JP3748494B2 - Housing heat storage air conditioning structure - Google Patents

Housing heat storage air conditioning structure Download PDF

Info

Publication number
JP3748494B2
JP3748494B2 JP27864798A JP27864798A JP3748494B2 JP 3748494 B2 JP3748494 B2 JP 3748494B2 JP 27864798 A JP27864798 A JP 27864798A JP 27864798 A JP27864798 A JP 27864798A JP 3748494 B2 JP3748494 B2 JP 3748494B2
Authority
JP
Japan
Prior art keywords
air
heat storage
temperature
conditioning
floor slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27864798A
Other languages
Japanese (ja)
Other versions
JP2000111121A (en
Inventor
佳裕 桂川
中村  慎
久 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP27864798A priority Critical patent/JP3748494B2/en
Publication of JP2000111121A publication Critical patent/JP2000111121A/en
Application granted granted Critical
Publication of JP3748494B2 publication Critical patent/JP3748494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、夜間躯体に蓄熱し、昼間躯体から放熱させて空調負荷を低減させる躯体蓄熱空調構造に関する。
【0002】
【従来の技術】
図5に示すように、空調時間帯においては、吹出ファン58から居室62へ空調機50の空調気流を吹き出し、吸気ファン60で空調機50へ還流させて、居室62内を空調する空調方式がある(空気の流れは実線表示)。
【0003】
このような空調方式において、夜間、ダンパ54、56を切替え、空調機50から空調気流を、上階の床スラブ52に吹き付けて蓄熱し、昼間床スラブ52から放熱させることで、昼間の空調負荷を低減させると共に、使用電力のピークを下げる躯体蓄熱空調システムが提案されている(夜間の空気の流れは破線表示)。
【0004】
しかし、放熱される蓄熱エネルギーは、床スラブ52が接する上階の居室内空気及び天井裏空気と、床スラブ52との温度差に依存するため、温度差が最も大きな蓄熱終了時(朝方)に、放熱される蓄熱量がピークとなる(図4に示す実線の曲線Eを参照)。換言すれば、蓄熱エネルギーの放熱は成り行き次第である。
【0005】
このため、夏期において、日中(午後2時頃)の空調負荷のピークを下げることができず、電力会社と契約する使用電力量の上限値を下げて、躯体蓄熱空調システムの運転コストを削減することが難しかった。
【0006】
【発明が解決しようとする課題】
本発明は上記事実を考慮し、夏期において、空調負荷のピークをカットでき、また、特別な躯体蓄熱用のスペースを設ける必要がない、躯体蓄熱空調構造を提供することを課題とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、フロアパネルと床スラブとの間に形成された床下空間へ空調機で空調された空調気流を送風し、フロアパネルに設けられた吹出口から居室内へ吹き出すアンダーフロア空調方式に用いられている。
【0008】
この構成では、躯体蓄熱手段が、床下空間へ空調機から空調気流を送風し、床スラブに蓄熱する。そして、抑制手段が、蓄熱終了時の床スラブの平均温度より低い空調気流を空調機から床下空間へ送風することにより、昼間の空調負荷のピーク時まで、床スラブに蓄熱した蓄熱エネルギーの放熱を抑え、空調負荷のピーク時に放熱させる。
【0009】
このように、空調負荷のピーク時まで、蓄熱エネルギーの放熱を抑えることで、使用電力量の上限値を下げることができる。また、放熱する蓄熱エネルギーに応じて、空調制御手段が吹出口からの吹出風量を制御することで、居室内が空調される。
【0010】
請求項2に記載の発明では、躯体蓄熱手段が、床下空間内の空気を空調機へ還流させる還流ダクトを備えている。この構成により、夜間、空調気流が、床下空間と空調機の間を循環するので、効率よく床スラブに蓄熱される。
【0011】
請求項3に記載の発明では、空調制御手段が、居室内に設けられた第1温度センサ又は居室内から還流された空気の温度を検出する第2温度センサの検出温度に基づき吹出口で吹出風量を制御し、この吹出風量を満たす風量を空調機から床下空間へ送風させる。このように、吹出口側で吹出風量制御することで、居室が複数ある場合、個別に室温制御が可能となる。
【0012】
請求項4に記載の発明では、空調制御手段が、居室内に設けられた第1温度センサ又は居室内から還流された空気の温度を検出する第2温度センサの検出温度に基づき、空調機を制御して、床下空間へ送る風量を決定する。このように、総量としての風量を制御するだけでよいので、制御機構を簡便化できる。
【0013】
【発明の実施の形態】
図1には、本形態に係る躯体蓄熱空調構造を備えた居室10が示されている。
【0014】
居室10の床スラブ12には、支持サポート(図示省略)が配置されており、この支持サポートがフロアパネル14を支持している。これにより、床スラブ12とフロアパネル14との間に、床下空間16が形成されている。
【0015】
また、フロアパネル14には、吹出口18が形成されている。この吹出口18には、吹出ファン20が取付けられ、制御ユニットで回転数が制御されるようになっている。なお、吹出口18には、図示しないシャッターが設けられており、必要に応じて開閉されるようになっている。
【0016】
また、制御ユニットは、ユニット化された複数の吹出ファン20を、壁面に配置されたルームサーモ22からの信号に基づきローカル制御し、所定のゾーンの吹出風量をコントロールするようになっている。
【0017】
一方、居室10の天井部には、吸込口24が形成された天井パネル26が配設され、天井スラブ28との間に排気通路30を構成している。排気通路30には、レタンサーモ38が設けられており、このレタンサーモ38が検出した空気の温度に基づき、空調機34の送風量及び送風温度が制御される。
【0018】
また、排気通路30の排気口44には排気ダクト32が接続されており、排気ダクト32を通じて空気が空調機34へ還流される。さらに、空調機34へ還流された空気は、空調ファンで返り空気として熱交換器へ送られる。ここで、新鮮な外気と混合され熱交換された空気は、給気ダクト36を通じて、床下空間16へ送風される。
【0019】
一方、床下空間16には、レタンダクト40の吸気口42が位置している。レタンダクト40の排気口は、排気ダクト32に接続されており、モーターダンパ70を操作することで、空気の流れが切替られる。
【0020】
次に、本形態に係る躯体蓄熱空調構造の作用を説明する。
【0021】
夜間の蓄熱時間帯には、図1に示すように、モーターダンパ70が切替られ、床下空間16内の空気が、レタンダンパ40に吸い込まれ、排気ダクト32を通じて空調機34に至り、熱交換されて給気ダクト36を通じて、床下空間16へ送られる。このように、居室10内を通さず、床下空間16と空調機34の間を循環させることにより、床スラブ12が効率よく蓄熱される。
【0022】
なお、フロアパネル14の材質等によっては、図3に示す蓄熱時間帯終了時(朝方8時頃)のように、床スラブ12の温度が低下しているとき、放熱によって居住環境を悪化させる可能性もあるので(冷え過ぎる)、フロアパネル14の下面に断熱層を設けることが好ましい。
【0023】
また、蓄熱時間帯には、吹出口18に設けられたシャッターを閉じた方が蓄熱効率を向上させるためには望ましいが、シャッターを閉じなくても、空気を循環させるだけで蓄熱効果は充分に期待できる。
【0024】
次に、本形態では、図2〜図4に示すように、一般空調時間帯を、一例として、午前の8時頃〜13時頃(空調負荷ピーク時)と、午後の13時頃〜18時頃(空調停止時直前)とに別けて制御している。
【0025】
すなわち、午前中は、先ずモーターダンパ70を切替え、床スラブ12の温度を、蓄熱終了時の床スラブ12の平均温度(約21℃)に保つため、空調機34が平均温度より低い空調気流を床下空間16へ送風する。これによって、床スラブ12からの蓄熱量の放熱が制限され(ハッチングは放熱された蓄熱量Bを示す)、空調負荷ピーク時まで、床スラブ12の温度が、蓄熱終了時の温度に保たれる(図3参照)。
【0026】
ここで、居室12内の空調は、ルームサーモ22からの信号に基づき、吹出口18の吹出風量を制御(吹出ファンの回転数制御)することで行われる。そして、吹出口18から吹出された空気は、居室12を上昇して吸込口24を通じて、排気通路30に流入する。
【0027】
排気通路30に流入した空気は、排気ダクト32を通じて空調機34へ還流される。ここで、新鮮な外気と混合され熱交換された空気は、給気ダクト36を通じて、床下空間16へ送風される。ここで、空調機34の送風量は、吹出口18からの吹出風量を満たすように供給される。
【0028】
なお、本形態では、吹出ファンの回転数制御で吹出風量を制御するようにしたが、吹出口の開口面積の大きさを変えてもよく、吹出風量を変える方法は特定されてない。このように、吹出口18側で吹出風量を制御することで、居室12が複数ある場合、個別に室温制御が可能となる。
【0029】
また、本形態では、ルームサーモ22で温度制御する場合を説明したが、ルームサーモ22で制御するか、レタンサーモ38で制御するかは、空調範囲等の要因によって適時変更できるものであり、どちらのサーモでも温度制御は可能で、一方の制御方法に限定されない。
【0030】
例えば、居室12から還流された空気の温度をレタンサーモ38で検出して、床下空間16へ送る送風量を、空調機34側だけで制御してもよい。これより、総量としての送風量を制御するだけでよいので、制御機構を簡便化できる。
【0031】
次に、午後(空調負荷ピーク時)は、床スラブ12に蓄熱された蓄熱量を利用して、上述したルームサーモ22かレタンサーモ38で、居室12内を空調する。
【0032】
このとき、床スラブ12の温度は、午前中の熱放出抑制によって、蓄熱終了時の温度により近くに保たれているので、吹出口18から吹出される空気の吹出温度が低下する。このため、空調機34が処理する熱量が低減し、空調負荷を低減させることができる。また、アンダーフロア空調方式を用いた蓄熱空調は、従来の躯体空調システム(図5参照)と比較すると、空気が強制対流されるため、放熱が促進され、より空調機の負荷が低減される。さらに、特別な蓄熱用のスペースを確保する必要がないので、建築コストが上昇しない。
【0033】
ここで、図3に示すように、床スラブ12の温度上昇カーブ(実線M1で表示)は、従来の床スラブ52(図5参照)の温度上昇カーブ(破線M2で表示)と比較して、急激に上昇し、空調停止時には同じ温度となる。
【0034】
また、図4に示すように、夜間に蓄熱された床スラブ12の蓄熱量Aは、午前中に蓄熱量Bが放熱され、午後に蓄熱量Cが放熱される。そして、空調に必要な熱負荷量を、曲線Dで示すと、空調機34の負荷は、曲線Dと蓄熱量Bの曲線B1、曲線Dと蓄熱量Cの曲線C1との距離で表される。
【0035】
すなわち、床スラブ12に蓄熱された蓄熱量の放熱を制御することで、空調負荷のピーク時(13時頃)において、従来の躯体蓄熱方式の放熱特性を示す曲線Eにおける空調負荷はL1、躯体蓄熱がない場合の空調負荷はL2、本発明の放熱特性を示す曲線C1における空調負荷はL3となり(L3<L1<L2)、空調負荷ピークをカットすることができる。
【0036】
なお、冬期(暖房時)では、一般に空調負荷のピークは、朝方となるため、一日中、上述したルームサーモ22かレタンサーモ38を利用して、空調機34からの送風温度と送風量を制御する。
【0037】
また、放熱量の調節は、床下空間16へ吹き出す送風温度及び吹出風量で調節する。すなわち、吹出温度が床スラブ温度以下ならば放熱は0である。また、床下空間に吹出す空気量が同じであるならば、床スラブ温度に対する吹出空気温度の差が小さければ放熱量は小さく、温度差が同じであるならば、吹出空気量、すなわち、床下空間を通過する空気量によって放熱量が変わる。空気量を変えて制御する手段として、空調ファンの風量制御、吹出口の吹出風量の制御、及び吹出口の開口面積調整、又はこれらの組み合わせが考えられる。
【0038】
さらに、フロアパネルの下面に設ける断熱層の配置例として、以下のレイアウトが考えられる。
【0039】
すなわち、専有面積が大きな居室の場合、窓や壁(ペリメータ部)の近くは、夏期(直射日光や壁等からの放射熱があり暑い)も、冬期(壁等からの放射熱があり寒い)も、快適な住居環境を実現するためには、空調負荷が大きい。
【0040】
以上のような空調環境を考えると、ペリメータ部のフロアパネルには、断熱層を設けない方が、冬期は、床スラブからの輻射熱(暖かい)の恩恵を受けられ、また、夏期も、床スラブからの輻射熱(冷たい)の恩恵を受けられるので、1つの設計例として、インテリア部にだけ断熱層を配置すればよいと言える。
【0041】
【発明の効果】
本発明は上記構成としたので、夏期において、空調負荷のピークをカットでき、また、特別な躯体蓄熱用のスペースを設ける必要がなく、建築コストを上昇させることがない。
【図面の簡単な説明】
【図1】本形態に係る躯体蓄熱空調構造の空気の流れを示す概念図である。
【図2】本形態に係る躯体蓄熱空調構造の空気の流れを示す概念図である。
【図3】本形態に係る躯体蓄熱空調構造の床スラブの温度変化を示したグラフである。
【図4】本形態に係る躯体蓄熱空調構造の床スラブの蓄熱量と空調負荷との関係を示したグラフである。
【図5】従来の躯体蓄熱空調構造を示す概念図である。
【符号の説明】
12 床スラブ
16 床下空間
20 吹出ファン(空調制御手段)
22 ルームサーモ(第1温度センサ)
34 空調機(躯体蓄熱手段、抑制手段、空調制御手段)
38 レタンサーモ(第2温度センサ)
40 レタンダクト(還流ダクト)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a frame heat storage air-conditioning structure that stores heat in a night frame and dissipates heat from the day frame to reduce an air conditioning load.
[0002]
[Prior art]
As shown in FIG. 5, in the air conditioning time period, there is an air conditioning system in which the air conditioning air flow of the air conditioner 50 is blown from the blower fan 58 to the living room 62 and returned to the air conditioner 50 by the intake fan 60 to air-condition the inside of the living room 62. Yes (the air flow is indicated by solid lines).
[0003]
In such an air conditioning system, the dampers 54 and 56 are switched at night, and air conditioning airflow is blown from the air conditioner 50 to the floor slab 52 of the upper floor to store heat and dissipate heat from the daytime floor slab 52, thereby daytime air conditioning load. A heat storage air conditioning system has been proposed that reduces the peak of electric power used (the broken air flow at night).
[0004]
However, the heat storage energy that is dissipated depends on the temperature difference between the indoor air in the upper floor where the floor slab 52 is in contact with and the air behind the ceiling, and the floor slab 52, so at the end of the heat storage that has the largest temperature difference (morning). The amount of stored heat that is dissipated reaches a peak (see the solid curve E shown in FIG. 4). In other words, the heat dissipation of the heat storage energy depends on the outcome.
[0005]
For this reason, the peak of air conditioning load during the daytime (around 2 pm) cannot be lowered during the summer, and the upper limit of the amount of energy used with the power company is lowered to reduce the operating cost of the chassis heat storage air conditioning system. It was difficult to do.
[0006]
[Problems to be solved by the invention]
In view of the above facts, an object of the present invention is to provide a housing heat storage air conditioning structure that can cut the peak of the air conditioning load in the summer and does not need to provide a special housing heat storage space.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, an air-conditioning airflow conditioned by an air conditioner is blown into an underfloor space formed between a floor panel and a floor slab, and the underflow blows into a living room from an outlet provided in the floor panel. Used for floor air conditioning.
[0008]
In this configuration, the frame heat storage means blows an air-conditioned airflow from the air conditioner to the underfloor space and stores heat in the floor slab. And the suppression means blows the air-conditioning airflow that is lower than the average temperature of the floor slab at the end of heat storage from the air conditioner to the underfloor space, thereby radiating the heat storage energy stored in the floor slab until the peak of the daytime air conditioning load. Reduce heat dissipation during peak air conditioning loads.
[0009]
In this way, the upper limit value of the power consumption can be lowered by suppressing the heat dissipation of the heat storage energy until the peak time of the air conditioning load. Further, the air-conditioning control means controls the amount of air blown from the outlet according to the heat storage energy to radiate heat, whereby the room is air-conditioned.
[0010]
In the invention described in claim 2, the frame heat storage means includes a reflux duct for returning the air in the underfloor space to the air conditioner. With this configuration, air-conditioned airflow circulates between the underfloor space and the air conditioner at night, so that heat is efficiently stored in the floor slab.
[0011]
In the invention according to claim 3, the air conditioning control means blows out at the outlet based on the detection temperature of the first temperature sensor provided in the room or the second temperature sensor for detecting the temperature of the air recirculated from the room. The air volume is controlled, and the air volume satisfying the blown air volume is blown from the air conditioner to the underfloor space. In this way, by controlling the blown air volume on the outlet side, when there are a plurality of rooms, the room temperature can be controlled individually.
[0012]
In the invention according to claim 4, the air conditioner control means controls the air conditioner based on the detected temperature of the first temperature sensor provided in the living room or the second temperature sensor for detecting the temperature of the air recirculated from the living room. Control and determine the amount of air sent to the underfloor space. Thus, since it is only necessary to control the air volume as the total amount, the control mechanism can be simplified.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a living room 10 equipped with a frame heat storage air-conditioning structure according to this embodiment.
[0014]
A support support (not shown) is disposed on the floor slab 12 of the living room 10, and the support support supports the floor panel 14. Thereby, an underfloor space 16 is formed between the floor slab 12 and the floor panel 14.
[0015]
The floor panel 14 is formed with an air outlet 18. A blower fan 20 is attached to the blower outlet 18, and the number of rotations is controlled by a control unit. In addition, the blower outlet 18 is provided with a shutter (not shown) so that it can be opened and closed as necessary.
[0016]
In addition, the control unit locally controls the plurality of blowout fans 20 that are unitized based on a signal from the room thermo 22 arranged on the wall surface, and controls the blown air volume in a predetermined zone.
[0017]
On the other hand, a ceiling panel 26 in which a suction port 24 is formed is disposed in the ceiling portion of the living room 10, and an exhaust passage 30 is formed between the ceiling panel 26 and the ceiling slab 28. The exhaust passage 30 is provided with a retina thermo 38, and the air blowing amount and air blowing temperature of the air conditioner 34 are controlled based on the temperature of the air detected by the retan thermo 38.
[0018]
An exhaust duct 32 is connected to the exhaust port 44 of the exhaust passage 30, and air is returned to the air conditioner 34 through the exhaust duct 32. Further, the air returned to the air conditioner 34 is returned to the heat exchanger as return air by the air conditioning fan. Here, the air mixed with fresh outside air and heat-exchanged is sent to the underfloor space 16 through the air supply duct 36.
[0019]
On the other hand, in the underfloor space 16, the air inlet 42 of the return duct 40 is located. The exhaust duct 40 has an exhaust port connected to the exhaust duct 32, and the air flow is switched by operating the motor damper 70.
[0020]
Next, the effect | action of the frame thermal storage air conditioning structure which concerns on this form is demonstrated.
[0021]
As shown in FIG. 1, the motor damper 70 is switched during the night heat storage time zone, and the air in the underfloor space 16 is sucked into the retentan damper 40, reaches the air conditioner 34 through the exhaust duct 32, and is subjected to heat exchange. It is sent to the underfloor space 16 through the air supply duct 36. In this way, the floor slab 12 is efficiently stored by circulating between the underfloor space 16 and the air conditioner 34 without passing through the living room 10.
[0022]
Depending on the material of the floor panel 14 and the like, when the temperature of the floor slab 12 is low, such as at the end of the heat storage time zone shown in FIG. Therefore, it is preferable to provide a heat insulating layer on the lower surface of the floor panel 14.
[0023]
In addition, it is desirable to close the shutter provided at the air outlet 18 during the heat storage time period in order to improve the heat storage efficiency. However, the heat storage effect can be sufficiently achieved by simply circulating air without closing the shutter. I can expect.
[0024]
Next, in this embodiment, as shown in FIGS. 2 to 4, as an example, the general air-conditioning time zone is around 8:00 am to 13:00 (air conditioning load peak time) and about 13:00 pm to 18 pm. It is controlled separately around the time (just before the air conditioning stops).
[0025]
That is, in the morning, first, the motor damper 70 is switched to keep the temperature of the floor slab 12 at the average temperature (about 21 ° C.) of the floor slab 12 at the end of heat storage. Air is blown into the underfloor space 16. Thereby, the heat dissipation of the heat storage amount from the floor slab 12 is limited (hatching indicates the heat storage amount B that has been radiated), and the temperature of the floor slab 12 is maintained at the temperature at the end of the heat storage until the air conditioning load peak. (See FIG. 3).
[0026]
Here, the air conditioning in the living room 12 is performed by controlling the amount of air blown from the outlet 18 based on the signal from the room thermo 22 (controlling the rotational speed of the blower fan). Then, the air blown out from the blowout port 18 rises in the living room 12 and flows into the exhaust passage 30 through the suction port 24.
[0027]
The air flowing into the exhaust passage 30 is returned to the air conditioner 34 through the exhaust duct 32. Here, the air mixed with fresh outside air and heat-exchanged is sent to the underfloor space 16 through the air supply duct 36. Here, the air volume of the air conditioner 34 is supplied so as to satisfy the air volume blown from the air outlet 18.
[0028]
In this embodiment, the blown air volume is controlled by controlling the rotation speed of the blower fan. However, the size of the opening area of the blower outlet may be changed, and the method for changing the blown air volume is not specified. In this way, by controlling the blown air volume on the outlet 18 side, when there are a plurality of living rooms 12, the room temperature can be controlled individually.
[0029]
Further, in the present embodiment, the case where the temperature is controlled by the room thermo 22 has been described. However, whether the room thermo 22 or the regenerative thermo 38 is controlled can be changed as appropriate depending on factors such as the air conditioning range. Temperature control is possible even with a thermo, and it is not limited to one control method.
[0030]
For example, the temperature of the air recirculated from the living room 12 may be detected by the retan thermo 38 and the amount of air sent to the underfloor space 16 may be controlled only on the air conditioner 34 side. Thus, the control mechanism can be simplified because it is only necessary to control the amount of air blown as the total amount.
[0031]
Next, in the afternoon (at the time of air conditioning load peak), the room 12 is air-conditioned with the above-described room thermo 22 or the return thermo 38 using the heat storage amount stored in the floor slab 12.
[0032]
At this time, the temperature of the floor slab 12 is kept closer to the temperature at the end of heat storage due to heat release suppression in the morning, so the temperature of the air blown from the outlet 18 is lowered. For this reason, the amount of heat processed by the air conditioner 34 can be reduced, and the air conditioning load can be reduced. Further, in the heat storage air conditioning using the underfloor air conditioning system, air is forcibly convected as compared with the conventional chassis air conditioning system (see FIG. 5), so heat radiation is promoted and the load on the air conditioner is further reduced. Furthermore, since it is not necessary to secure a special heat storage space, the construction cost does not increase.
[0033]
Here, as shown in FIG. 3, the temperature rise curve of the floor slab 12 (indicated by the solid line M1) is compared with the temperature rise curve of the conventional floor slab 52 (see FIG. 5) (indicated by the broken line M2). It rises rapidly and reaches the same temperature when air conditioning is stopped.
[0034]
Moreover, as shown in FIG. 4, the heat storage amount A of the floor slab 12 stored at night is radiated in the morning, and the heat storage amount C is radiated in the afternoon. When the heat load necessary for air conditioning is indicated by a curve D, the load of the air conditioner 34 is represented by the distance between the curve D and the curve B1 of the heat storage amount B, and the curve D and the curve C1 of the heat storage amount C. .
[0035]
That is, by controlling the heat dissipation of the heat storage amount stored in the floor slab 12, the air conditioning load in the curve E showing the heat dissipation characteristics of the conventional housing heat storage system is L1, at the peak of the air conditioning load (around 13:00). When there is no heat storage, the air conditioning load is L2, and the air conditioning load in the curve C1 indicating the heat radiation characteristic of the present invention is L3 (L3 <L1 <L2), and the air conditioning load peak can be cut.
[0036]
In winter (heating), since the peak of the air conditioning load is generally in the morning, the air temperature and the air volume from the air conditioner 34 are controlled by using the room thermo 22 or the retan thermo 38 described above throughout the day.
[0037]
Further, the amount of heat radiation is adjusted by the air temperature and the amount of air blown out to the underfloor space 16. That is, if the blowing temperature is lower than the floor slab temperature, the heat release is zero. Also, if the amount of air blown into the underfloor space is the same, if the difference in the blown air temperature with respect to the floor slab temperature is small, the heat release amount is small, and if the temperature difference is the same, the blown air amount, ie, the underfloor space. The amount of heat release varies depending on the amount of air passing through. As a means for controlling by changing the air amount, it is conceivable to control the air amount of the air-conditioning fan, control the air amount of the air outlet, adjust the opening area of the air outlet, or a combination thereof.
[0038]
Furthermore, the following layout can be considered as an example of arrangement of the heat insulating layer provided on the lower surface of the floor panel.
[0039]
In other words, in the case of a room with a large exclusive area, near the windows and walls (perimeter part), in the summer (direct sunlight and radiant heat from the walls are hot) and in the winter (radiant heat from the walls etc. is cold) However, in order to realize a comfortable living environment, the air conditioning load is large.
[0040]
Considering the air conditioning environment as described above, the floor panel of the perimeter section can benefit from the radiant heat (warm) from the floor slab in winter, and the floor slab also in summer. As a design example, it can be said that it is only necessary to arrange a heat insulating layer only in the interior part.
[0041]
【The invention's effect】
Since the present invention is configured as described above, the peak of the air conditioning load can be cut in the summer, and there is no need to provide a special space for heat storage of the housing, and the construction cost is not increased.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an air flow of a housing heat storage air-conditioning structure according to the present embodiment.
FIG. 2 is a conceptual diagram showing the air flow of the housing heat storage air-conditioning structure according to the present embodiment.
FIG. 3 is a graph showing a temperature change of the floor slab of the frame heat storage air-conditioning structure according to the present embodiment.
FIG. 4 is a graph showing the relationship between the heat storage amount of the floor slab and the air conditioning load of the frame heat storage air conditioning structure according to the present embodiment.
FIG. 5 is a conceptual diagram showing a conventional housing heat storage air conditioning structure.
[Explanation of symbols]
12 Floor slab 16 Underfloor space 20 Blowout fan (air conditioning control means)
22 Room thermo (first temperature sensor)
34 Air conditioner (frame heat storage means, suppression means, air conditioning control means)
38 Retan thermo (second temperature sensor)
40 Retane duct (reflux duct)

Claims (4)

フロアパネルと床スラブとの間に形成された床下空間へ空調機で空調された空気を流入させ、前記フロアパネルに設けられた吹出口から居室内へ吹き出すアンダーフロア空調方式に用いられ、
前記床下空間へ前記空調機から空調気流を送風し、前記床スラブに蓄熱する躯体蓄熱手段と、前記蓄熱終了時の前記床スラブの平均温度より低い空調気流を前記空調機から前記床下空間へ送風することにより、日中の空調負荷のピーク時まで前記床スラブに蓄熱した蓄熱エネルギーの放熱を抑え、空調負荷のピーク時に放熱させる抑制手段と、前記床スラブから放熱される蓄熱エネルギーと前記吹出口からの吹出風量で前記居室内を空調する空調制御手段と、を有することを特徴とする躯体蓄熱空調構造。
It is used for the underfloor air conditioning system that flows air conditioned by an air conditioner into the underfloor space formed between the floor panel and the floor slab, and blows out into the living room from the outlet provided in the floor panel,
The housing heat storage means for blowing air-conditioned airflow from the air conditioner to the underfloor space and storing heat in the floor slab, and airflow airflow lower than the average temperature of the floor slab at the end of the heat storage from the air conditioner to the underfloor space By suppressing the heat dissipation of the heat storage energy stored in the floor slab until the peak of the air conditioning load during the day, the suppression means for releasing heat at the peak of the air conditioning load, the heat storage energy radiated from the floor slab and the outlet And an air-conditioning control means for air-conditioning the living room with the amount of air blown from the housing.
前記躯体蓄熱手段が、前記床下空間内の空気を前記空調機へ還流させる還流ダクトを備えていることを特徴とする請求項1に記載の躯体蓄熱空調構造。  2. The housing heat storage air-conditioning structure according to claim 1, wherein the housing heat storage means includes a reflux duct for returning air in the underfloor space to the air conditioner. 前記空調制御手段が、居室内に設けられた第1温度センサ又は居室内から還流された空気の温度を検出する第2温度センサの検出温度に基づき前記吹出口の吹出風量を制御することを特徴とする請求項1又は請求項2に記載の躯体蓄熱空調構造。  The air-conditioning control means controls the amount of air blown from the outlet based on a detection temperature of a first temperature sensor provided in the room or a second temperature sensor that detects the temperature of air recirculated from the room. The housing heat storage air-conditioning structure according to claim 1 or 2. 前記空調制御手段が、居室内に設けられた第1温度センサ又は居室内から還流された空気の温度を検出する第2温度センサの検出温度に基づき、前記床下空間へ送る風量を制御することを特徴とする請求項1又は請求項2に記載の躯体蓄熱空調構造。  The air-conditioning control means controls the amount of air sent to the underfloor space based on a detection temperature of a first temperature sensor provided in the room or a second temperature sensor that detects the temperature of the air returned from the room. The housing heat storage air-conditioning structure according to claim 1 or 2, characterized by the above.
JP27864798A 1998-09-30 1998-09-30 Housing heat storage air conditioning structure Expired - Fee Related JP3748494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27864798A JP3748494B2 (en) 1998-09-30 1998-09-30 Housing heat storage air conditioning structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27864798A JP3748494B2 (en) 1998-09-30 1998-09-30 Housing heat storage air conditioning structure

Publications (2)

Publication Number Publication Date
JP2000111121A JP2000111121A (en) 2000-04-18
JP3748494B2 true JP3748494B2 (en) 2006-02-22

Family

ID=17600204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27864798A Expired - Fee Related JP3748494B2 (en) 1998-09-30 1998-09-30 Housing heat storage air conditioning structure

Country Status (1)

Country Link
JP (1) JP3748494B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313041A (en) * 2005-05-09 2006-11-16 Sekisui Chem Co Ltd Radiation cooling/heating system utilizing space under floor
JP2008116129A (en) * 2006-11-06 2008-05-22 Sekisui Chem Co Ltd Heating and cooling system
JP6414685B2 (en) * 2014-12-26 2018-10-31 清水建設株式会社 Air conditioning control system for large space buildings
CN107747794A (en) * 2017-08-18 2018-03-02 国网天津市电力公司 The energy-saving control method that a kind of novel environmental temperature becomes excellent certainly
JP7370821B2 (en) * 2019-11-13 2023-10-30 三機工業株式会社 Perimeter air conditioning system

Also Published As

Publication number Publication date
JP2000111121A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
EP2210751B1 (en) On-vehicle temperature controller
JP5784654B2 (en) Air conditioning system and air conditioning method
US4779671A (en) Cooling, heating and ventilation system
JP3748494B2 (en) Housing heat storage air conditioning structure
JP2001090991A (en) Zone air-conditioning skelton heat-accumulating system
JP2018123999A (en) Wind passage selector damper, fan coil unit and air conditioning system
JP2823515B2 (en) Ductless type outside air introduction air conditioning system
JP7103761B2 (en) Air conditioning system
JP4520015B2 (en) Perimeter interior air conditioner and air conditioning method
JP2007333355A (en) Air conditioning system
JP2004301375A (en) Ventilation system
JP2011002104A (en) Air conditioning system
JPH11159789A (en) Air conditioner
CN113970175A (en) Air conditioner, radiation control method and device thereof, and computer readable storage medium
JP2014202369A (en) Circulator
JPH07158907A (en) Air-conditioning machine
JP4701553B2 (en) Condensation prevention device for windows
JPH10288386A (en) Air-conditioning device
JP2000028162A (en) Air conditioning structure and method
JP3656077B2 (en) Lower outlet air conditioner with indoor circulation channel and outdoor air supply channel
JP2637361B2 (en) Bottom cooling prevention system
JPH0315998Y2 (en)
JP3909405B2 (en) Heating system
JP2000291977A (en) Air-conditioning system for house
JP3065867B2 (en) Air conditioner equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees