転を行い、又2台運転から負荷水量が所定値以下であると確認された場合には、1台のポンプを解列させる。
【0005】
又、フローリレーを使用しない方法として、1台目のポンプの回転速度が最高速度になった時に、次のポンプを追加運転し、1台を定速運転とし、他の一台を可変速運転とする。そして、可変速運転のポンプの回転速度が予め定めた速度以下になった場合には、他の一台の固定速度のポンプで十分な給水能力があると判断されるので、そのような状態を一定時間の経過により確認した後に、ポンプを解列させる方法が知られている。
【0006】
【発明が解決しようとする課題】
上記フローリレーを用いる方法では、所定の水量でオン・オフするフローリレーを管路に装着する必要があり、このフローリレーは高価である。従って、フローリレーを用いた追加解列制御方法では、給水装置全体としてのコストを高くするという問題がある。又、このような方法では、設置現場の状況に応じて追加解列点の設定が異なるため、各種のフローリレーを準備する必要があり、又同一システムにおいても吐出目標圧力等が変更される毎に、追加解列点の流量値が異なってきて、このフローリレーの交換等が必要となってくる。このため、フローリレーを用いた方法では、給水装置としてのコストが上昇すると共に、システムの変更等に対応が難しくなるという問題がある。
【0007】
又、ポンプの回転速度から追加・解列を行う場合には、ポンプを追加する場合には1台運転のポンプの回転速度が最高速度に達した場合に行えばよいので簡単である。しかしながら、2台運転のポンプの内の1台を解列する際の解列速度を設定するのは、特に推定末端圧力一定制御のように、ポンプ吐出圧力の目標値が負荷水量に応じて変化する場合には、複雑な技術計算が必要となり簡単ではない。そして、システム毎に、又同一システムでも吐出目標圧力が変更される場合には、その都度、解列回転速度を設定変更する必要があり、システムの変更に対しても柔軟な対応が難しかった。
【0008】
本発明は上述した事情に鑑みて為されたもので、コストの上昇を招くことなく、又システムの変更にも容易に対応可能なポンプの追加解列動作を行うことができる給水装置の運転制御方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の給水装置の運転制御方法は、複数のポンプを負荷水量に応じて並列又は単独で運転し、少なくとも1台のポンプを所要の目標圧力となるように可変速運転を行う給水装置の運転制御方法において、複数のポンプの1台を固定速度で運転し、他の1台を可変速運転中に、該可変速運転中の1台のポンプを解列するに際して、前記可変速運転中のポンプの回転速度における締切圧力と、実際の吐出圧力とを参照して、解列を決定することを特徴とする。
【0010】
上記本発明によれば、ポンプ回転速度と該回転速度における締切圧力との関係、及び実際の吐出圧力とを参照してポンプの解列を決定することができるので、特に高価なフローリレー等の流量計を用いる必要もなく、又複雑な計算を行うこともなく、容易に且つ確実に適切なポンプの解列動作を行うことができる。
【0011】
又、前記ポンプの解列は、実際のポンプ吐出圧力を、その時の可変速運転中のポンプの回転速度に対応したポンプ締切圧力と比較して、実際のポンプ吐出圧力が対応するポンプ締切圧力よりも高くなった場合に、実行することが好ましい。これにより、適切な解列点を容易に判断することができる。
【0012】
又、前記ポンプの解列は、ポンプ吐出口から離れた末端需要家への供給圧力を一定とする推定末端圧力一定制御を実行中の給水装置に対して適用するものであることが好ましい。これにより、推定末端圧力一定制御において、適切な給水ポンプの解列動作を行うことができる。
【0013】
又、本発明の給水装置は、複数のポンプと、該ポンプを可変速運転する制御装置と、前記複数のポンプの吐出集合管に設けられた圧力センサと、前記ポンプの回転速度に対応した締切圧力のテーブルとを備え、実際吐出圧力とその時のポンプ回転速度に対応した前記テーブルの締切圧力とから、複数運転中のポンプの一台を解列することを特徴とする。これにより、コストの上昇を招くことなく、適切な解列動作を行え、システムの変更にも柔軟に対応することのできる給水装置を提供できる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図1乃至図4を参照しながら説明する。
【0015】
図1は、本発明の実施の形態の給水装置を示す。2台のポンプP1,P2があり、それぞれの吸い込み側の配管が受水槽10に接続されている。ポンプの吐出側配管は、チェッキ弁11を介して吐出集合管12に接続され、図示しないが末端の需要家の給水栓に配管を介して接続されている。吐出集合管12には圧力タンク13及び圧力センサ14が接続され、圧力タンク13はポンプによる加圧水を蓄圧して、例えば少水量時にはポンプの運転を停止し、省エネルギー運転ができるようになっている。又、圧力センサ14は、吐出集合管12におけるポンプの吐出圧力を検出し、これを制御盤15に入力することで、ポンプの吐出圧力が所定の目標値となるようにポンプの回転速度を変化させる。即ち、制御盤15には、ポンプの回転速度を変化させるインバータ装置が備えられ、圧力センサ14からの信号を入力し、ポンプ吐出圧が目標圧力になるようにポンプをPI(比例積分)制御する。ポンプの目標吐出圧力は、負荷水量の大小により需要家末端までの配管抵抗を考慮して、流量に対応して概略抵抗曲線に沿ってポンプの回転速度を変化させる推定末端圧力一定制御により制御される。
【0016】
図2は、本発明の2台運転中のポンプから1台を解列する解列動作点についてのものである。横軸は水量Qであり、縦軸は圧力(揚程)Hである。曲線N,N,Nは、それぞれポンプP1,P2の2台運転時の1台を固定速度で運転し、他方を可変速の回転速度N,N,Nで運転するQH特性を示す。そして曲線nは、回転速度nに対応する固定速度ポンプのQH特性である。そして、目標圧力曲線Sは、抵抗曲線とも呼ばれるもので、推定末端圧力一定制御方式をとる場合に、末端の需要家の圧力を一定に保つためにポンプ吐出側での水量に対応した所要吐出圧力の関係を示している。即ち水量が多い場合には、配管の抵抗があるため、ポンプ吐出側ではその配管抵抗損失分を見込んで吐出圧力を高く設定する必要があり、逆に水量が少ない場合には、配管抵抗による損失が小さいためポンプ吐出圧力を低く設定する必要がある。従って、点A以下ではポンプ1台運転であり、この目標圧力曲線Sに沿って1台運転のポンプの回転速度nが制御される。点A以上に水量が必要となる場合にはもう一台のポンプを追加運転し、1台を定格速度で固定速度の運転を行うと共に、もう一台のポンプを目標圧力曲線Sに沿うように回転速度を制御する。即ち、追加したポンプP2は、推定末端圧力制御の目標圧力曲線Sに沿って移動する。
【0017】
ここでポンプ2台運転を必要とする水量Q1においては、動作点がBであり、この時の可変速運転のポンプ回転速度はNであり、圧力センサで検出される実際吐出圧力は、P1である。そして、この回転速度Nのポンプの締切運転時の締切圧力PF1は、実際吐出圧力P1よりも大きい。即ち、このことは未だ解列すべき状態でないことを示している。一方で動作点A以下でポンプ1台が固定速度nで運転されている水量Q2では、ポンプ運転点Cは固定速度の1台のポンプの速度nのQH特性曲線上にある。この時の実際のポンプ吐出圧力P2は、その時の水量Q2に対応した目標圧力曲線Sの圧力よりも高いため、可変速運転中のポンプはPI(比例積分)制御に従って回転速度を下げる。この時、最低回転速度Nを設けておけば、可変速運転中のポンプの回転速度はNで下げ止まる。この時のポンプの締切圧力がPF2であり、実際の吐出圧力P2を下回る。従って、圧力センサから得られる実際の吐出圧力Pと、その時の可変速ポンプの回転速度Nにおけるポンプの締切圧力PFとを比較することで、締切圧力PFが実際の吐出圧力Pより下回った時に固定速度のポンプのみで十分な吐出圧力を供給できることが判断され、可変速ポンプは直ちに解列するという判断が可能である。このため、この比較を行うことにより適切な解列点を自動的に判断することができる。
【0018】
尚、最低回転速度Nを設けることにより、再び負荷水量が増大したような場合には、直ちに2台運転の状態に復帰することができる。又、最低速度Nを設けないとすると、可変速ポンプが回転速度0になるまで動き続けることになり、その間に負荷水量が更に減量したような場合には、1台の固定速度のポンプの運転では吐出圧力が高すぎ、末端需要家に所要の圧力の給水を行うことができなくなる。このため、解列動作は2台運転中の1台のポンプに最低運転速度を設け、この速度で所定の時間運転が継続したならば、直ちに可変速ポンプの解列を行い、1台目のポンプを可変速運転に切り換えることが好ましい。
【0019】
図3は、本発明の実施の形態の給水装置の運転制御装置の概略を示すブロック図である。この運転制御装置(制御盤)15には、ポンプ回転速度とその締切圧力との関係のデータテーブル21を備える。これは、マイクロコンピュ−タを利用した給水ポンプの運転制御装置においては、例えば設定モードにしておき、ポンプ吐出側のバルブを閉じて締切状態として、ポンプの回転速度を徐々に上げていき、その時の回転速度と圧力センサで検出される締切吐出圧力とを計測し、これをマイクロコンピュータに付属したEPROM等の記憶装置に記憶することにより行える。又、予め使用するポンプの特性曲線は判明している場合が多い。この場合には既知の特性データから、ポンプ回転速度とその締切圧力とのデータテーブルの作成を行い、これを運転制御装置15のマイクロコンピュータの記憶装置に記憶するようにしてもよい。又、給水装置においては、他の制御項目、例えば推定末端圧力一定制御においては、別途ポンプ回転速度とその締切圧力とのデータが必要となる。このため、別途準備されたデータテーブルを利用してもよい。
【0020】
この運転制御装置15においては、給水装置の運転制御プログラム22に従って、CPU23が全体的な演算制御動作を行う。即ち、CPU23はこのプログラム22に従って、圧力センサ14の吐出圧力信号Pに従い推定末端圧力一定制御方式によるポンプの可変速運転を行うべく、インバータ装置に速度指令を与える。そして、ポンプの解列時には、圧力センサからのポンプ吐出圧力Pとその時のポンプ回転速度Nにおける締切圧力PFとをテーブル21から読み出し、CPU23によりこの大小の比較を行う。
【0021】
図4は、本発明の実施の形態の運転制御方法のフローを示す図である。2台のポンプが並列運転中であり、一方のポンプが固定速度で運転され、他方のポンプが所要の目標圧力となるように回転速度が制御される可変速運転中であることを「並列運転」のステップで確認する。このような運転状態であるとすれば、「Yes」であり、次に現在の実際吐出圧力Pとその回転速度Nにおけるポンプ締切圧力PFとが比較される。そして、実際の吐出圧力Pがその回転速度Nに対応したポンプ締切圧力PFより大である場合には、「Yes」であり、ポンプの解列動作を行う。ポンプの解列動作は、そのような状態が検出されてから、例えば数秒間の時間同じ状態が継続することを確認して可変速運転中のポンプを停止して、他の一台の固定速度で運転しているポンプを可変速運転に切り換えることにより行われる。実際の吐出圧力Pがその回転速度に対応するポンプ締切圧力PFよりも小である場合には、水量Qが切換点Aよりも大であると判断され、解列動作は実行されない。
フローには図示されないが、追加解列が頻繁に繰り返される現象を緩和するため、必要に応じて解列判断を遅延させるタイマーを設けてもよい。
【0022】
尚、上記実施の形態においては、推定末端圧力一定制御方式について本発明の解列制御方法を適用する例について説明したが、推定末端圧力一定制御方式以外にも、通常の目標圧力を一定にするポンプの可変速運転制御方式にも、同様に本発明の趣旨を適用できることは勿論である。又、上述の実施の形態においては、ポンプが2台であり1台を固定速度で運転し、他の1台を可変速度で運転する例について説明したが、3台以上のポンプがあるシステムにおいても、本発明の趣旨を同様に適用可能である。
また、ポンプ流入側が水道管につながっている直結給水装置の場合には、流入側に圧力センサを設け、流入圧力値により、ポンプ回転速度パラメータを補正する補正制御を付加すれば、本発明の趣旨を同様に適用可能である。
【0023】
【発明の効果】
以上に説明したように本発明によれば、高価なフローリレー、或いは複雑で且つ必ずしも精度のよくない複雑な計算式による解列回転速度の設定が不要となるので、低コストで且つ使い易い給水装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の給水装置の概要を示す図である。
【図2】本発明の解列動作の説明のためのポンプのQH特性図である。
【図3】本発明の実施の形態の制御系の概略構成を示すブロック図である。
【図4】本発明の解列動作のフロー図である。
【図5】 従来の給水装置の概要を示す図である。
【符号の説明】
10 受水槽
11 チェッキ弁
12 吐出集合管
13 圧力タンク
14 圧力センサ
15 制御盤(運転制御装置)
21 ポンプ回転速度と締切圧力とのテーブル
P1,P2 ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable speed water supply apparatus that supplies water using a plurality of pumps, and more particularly, to an operation control method for a pump that additionally disconnects a plurality of pumps in accordance with fluctuations in load water amount.
[0002]
[Prior art]
For example, when supplying tap water to an apartment house, etc., the water supplied from the water main is once received in a water receiving tank, pressurized using a pump, and supplied to the terminal taps of each house of the apartment house. As a water supply apparatus for such a use, what is shown in FIG. 5 is known. This water supply device temporarily stores water in a water receiving tank 10 connected to a water main (not shown), and uses two pumps P1 and P2 to discharge water from a discharge consumer pipe 12 to a consumer's water tap (not shown). ) To supply water. Here, at least one pump changes its rotational speed by variable speed operation, the pressure on the pump discharge side is constant, or the pressure is constant on the customer side, including the pipe loss to the end customer. So that variable speed operation Two pumps are arranged in parallel when one pump is supplied when the amount of load water is small, and two pumps are arranged in parallel when the amount of load water increases and one pump is insufficient. This is because it is necessary to drive. For this reason, the additional disconnection control of a pump is employ | adopted according to the amount of load water.
[0003]
In the water supply apparatus shown in FIG. 5, a plurality of pumps P1 and P2 that do not fail even if a certain shut-off operation is performed, a pressure sensor 14 that detects the pressure in the discharge collecting pipe 12 on the discharge side of the pump, and the pump operation And a control panel 15 that performs control. The pressure sensor 14 detects the pump discharge pressure, and performs variable speed operation control to change the rotation speed of the pump so that the pump discharge pressure becomes the target pressure. In the variable speed operation, when the load water amount is small and one pump is operated, the variable speed operation is performed by the pump. When the load water volume increases and two pumps are operated, one pump operates at a constant speed, and the other pump operates at a variable speed and the pump discharge pressure is increased regardless of the increase or decrease in the load water volume. Operation control is performed to achieve the target value. Therefore, in such a water supply device, in response to an increase in the load water amount, an additional operation of adding another pump from the operation of one pump, and a disconnection that stops one unit when the load water amount decreases during operation of two pumps. Action is required.
[0004]
As a method of appropriately performing this additional disconnection operation, a flow relay 16 is provided in the discharge collecting pipe 12, and when the amount of water is greater than a predetermined amount of water, such as the rated supply water amount of one pump, the additional operation of the pump is performed. In the following cases, the flow relay 16 detects this and performs a disconnection operation. This flow relay 16 operates a reed switch by a float with a magnet, for example, and outputs a signal, and transmits this signal to the control panel 12. The control panel 12 detects the state of the amount of water for a certain period of time with a timer or the like, and when it is confirmed that the amount of load water is equal to or greater than a predetermined value, additional operation of the pump is performed and two units are operated. When it is confirmed that the load water amount is less than or equal to the predetermined value, one pump is disconnected.
[0005]
Also, as a method not using a flow relay, when the rotation speed of the first pump reaches the maximum speed, the next pump is additionally operated, one is set to constant speed operation, and the other is variable speed operation. And And when the rotational speed of the pump for variable speed operation becomes lower than the predetermined speed, it is judged that the other single fixed speed pump has sufficient water supply capacity. A method is known in which a pump is disconnected after confirmation after a certain period of time.
[0006]
[Problems to be solved by the invention]
In the method using the flow relay, a flow relay that is turned on / off with a predetermined amount of water needs to be attached to the pipeline, and this flow relay is expensive. Therefore, the additional disconnection control method using the flow relay has a problem of increasing the cost of the entire water supply apparatus. Further, in such a method, since the setting of the additional disconnection point differs depending on the situation of the installation site, it is necessary to prepare various flow relays, and each time the discharge target pressure is changed even in the same system. In addition, the flow rate value at the additional disconnection point is different, and this flow relay needs to be replaced. For this reason, in the method using a flow relay, while the cost as a water supply apparatus rises, there exists a problem that a response | compatibility with a change of a system etc. becomes difficult.
[0007]
In addition, when adding / disconnecting from the rotational speed of the pump, it is easy to add a pump since it can be performed when the rotational speed of a single-unit pump reaches the maximum speed. However, the target speed of the pump discharge pressure changes according to the amount of load water, especially in the estimated terminal pressure constant control. In this case, complicated technical calculations are required, which is not easy. When the discharge target pressure is changed for each system or even in the same system, it is necessary to change the setting of the separation rotational speed each time, and it is difficult to flexibly cope with the change of the system.
[0008]
The present invention has been made in view of the above-described circumstances. Operation control of a water supply apparatus that can perform an additional disconnection operation of a pump that does not cause an increase in cost and can easily cope with a system change. It aims to provide a method.
[0009]
[Means for Solving the Problems]
The operation control method for a water supply apparatus of the present invention operates a water supply apparatus that operates a plurality of pumps in parallel or independently according to the amount of load water, and performs variable speed operation so that at least one pump has a required target pressure. In the control method, when one of a plurality of pumps is operated at a fixed speed and the other one is operated at a variable speed, and one of the pumps at the variable speed is disconnected, the variable speed operation is performed. The disconnection is determined with reference to the cutoff pressure at the rotational speed of the pump and the actual discharge pressure.
[0010]
According to the present invention, it is possible to determine the disengagement of the pump with reference to the relationship between the pump rotation speed and the shutoff pressure at the rotation speed, and the actual discharge pressure. An appropriate pump disconnection operation can be performed easily and reliably without the need to use a flow meter and without performing complicated calculations.
[0011]
Also, when the pump is disconnected, the actual pump discharge pressure is compared with the pump cutoff pressure corresponding to the rotational speed of the pump during the variable speed operation at that time. It is preferable to execute it when it becomes higher. As a result, it is possible to easily determine an appropriate separation point.
[0012]
Moreover, it is preferable that the disconnection of the pump is applied to a water supply apparatus that is executing an estimated terminal pressure constant control that makes the supply pressure to the terminal consumer away from the pump discharge port constant. As a result, in the estimated terminal pressure constant control, it is possible to perform an appropriate disconnection operation of the feed water pump.
[0013]
The water supply device of the present invention includes a plurality of pumps, a control device that operates the pumps at a variable speed, a pressure sensor provided in a discharge collecting pipe of the plurality of pumps, and a cutoff corresponding to the rotational speed of the pumps. A pressure table is provided, and one of the pumps in operation is disconnected from the actual discharge pressure and the cut-off pressure of the table corresponding to the pump rotation speed at that time. As a result, it is possible to provide a water supply apparatus that can perform an appropriate disconnection operation without causing an increase in cost and can flexibly cope with a change in the system.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[0015]
FIG. 1 shows a water supply apparatus according to an embodiment of the present invention. There are two pumps P <b> 1 and P <b> 2, and each suction side pipe is connected to the water receiving tank 10. A discharge side pipe of the pump is connected to a discharge collecting pipe 12 via a check valve 11 and is connected to a water tap of a terminal customer (not shown) via a pipe (not shown). A pressure tank 13 and a pressure sensor 14 are connected to the discharge collecting pipe 12, and the pressure tank 13 accumulates pressurized water by a pump, for example, when the amount of water is small, the operation of the pump is stopped, and an energy saving operation can be performed. The pressure sensor 14 detects the discharge pressure of the pump in the discharge collecting pipe 12 and inputs this to the control panel 15 to change the rotation speed of the pump so that the discharge pressure of the pump becomes a predetermined target value. Let In other words, the control panel 15 is provided with an inverter device for changing the rotational speed of the pump, and a signal from the pressure sensor 14 is input to perform PI (proportional integration) control of the pump so that the pump discharge pressure becomes the target pressure. . The target discharge pressure of the pump is controlled by the estimated terminal pressure constant control that changes the rotational speed of the pump along the general resistance curve corresponding to the flow rate, considering the piping resistance to the customer end depending on the amount of load water. The
[0016]
FIG. 2 relates to the disengagement operating point for disengaging one of the two pumps in operation of the present invention. The horizontal axis is the amount of water Q, and the vertical axis is the pressure (head) H. Curves N 1 , N 2 , and N 3 are respectively QHs in which one of the pumps P 1 and P 2 is operated at a fixed speed and the other is operated at variable speeds N 1 , N 2 , and N 3. Show properties. Curve n 1 is the QH characteristic of the fixed speed pump corresponding to the rotational speed n 1 . The target pressure curve S is also called a resistance curve, and when the estimated terminal pressure constant control method is adopted, the required discharge pressure corresponding to the amount of water on the pump discharge side in order to keep the pressure of the terminal consumer constant. Shows the relationship. In other words, when there is a large amount of water, there is pipe resistance, so it is necessary to set the discharge pressure high on the pump discharge side in anticipation of the pipe resistance loss. Therefore, it is necessary to set the pump discharge pressure low. Accordingly, the operation of one pump is performed below the point A, and the rotational speed n of the pump operated by one pump is controlled along the target pressure curve S. When the amount of water is required beyond point A, another pump is additionally operated, one is operated at a fixed speed at the rated speed, and the other pump is set along the target pressure curve S. Control the rotation speed. That is, the added pump P2 moves along the target pressure curve S of the estimated end pressure control.
[0017]
Here the water Q1 that requires pump two operation is an operation point B, the pump rotational speed of the variable speed drive at this time is N 2, the actual discharge pressure detected by the pressure sensor, P1 It is. The deadline pressure PF1 at discharge operation of the pump of the rotational speed N 2 is actually larger than the discharge pressure P1. That is, this indicates that it is not yet a state to be disconnected. On the other hand, at the water quantity Q2 where one pump is operating at a fixed speed n1 below the operating point A, the pump operating point C is on the QH characteristic curve of the speed n1 of one pump at a fixed speed. Since the actual pump discharge pressure P2 at this time is higher than the pressure of the target pressure curve S corresponding to the water amount Q2 at that time, the pump during variable speed operation reduces the rotational speed according to PI (proportional integration) control. At this time, if provided the minimum rotational speed N 3, the rotational speed of the pump during variable speed operation stops lowering in N 3. The cutoff pressure of the pump at this time is PF2, which is lower than the actual discharge pressure P2. Therefore, by comparing the actual discharge pressure P obtained from the pressure sensor and the pump cutoff pressure PF at the rotation speed N of the variable speed pump at that time, the pump is fixed when the cutoff pressure PF falls below the actual discharge pressure P. It can be determined that a sufficient discharge pressure can be supplied only by the speed pump, and the variable speed pump can be immediately disconnected. For this reason, an appropriate separation point can be automatically determined by performing this comparison.
[0018]
Incidentally, by providing the minimum rotational speed N 3, when such load water is increased again it can be restored immediately to the state of the two operations. Also, when not provided minimum speed N 3, it will continue moving until the variable speed pump is speed 0, when such loading amount of water was reduced further in the meantime, one of the fixed speed of the pump In operation, the discharge pressure is too high, and it becomes impossible to supply water to the end customer at the required pressure. For this reason, in the disconnection operation, a minimum operating speed is set for one of the two pumps in operation, and if the operation continues for a predetermined time at this speed, the variable speed pump is immediately disconnected and the first It is preferable to switch the pump to variable speed operation.
[0019]
FIG. 3 is a block diagram showing an outline of the operation control apparatus of the water supply apparatus according to the embodiment of the present invention. This operation control device (control panel) 15 is provided with a data table 21 of the relationship between the pump rotation speed and its cutoff pressure. This is because, for example, in the operation control device for a water supply pump using a microcomputer, the setting mode is set, the valve on the pump discharge side is closed and the shutoff state is closed, and the rotational speed of the pump is gradually increased. The rotation speed and the deadline discharge pressure detected by the pressure sensor are measured and stored in a storage device such as an E 2 PROM attached to the microcomputer. Further, the characteristic curve of the pump used in advance is often known. In this case, a data table of the pump rotation speed and its shut-off pressure may be created from known characteristic data and stored in the storage device of the microcomputer of the operation control device 15. In addition, in the water supply device, in other control items, for example, constant estimated terminal pressure constant control, data on the pump rotation speed and its shut-off pressure are required separately. For this reason, a data table prepared separately may be used.
[0020]
In this operation control device 15, the CPU 23 performs an overall calculation control operation according to the operation control program 22 of the water supply device. That is, the CPU 23 gives a speed command to the inverter device in accordance with the program 22 in order to perform the variable speed operation of the pump by the estimated terminal pressure constant control method according to the discharge pressure signal P of the pressure sensor 14. When the pump is disconnected, the pump discharge pressure P from the pressure sensor and the shut-off pressure PF at the pump rotation speed N at that time are read from the table 21 and the CPU 23 compares the magnitudes.
[0021]
FIG. 4 is a diagram showing a flow of the operation control method according to the embodiment of the present invention. “Parallel operation” means that two pumps are in parallel operation, one pump is operating at a fixed speed, and the other pump is in variable speed operation in which the rotational speed is controlled so as to achieve the required target pressure. ”To confirm. If it is such an operation state, it is “Yes”, and then the current actual discharge pressure P is compared with the pump cutoff pressure PF at the rotation speed N. If the actual discharge pressure P is higher than the pump cutoff pressure PF corresponding to the rotational speed N, “Yes” is given, and the pump is disconnected. The disconnecting operation of the pump is performed after the detection of such a state, for example, confirming that the same state continues for a few seconds, and then stopping the pump during variable speed operation and This is done by switching the pump that is operating in to variable speed operation. When the actual discharge pressure P is smaller than the pump cutoff pressure PF corresponding to the rotation speed, it is determined that the water amount Q is larger than the switching point A, and the disconnection operation is not executed.
Although not shown in the flow, in order to alleviate the phenomenon that the additional disassembly is frequently repeated, a timer for delaying the disconnection determination may be provided as necessary.
[0022]
In the above embodiment, the example of applying the disconnection control method of the present invention to the estimated terminal pressure constant control method has been described. However, in addition to the estimated terminal pressure constant control method, the normal target pressure is made constant. Of course, the gist of the present invention can be applied to the variable speed operation control system of the pump as well. Further, in the above-described embodiment, an example in which there are two pumps, one is operated at a fixed speed, and the other one is operated at a variable speed has been described. However, in a system having three or more pumps. In addition, the gist of the present invention can be similarly applied.
Further, in the case of a directly connected water supply apparatus in which the pump inflow side is connected to a water pipe, if a pressure sensor is provided on the inflow side and correction control for correcting the pump rotation speed parameter is added by the inflow pressure value, the gist of the present invention Is applicable as well.
[0023]
【The invention's effect】
As described above, according to the present invention, it is not necessary to set an expensive flow relay or a complex rotation speed by a complicated calculation formula that is complicated and not necessarily accurate. An apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a water supply apparatus according to an embodiment of the present invention.
FIG. 2 is a QH characteristic diagram of a pump for explaining a disconnection operation of the present invention.
FIG. 3 is a block diagram showing a schematic configuration of a control system according to the embodiment of the present invention.
FIG. 4 is a flow diagram of a disconnection operation of the present invention.
FIG. 5 is a diagram showing an outline of a conventional water supply device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Water receiving tank 11 Check valve 12 Discharge collecting pipe 13 Pressure tank 14 Pressure sensor 15 Control panel (operation control apparatus)
21 Table of pump rotation speed and deadline pressure P1, P2 Pump

Claims (4)

複数のポンプを負荷水量に応じて並列又は単独で運転し、少なくとも1台のポンプを所要の目標圧力となるように可変速運転を行う給水装置の運転制御方法において、
複数のポンプの1台を固定速度で運転し、他の1台を可変速運転中に、該可変速運転中の1台のポンプを解列するに際して、前記可変速運転中のポンプの回転速度における締切圧力と、実際の吐出圧力とを参照して、解列を決定することを特徴とする給水装置の運転制御方法。
In the operation control method of a water supply apparatus that operates a plurality of pumps in parallel or independently according to the amount of load water, and performs variable speed operation so that at least one pump has a required target pressure,
When one of a plurality of pumps is operated at a fixed speed and the other one is operated at a variable speed, and one of the pumps at the variable speed is disconnected, the rotational speed of the pump during the variable speed operation An operation control method for a water supply apparatus, wherein a disconnection is determined with reference to a deadline pressure in the case and an actual discharge pressure.
前記ポンプの解列は、実際のポンプ吐出圧力を、その時の可変速運転中のポンプの回転速度に対応したポンプ締切圧力と比較して、実際のポンプ吐出圧力が対応するポンプ締切圧力よりも高くなった場合に、実行するものであることを特徴とする請求項1に記載の給水装置の運転制御方法。  When the pump is disconnected, the actual pump discharge pressure is compared with the pump cutoff pressure corresponding to the rotational speed of the pump during variable speed operation at that time, and the actual pump discharge pressure is higher than the corresponding pump cutoff pressure. The operation control method for the water supply apparatus according to claim 1, wherein the operation control method is executed when it becomes. 複数のポンプと、該ポンプを可変速運転する制御装置と、前記複数のポンプの吐出集合管に設けられた圧力センサと、前記ポンプの回転速度に対応した締切圧力のテーブルとを備え、実際吐出圧力とその時のポンプ回転速度に対応した前記テーブルの締切圧力とから、複数運転中のポンプの一台を解列することを特徴とする給水装置。  A plurality of pumps, a control device for operating the pumps at a variable speed, a pressure sensor provided in a discharge collecting pipe of the plurality of pumps, and a table of cutoff pressures corresponding to the rotation speeds of the pumps, A water supply apparatus, wherein one of a plurality of pumps in operation is disconnected from the pressure and a cutoff pressure of the table corresponding to the pump rotation speed at that time. 前記ポンプの解列は、実際のポンプ吐出圧力を、その時の可変速運転中のポンプの回転速度に対応したポンプ締切圧力と比較して、実際のポンプ吐出圧力が対応するポンプ締切圧力よりも高くなった場合に、実行するものであることを特徴とする請求項3に記載の給水装置。When the pump is disconnected, the actual pump discharge pressure is compared with the pump cutoff pressure corresponding to the rotational speed of the pump during variable speed operation at that time, and the actual pump discharge pressure is higher than the corresponding pump cutoff pressure. The water supply device according to claim 3, wherein the water supply device is executed when it becomes.
JP02726699A 1999-02-04 1999-02-04 Operation control method for water supply device Expired - Lifetime JP3748727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02726699A JP3748727B2 (en) 1999-02-04 1999-02-04 Operation control method for water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02726699A JP3748727B2 (en) 1999-02-04 1999-02-04 Operation control method for water supply device

Publications (3)

Publication Number Publication Date
JP2000227093A JP2000227093A (en) 2000-08-15
JP2000227093A5 JP2000227093A5 (en) 2004-12-16
JP3748727B2 true JP3748727B2 (en) 2006-02-22

Family

ID=12216285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02726699A Expired - Lifetime JP3748727B2 (en) 1999-02-04 1999-02-04 Operation control method for water supply device

Country Status (1)

Country Link
JP (1) JP3748727B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511074B2 (en) * 2001-03-30 2010-07-28 三洋電機株式会社 Liquid delivery device
DE10141351A1 (en) * 2001-08-23 2003-03-06 Demag Ergotech Gmbh Hydraulic system for injection molding machines

Also Published As

Publication number Publication date
JP2000227093A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
US10900490B2 (en) Method for controlling a circulation pump in an installation comprising at least two circulation circuits
WO2010115338A1 (en) Zero-disturbance switching method for pipeline transportation standby pump
JP2010121890A (en) Tank water level control system
JP2005351267A (en) Water supply device
JP5159187B2 (en) Variable speed water supply device
JP5643385B2 (en) Booster water supply system
JP3748727B2 (en) Operation control method for water supply device
JP2018165468A (en) Control system and control method of pump, and drainage system
JP6121267B2 (en) Booster water supply system
JP4741312B2 (en) Variable speed water supply device
JP4668403B2 (en) Water supply equipment
JP3925956B2 (en) Operation method of variable speed feed pump
JP5232412B2 (en) Directly connected water supply system
JP6759392B2 (en) Water supply device
JPH08159078A (en) Revolution control water supply system with small water quantity stop function
JPH09268978A (en) Variable speed water supply device
JP5492459B2 (en) Pressure control device and pressure control method in water distribution network
JP2638203B2 (en) Variable speed water supply device and its operation method
JP6555767B1 (en) Hot spring centralized management system
JP4664019B2 (en) Water supply equipment
JP7282607B2 (en) Control unit, pump device, and pump operation method
JP6840005B2 (en) Water supply system and control method of water supply system
JP5798880B2 (en) Heat pump water heater
JP7110046B2 (en) Water supply system and control method for water supply system
JP4804786B2 (en) Water supply equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term