JP3747283B2 - Clean steam generator - Google Patents

Clean steam generator Download PDF

Info

Publication number
JP3747283B2
JP3747283B2 JP2002068408A JP2002068408A JP3747283B2 JP 3747283 B2 JP3747283 B2 JP 3747283B2 JP 2002068408 A JP2002068408 A JP 2002068408A JP 2002068408 A JP2002068408 A JP 2002068408A JP 3747283 B2 JP3747283 B2 JP 3747283B2
Authority
JP
Japan
Prior art keywords
water
clean
steam
pipe
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002068408A
Other languages
Japanese (ja)
Other versions
JP2003269701A (en
Inventor
審也 渡部
Original Assignee
株式会社亀山鉄工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社亀山鉄工所 filed Critical 株式会社亀山鉄工所
Priority to JP2002068408A priority Critical patent/JP3747283B2/en
Publication of JP2003269701A publication Critical patent/JP2003269701A/en
Application granted granted Critical
Publication of JP3747283B2 publication Critical patent/JP3747283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Air Humidification (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、一般の工場蒸気等を加熱媒体として清浄で高品質な蒸気を発生させるための清浄蒸気発生装置に関する。
【0002】
【従来の技術】
近年においては各種の技術分野、例えば、食品、医療、製薬、半導体、化学等の工場や研究所において、不純物を含まない清浄な蒸気を必要とする場合が少なくない。通常、一般の工場等に設置されているボイラでは、給水自体が必ずしも十分な清浄なものではなく、缶の保護等のために水中に各種薬剤等を混入させることもあり、それにより発生した蒸気を食品や医療関係機器に直接接触させたり、各種作業空間の加湿に使用したりすると、食品や各種機器を汚染したり、クリーンルームその他の作業環境を汚染することになる。
【0003】
このような問題に対処し、一般の工場蒸気等を加熱源として清浄で高品質な蒸気を発生させるための清浄蒸気発生装置が従来から使用されている。この清浄蒸気発生装置は、例えば、図7、図8に示すようなものが提案されている。
【0004】
即ち、上記の図に示す清浄蒸気発生装置は、一般の工場蒸気を加熱用熱媒体として純水等の清浄水を加熱、蒸発させる蒸発缶本体301と、その蒸発缶本体301において清浄水を加熱した後に流出される熱媒体により上記蒸発缶本体301への給水(清浄水)を予熱する予熱器302とを備えたものである。
【0005】
蒸気蒸発缶本体301としては、種々の構成を備えたものが知られているが、例えば、工場蒸気が導入される缶内に、上下部仕切り板に両端を取付けて上下方向に向けた多数の細径の伝熱管316を配設し、それら伝熱管316の周囲に上記加熱媒体を挿入し、伝熱管316内を通して加熱された清浄水を発生蒸気と共に上昇させ、上方に導出された清浄水を蒸発缶本体301の外側に設けた降水管322を通して蒸発器の下部に導くなどの手段により、給水を循環、加熱するようにしたものが、給水の加熱、蒸発を効率的に行うために有効であることが知れている。
【0006】
【発明が解決しようとする課題】
しかるに、上述したような構成の清浄蒸気派発生装置では、蒸発缶本体301の外側に配設する降水管322として、通常、細径伝熱管の断面積合計の数10%の断面積を有するものが必要となり、そのため、比較的太い降水管を蒸発器と平行に配置する必要があり、これが、効率の低下、装置の大型化を招く原因となっていた。
【0007】
さらに、図7、図8に示すように蒸発缶本体301には、給水(清浄水)を予熱するための予熱器302が接続されており、この予熱器302は、清浄水を加熱して蒸発缶本体301に給水するもので、器体340内に螺旋状のチューブ341を収容し、その一端の流入管343を清浄水の供給源に接続すると共に、その他端を蒸発缶本体301の給水管324に接続する予熱給水管344とし、また、器体340には、蒸発缶本体301の伝熱管316を加熱して管318から排出され熱媒体を導入するための流入管345が接続されると共に、螺旋状のチューブ341内の清浄水を加熱して凝縮した凝縮水等を流出する流出管346が連結されている。
【0008】
このように、蒸発缶本体301には、予熱器302が別個に接続された構成となっていることから、予熱器302を設置するための床面積が必要となるだけでなく予熱器302に接続する各種配管が必要となるため設置費用が嵩み、伝熱効率も低下する等の問題を有していた。
【0009】
従って、本発明の目的とする所は、蒸気発生装置における蒸発面を広くして蒸発速度を遅くすることで水蒸気中に混入する水滴の量を低減して高品質の蒸気を生成すると共に、胴缶に作用する熱応力の影響も併せて低減し、清浄蒸気発生時における熱交換を効率良く行うことができ、経済的な清浄蒸気発生装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記目的を達成する為に、本発明は次の技術的手段を有する。即ち、発明の実施の形態に対応する添付図面中の符号を用いてこれを説明すると、本発明は、蒸気発生装置1の蒸発缶本体2内において一般の蒸気を加熱用熱媒体として清浄水または純水の蒸気を発生させる清浄蒸気発生装置であって、
上記蒸発缶本体2内の上下部仕切り板5、6に両端を取り付けて上下方向に向く多数の伝熱管8を配設し、上下部の仕切り板5、6で囲まれる加熱室10の下方に清浄水または純水を導入するための導入口を配設すると共にその上方に上記加熱室10内部で発生した蒸気を流出する流出口14を配設し、加熱室10における略中間部位の胴缶15を直径方向に膨出した膨出部16を形成し、下方の蒸発缶本体2内に下部仕切り板6で仕切られた凝縮水貯留室18を形成して、該凝縮水貯留室18に、上部仕切り板5で仕切られた蒸発缶本体2内上部の加熱蒸気供給室20から上記伝熱管8を流下した熱源となる加熱蒸気、およびその凝縮された凝縮水を貯留すると共に、上記下部仕切り板6に、凝縮水貯留室18に連通する給水予熱管22を上記加熱室10内に液密に突設配置して、上記凝縮水貯留室18内で生じた再蒸発蒸気を給水予熱管22に導入するようにしたことを特徴とする清浄蒸気発生装置である。
上記によれば、運転中においては、伝熱管8を通して凝縮水貯留室18に流下した凝縮水34の再蒸発蒸気により給水予熱管22が効率良く伝熱されることで、略中間部位の胴缶に膨出部を形成した加熱室内に導入された清浄水または純水が、多数の伝熱管と共に給水予熱管により加熱されて清浄蒸気が生成され外部のユーザに供給される。
従って、加熱室10内に導入された清浄水または純水は、凝縮水貯留室18に流下した凝縮水の再蒸発蒸気を利用した給水予熱管22により高い伝熱効果(サーモサイフォン効果)が得られるので、効果的に加熱することができることは勿論、加熱室10の略中間部位に形成された胴缶15の膨出部16により蒸発速度を遅くすることで、水蒸気中に混入する水滴量を低減した清浄蒸気を生成することができ、併せて加熱時に胴缶に作用する熱応力の影響を低減することができる。
【0011】
また本発明の清浄蒸気発生装置は、上記給水予熱管22が、上記凝縮水貯留室18内の底面側に下端が位置するように立設保持させたヒートパイプ50の上部を挿入するサヤ管として構成されている清浄蒸気発生装置である。
上記によれば、凝縮水貯留室18内に凝縮水と共に流下した加熱蒸気の再蒸発蒸気によって加熱されるヒートパイプ50又はサヤ管を介して給水予熱管22に伝熱することで、加熱室10内に導入された清浄水または純水は、多数の伝熱管8と共に給水予熱管により効果的に加熱されて清浄蒸気を生成することができる。従って、加熱室10内に導入された清浄水または純水は、多数の伝熱管8を通して凝縮水と共に凝縮水貯留室18に流下した加熱蒸気、並びに凝縮水の再蒸発蒸気を利用して加熱されたヒートパイプ50又はサヤ管を介して伝熱されて、効果的に加熱することができる。
【0012】
また本発明の清浄蒸気発生装置は、上記給水予熱管22が、上記凝縮水貯留室18内の底面側に下端が位置するように立設保持させたヒートパイプ50の上部に構成されている清浄蒸気発生装置である。
上記によれば、凝縮水貯留室18内に凝縮水と共に流下した加熱蒸気の再蒸発蒸気によって加熱されるヒートパイプ50に伝熱することで、加熱室10内に導入された清浄水または純水が、多数の伝熱管8と共にヒートパイプ50により直接的に加熱されて清浄蒸気が生成される。
従って、加熱室10内に導入された清浄水または純水は、多数の伝熱管8を通して凝縮水と共に凝縮水貯留室18に流下した加熱蒸気、並びに凝縮水の再蒸発蒸気を利用して加熱されたヒートパイプ50により直接伝熱されて、効果的に加熱することができる。
【0013】
また本発明の清浄蒸気発生装置は、蒸発缶本体2内の加熱室10内に清浄水または純水を補給する補給水槽4を設け、上記補給水槽4には、上記加熱室10内で加熱された清浄水または純水を、電気電導度検出器7による基準値を越えた濃縮飽和水と共に冷却すべく、上記補給水槽4の内部を通過して外部に排出する濃縮液冷却器33が設けられている清浄蒸気発生装置である。
上記によれば、加熱室10内で加熱された清浄水または純水、並びに電気電導度検出器7による基準値を越えた濃縮飽和水は、補給水槽4の内部を通過する過程で濃縮液冷却器33により冷却されて外部に排出される。
従って、加熱室10内で加熱された清浄水または純水、並びに電気電導度検出器7による基準値を越えた濃縮飽和水は、上記補給水槽4内への入出時に時間差が生じても補給水槽4内部を通過する過程で濃縮液冷却器33により所定温度下に連続的に冷却することができ、安全な状態で外部に排出することができる。
【0014】
また本発明の清浄蒸気発生装置は、上記凝縮水貯留室18が、所定量の凝縮水34が常時貯留可能に構成されている清浄蒸気発生装置である。
上記によれば、凝縮水貯留室18には、所定温度の凝縮水34が常時所定量貯留できるように設定されている。
従って、凝縮水貯留室18に所定量貯留できる凝縮水により給水予熱管22ないしヒートパイプ50を介して加熱室10内の清浄水または純水が常時予熱されているので熱損失を低減することができる。
【0015】
【発明の実施の形態】
次に、添付図面、図1〜図6に従い、本発明の清浄蒸気発生装置に係る一実施形態を詳細に説明する。図1は本発明の実施の形態における清浄蒸気発生装置の全体図、図2は蒸発缶本体の内部構造を示す断面図、図3は他の実施形態に係る清浄蒸気発生装置の蒸発缶本体内部構造を示す断面図、図4は加熱室における胴缶の膨出部の一例を示す部分拡大断面図、図5は胴缶膨出部の変形例を示す断面図であり、図6は更に他の実施形態に係る清浄蒸気発生装置の蒸発缶本体内部構造を示す断面図である。
【0016】
図1において、符号1は清浄蒸気発生装置を示し、この清浄蒸気発生装置1は、一般の工場蒸気等を加熱用熱媒体として、清浄水または純水の蒸気を発生させるものであり、工場蒸気等を加熱用熱媒体として使用して清浄水または純水を加熱して清浄蒸気を生成する蒸発缶本体2と、該蒸発缶本体2内の加熱室10内に清浄水または純水を補給すると共に加熱室10内で加熱された余剰水ないし電気電導度検出器により検出された基準値を越えた濃縮飽和水を冷却して外部に排出する濃縮液冷却器を備えた補給水槽4とから構成されている。
【0017】
蒸発缶本体2は、その内部の上下を仕切る上下部の仕切り板5、6に、両端を取り付けて上下方向に向く多数の伝熱管として機能する伝熱管8を配設し、上下部の仕切り板5、6で囲まれる加熱室10の下方に清浄水または純水を導入するための導入口12を配設すると共に、その上方に上記加熱室10の内部で発生した蒸気を流出する流出口14を配設し、加熱室10における略中間部位の胴缶15を直径方向に膨出して膨出部16を形成し、下方の蒸発缶本体2内に下部仕切り板6で仕切られた凝縮水貯留室18を形成し、この凝縮水貯留室18に、上部仕切り板5で仕切られた蒸発缶本体2上部の加熱蒸気供給室20から多数の伝熱管8を流下した熱源となる加熱蒸気、およびその凝縮された凝縮水を貯留すると共に、下部仕切り板5に、凝縮水貯留室18に連通するよう伝熱管8の約1.5倍〜2倍の直径となる給水予熱管22を加熱室10内に液密に突設配置し、凝縮水貯留室18内で生じた再蒸発蒸気を給水予熱管22に導入するように構成されている。
【0018】
さらに詳しくは、胴缶15の略中間部位に形成される膨出部16までは清浄水または純水で満たされるように、その液面が液面計26の液面検出器28により電気的に検出されており、液面低下の信号が検出されるとその検出信号によりポンプ30が起動され、補給水槽4内の清浄水または純水が膨出部16下方の胴缶15に設けられた導入口12を介して加熱室10内に補給されるようになっている。
【0019】
また、膨出部16の外周には、加熱室10で加熱されて蒸発により濃縮された清浄水または純水の飽和水25の電気伝導度を検出するための電気電導度検出器7が設けられると共に、この電気電導度検出器7が取り付けられる導出管27の下側面には、清浄水または純水の余剰水並びに電気導電度が基準値を越えた飽和水25を補給水槽4内のコイル状配管で構成される濃縮液冷却器33に向けて流出する排出口29が設けられている。
【0020】
更に、膨出部16上方の胴缶15内の加熱室10内には、多数の伝熱管8を横切る複数のバッフル板32が交互に配設されており、加熱室10上方の胴缶15側面には加熱室10内で生成された清浄蒸気をユーザに送り出す流出口14が設けられている。
【0021】
次に、凝縮水貯留室18は、下面に凝縮水34を排出する排出口35と絞り弁40が設けられると共に、凝縮水貯留室18の所定高さ位置には内部に収容される凝縮水34が全負荷の90%〜95%流出できるようにオーバフロー管36と調整弁38が設けられており、絞り弁40と調整弁38の下流側で接続された配管にはトラップ42が設けられている。
【0022】
そして、清浄水または純水を常時貯留する補給水槽4は、内部に収容されている濃縮液冷却器33の入口側の配管と飽和水等を排出する排出口29との間の配管には電気電導度検出器7からの基準値を越えた検出信号により作動する電動弁44が設けられており、濃縮液冷却器33の排出側配管には流量計45が設けられている。
【0023】
次に、上記のように構成された清浄蒸気発生装置1の一実施形態に係る作用につき図1および図2を参照して説明する。
【0024】
先ず、運転中においては、伝熱管8を通して凝縮水貯留室18に流下した凝縮水34の再蒸発蒸気により給水予熱管22が効率良く伝熱されることで、略中間部位の胴缶に膨出部を形成した加熱室内に導入された清浄水または純水が、多数の伝熱管と共に給水予熱管により加熱されて清浄蒸気が生成され外部のユーザに供給される。
【0025】
従って、本実施形態にかかる清浄蒸気発生装置1は、加熱室10内に導入された清浄水または純水は、凝縮水貯留室18に流下した凝縮水の再蒸発蒸気を利用した給水予熱管22により高い伝熱効果(サーモサイフォン効果)が得られるので、効果的に加熱することができることは勿論、加熱室10の略中間部位に形成された胴缶15の膨出部16により蒸発速度を遅くすることで、水蒸気中に混入する水滴量を低減した清浄蒸気を生成することができ、併せて加熱時に胴缶に作用する軸方向の熱応力による影響を低減することができる。
【0026】
また、加熱室10内で加熱された清浄水または純水、並びに電気電導度検出器7による基準値を越えた濃縮された飽和水25は、上記補給水槽4内への入出時に時間差が生じても補給水槽4内部を通過する過程で濃縮液冷却器33により所定温度下に連続的に冷却することができ、安全な温度下で外部に排出することができる。
【0027】
更に、凝縮水貯留室18には、所定温度の凝縮水34が常時所定量貯留できるように設定されているので凝縮水貯留室18に所定量貯留でき、また、凝縮水により給水予熱管22を介して加熱室10内の清浄水または純水が常時予熱されているので熱損失を低減することができる。
【0028】
次に、本発明の他の実施形態につき図3を参照して説明する。尚、上記実施形態における構成部材と同一構成部材については同一符号を付して重複する説明を省略する。
【0029】
符号48は、他の実施形態に係る蒸発缶本体を示し、この蒸発缶本体48は、給水予熱管22内にヒートパイプの上部を挿入した構成のみが相違するものである。
【0030】
すなわち、給水予熱管22は、凝縮水貯留室18内の底面側に下端が位置するように立設保持させたヒートパイプ50の上部を挿入する下方か開口した円筒キャップ状のサヤ管として構成したものである。
【0031】
上記のように構成された給水予熱管によれば、凝縮水貯留室18内に凝縮水と共に流下した加熱蒸気と、凝縮水の再蒸発蒸気の熱によって加熱されるヒートパイプ50又はサヤ管を介して給水予熱管22に伝熱することで、加熱室内に導入された清浄水または純水は、凝縮水貯留室18内に凝縮水と共に流下した加熱蒸気の再蒸発蒸気によって加熱されるヒートパイプ50又はサヤ管を介して給水予熱管22に伝熱することで、加熱室10内に導入された清浄水または純水は、多数の伝熱管8と共に給水予熱管により効果的に加熱されて清浄蒸気を生成することができる。
【0032】
従って、加熱室10内に導入された清浄水または純水は、多数の伝熱管8を通して凝縮水と共に凝縮水貯留室18に流下した加熱蒸気、並びに凝縮水の再蒸発蒸気を利用して加熱されたヒートパイプ50又はサヤ管を介して伝熱されて、効果的に加熱することができる。
【0033】
次に、図4並びに図5には膨出部の一例を示す部分拡大断面図が示されており、図4に示す膨出部16は、胴缶15の略中間部を直径方向に膨出するように拡径したもので、長手方向に直線部Sが形成されると共に、直径方向にも僅かな直線部が形成され、これら直線部間を所定半径の曲率からなる円弧R(54A、54B)および円弧R(55A、55B)で連絡したもので、直線部Sの上下両端で胴缶15の上下が溶接接合されている。
【0034】
これにより、蒸発缶本体2の長手方向に熱応力が作用した場合に、円弧R(54A、54B)および円弧R(55A、55B)が変形することで、熱応力を吸収することができる。加えて、膨出部16の外壁が垂直直線部で構成されているので、蒸発蒸気を上方に向けて案内することができる。
【0035】
次に、図5に示す膨出部17は、図4の膨出部の変形例であり、膨出部17の外周が大径曲率の2つの円弧r(56A、56B)で連絡されており、胴缶15の外周に対しては小径曲率の円弧58A、58Bで連絡され、2つの円弧r(56A、56B)の頂点で胴缶15の上下が溶接接合されている。
【0036】
このように、蒸発缶本体2の長手方向に熱応力が作用した場合に、大径曲率の2つの円弧r(56A、56B)と小径曲率の円弧58A、58Bが変形することで、蒸気の膨出部16と同様に熱応力を吸収することができる。また、これら膨出部16並びに17を構成することで、蒸発缶本体2の占める設置床面積を少なくすることができる。
【0037】
次に、更に他の実施形態に付き図6を参照して説明する。尚、上記実施形態における構成部材と同一構成部材については同一符号を付して重複する説明を省略する。
【0038】
ここで、符号52は、本実施形態に係る蒸発缶本体を示し、この蒸発缶本体52は、給水予熱管を凝縮水貯留室18内の底面側に下端が位置するように立設保持させたヒートパイプ50の上部として構成したものである。
【0039】
上記のように構成された給水予熱管によれば、凝縮水貯留室18内に凝縮水と共に流下した加熱蒸気の再蒸発蒸気によって加熱されるヒートパイプ50に伝熱することで、加熱室10内に導入された清浄水または純水が、多数の伝熱管8と共にヒートパイプ50により直接的に加熱されて清浄蒸気を生成される。
【0040】
従って、加熱室10内に導入された清浄水または純水は、多数の伝熱管8を通して凝縮水と共に凝縮水貯留室18に流下した加熱蒸気、並びに凝縮水の再蒸発蒸気を利用して加熱されたヒートパイプ50により直接伝熱されるので効果的に加熱することができる。
【0041】
【発明の効果】
本発明は次の効果を奏する。
【0042】
以上詳述した如く本願の請求項1記載の発明によると、加熱室内に導入された清浄水または純水が、凝縮水貯留室に流下した凝縮水の再蒸発蒸気を利用した給水予熱管により高い伝熱効果(サーモサイフォン効果)が得られるので、効果的に加熱することができることは勿論、加熱室の略中間部位に形成された胴缶の膨出部により蒸発速度を遅くすることで、水蒸気中に混入する水滴量を低減した清浄蒸気を生成することができ、併せて加熱時に胴缶に作用する熱応力の影響を低減することができる。
【0043】
本願の請求項2記載の発明によると、加熱室内に導入された清浄水または純水は、多数の伝熱管を通して凝縮水と共に凝縮水貯留室に流下した加熱蒸気、並びに凝縮水の再蒸発蒸気を利用して加熱されたヒートパイプ又はサヤ管を介して伝熱されて、効果的に加熱することができる。
【0044】
本願の請求項3記載の発明によると、加熱室内に導入された清浄水または純水は、多数の伝熱管を通して凝縮水と共に凝縮水貯留室に流下した加熱蒸気、並びに凝縮水の再蒸発蒸気を利用して加熱されたヒートパイプにより直接伝熱されて、効果的に加熱することができる。
【0045】
本願の請求項4記載の発明によると、加熱室内で加熱された清浄水または純水、並びに電気電導度検出器による基準値を越えた濃縮飽和水は、上記補給水槽内への入出時に時間差が生じても補給水槽内部を通過する過程で濃縮液冷却器により所定温度下に連続的に冷却することができ、安全な状態で外部に排出することができる。
【0046】
本願の請求項5記載の発明によると、凝縮水貯留室に所定量貯留できる凝縮水により給水予熱管ないしヒートパイプを介して加熱室内の清浄水または純水が常時予熱されているので熱損失を低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における清浄蒸気発生装置の全体図である。
【図2】蒸発缶本体の内部構造を示す断面図である。
【図3】他の実施形態に係る清浄蒸気発生装置の蒸発缶本体内部構造を示す断面図である。
【図4】加熱室における胴缶の膨出部の一例を示す部分拡大断面図である。
【図5】胴缶膨出部の変形例を示す断面図である。
【図6】更に他の実施形態に係る清浄蒸気発生装置の蒸発缶本体内部構造を示す断面図である。
【図7】従来の清浄蒸気発生装置の全体図である。
【図8】従来の蒸発缶本体の内部構造を示す断面図である。
【符号の説明】
1 清浄蒸気発生装置
2 蒸発缶本体
4 補給水槽
5、6 仕切り板
7 電気電導度検出器
8 伝熱管
10 加熱室
12 導入口
14 流出口
15 胴缶
16、17 膨出部
18 凝縮水貯留室
20 加熱蒸気供給室
22 給水予熱管
25 飽和水
26 液面計
27 導出管
28 液面検出器
29 排出口
30 ポンプ
32 バッフル板
33 濃縮液冷却器
34 凝縮水
35 排出口
36 オーバフロー管
38 調整弁
40 絞り弁
42 トラップ
44 電動弁
45 流量計
48 蒸発缶本体
50 ヒートパイプ
52 蒸発缶本体
58A、58B 小径曲率の円弧
R、r 円弧
S 直線部
[0001]
[Industrial application fields]
The present invention relates to a clean steam generator for generating clean and high-quality steam using general factory steam or the like as a heating medium.
[0002]
[Prior art]
In recent years, in various technical fields, for example, factories and laboratories of food, medicine, pharmaceuticals, semiconductors, chemistry, etc., clean steam that does not contain impurities is often required. Normally, in boilers installed in general factories, the water supply itself is not always clean enough, and various chemicals etc. may be mixed in the water to protect cans, etc., and the steam generated thereby Direct contact with food and medical equipment or use in humidification of various work spaces will contaminate food and various equipment, and clean rooms and other work environments.
[0003]
Conventionally, a clean steam generating apparatus for dealing with such problems and generating clean and high-quality steam using general factory steam as a heating source has been used. As this clean steam generator, for example, those shown in FIGS. 7 and 8 have been proposed.
[0004]
In other words, the clean steam generator shown in the above figure has an evaporator body 301 that heats and evaporates clean water, such as pure water, using general factory steam as a heating medium, and heats clean water in the evaporator body 301. And a preheater 302 that preheats the water supply (clean water) to the evaporator main body 301 by the heat medium that flows out.
[0005]
As the vapor evaporator main body 301, those having various configurations are known. For example, in a can into which factory steam is introduced, both ends are attached to the upper and lower partition plates and a large number of them are directed in the vertical direction. A small-diameter heat transfer tube 316 is disposed, the heating medium is inserted around the heat transfer tubes 316, the clean water heated through the heat transfer tubes 316 is raised together with the generated steam, and the clean water led upward is Circulating and heating the feed water by means such as guiding it to the lower part of the evaporator through a downpipe 322 provided outside the evaporator main body 301 is effective for efficiently heating and evaporating the feed water. It is known that there is.
[0006]
[Problems to be solved by the invention]
However, in the clean steam generator having the above-described configuration, the downpipe 322 disposed outside the evaporator main body 301 usually has a cross-sectional area of several tens of percent of the total cross-sectional area of the small-diameter heat transfer tube. Therefore, it is necessary to arrange a relatively thick downcomer parallel to the evaporator, which causes a decrease in efficiency and an increase in the size of the apparatus.
[0007]
Further, as shown in FIGS. 7 and 8, the evaporator main body 301 is connected to a preheater 302 for preheating water supply (clean water). The preheater 302 evaporates by heating the clean water. Water is supplied to the can body 301. A spiral tube 341 is accommodated in the vessel body 340, the inflow pipe 343 at one end thereof is connected to a supply source of clean water, and the water supply pipe of the evaporation can body 301 is connected at the other end. A preheating water supply pipe 344 connected to 324 is connected to the vessel body 340, and an inflow pipe 345 for heating the heat transfer pipe 316 of the evaporator main body 301 and discharging the heat medium from the pipe 318 is connected thereto. An outflow pipe 346 for connecting the condensed water condensed by heating the clean water in the spiral tube 341 is connected.
[0008]
Thus, since the evaporator main body 301 has a configuration in which the preheater 302 is separately connected, not only the floor area for installing the preheater 302 is required, but also the preheater 302 is connected. Since various pipes to be used are necessary, the installation cost is increased and the heat transfer efficiency is lowered.
[0009]
Therefore, the object of the present invention is to produce a high-quality steam by reducing the amount of water droplets mixed in the water vapor by widening the evaporation surface in the steam generator and slowing down the evaporation speed. An object of the present invention is to provide an economical clean steam generator that can reduce the influence of thermal stress acting on the can together and efficiently perform heat exchange when clean steam is generated.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following technical means. That is, this will be described using reference numerals in the accompanying drawings corresponding to the embodiments of the present invention. In the present invention, in the evaporator main body 2 of the steam generator 1, clean water or hot water is used as a heating heat medium. A clean steam generator for generating pure water steam,
A large number of heat transfer tubes 8 are attached to the upper and lower partition plates 5 and 6 in the evaporator main body 2 and directed in the vertical direction, and below the heating chamber 10 surrounded by the upper and lower partition plates 5 and 6. An introduction port for introducing clean water or pure water is disposed, and an outlet 14 through which steam generated in the heating chamber 10 flows out is disposed above the introduction port. 15 is formed in a bulging portion 16 bulging in the diameter direction, a condensed water storage chamber 18 partitioned by a lower partition plate 6 is formed in the lower evaporator body 2, and the condensed water storage chamber 18 is While storing the heating vapor | steam used as the heat source which flowed down the said heat exchanger tube 8 from the heating vapor | steam supply chamber 20 of the upper part in the evaporator main body 2 partitioned by the upper partition plate 5, and the condensed condensed water, the said lower partition plate 6, a water supply preheating pipe 22 communicating with the condensed water storage chamber 18 is provided. A clean steam generator characterized in that the re-evaporated steam generated in the condensed water storage chamber 18 is introduced into the feed water preheating pipe 22 in a liquid-tight projecting manner in the heating chamber 10. .
According to the above, during operation, the feed water preheating pipe 22 is efficiently transferred by the re-evaporated steam of the condensed water 34 that has flowed down to the condensed water storage chamber 18 through the heat transfer pipe 8, so that the body can at the substantially intermediate portion is transferred. Clean water or pure water introduced into the heating chamber in which the bulging portion is formed is heated by a feed water preheating tube together with a number of heat transfer tubes to generate clean steam, which is supplied to an external user.
Accordingly, the clean water or pure water introduced into the heating chamber 10 has a high heat transfer effect (thermo siphon effect) by the feed water preheating pipe 22 using the re-evaporated steam of the condensed water flowing down to the condensed water storage chamber 18. Therefore, it is possible to heat effectively, and of course, the amount of water droplets mixed in the water vapor can be reduced by slowing the evaporation rate by the bulging portion 16 of the barrel can 15 formed at a substantially intermediate portion of the heating chamber 10. Reduced clean steam can be generated, and at the same time, the influence of thermal stress acting on the can during heating can be reduced.
[0011]
Further, in the clean steam generator of the present invention, the feed water preheating pipe 22 is a sheath pipe into which the upper part of the heat pipe 50 that is erected and held so that the lower end is positioned on the bottom surface side in the condensed water storage chamber 18 is inserted. It is the clean steam generator comprised.
According to the above, by transferring heat to the feed water preheating pipe 22 via the heat pipe 50 or the sheath pipe heated by the re-evaporated steam of the heated steam flowing down with the condensed water in the condensed water storage chamber 18, the heating chamber 10. The clean water or pure water introduced into the inside can be effectively heated by the feed water preheating tube together with the large number of heat transfer tubes 8 to generate clean steam. Accordingly, the clean water or pure water introduced into the heating chamber 10 is heated using the heated steam that has flowed down to the condensed water storage chamber 18 together with the condensed water through the heat transfer tubes 8 and the re-evaporated steam of the condensed water. Heat is transferred through the heat pipe 50 or the sheath pipe, and can be effectively heated.
[0012]
Further, the clean steam generator of the present invention is configured such that the feed water preheating pipe 22 is formed on the upper part of the heat pipe 50 which is vertically held so that the lower end is located on the bottom surface side in the condensed water storage chamber 18. It is a steam generator.
According to the above, clean water or pure water introduced into the heating chamber 10 by transferring heat to the heat pipe 50 heated by the re-evaporated steam of the heated steam that has flowed down with the condensed water into the condensed water storage chamber 18. However, it is directly heated by the heat pipe 50 together with the large number of heat transfer tubes 8 to generate clean steam.
Accordingly, the clean water or pure water introduced into the heating chamber 10 is heated using the heated steam that has flowed down to the condensed water storage chamber 18 together with the condensed water through the heat transfer tubes 8 and the re-evaporated steam of the condensed water. The heat pipe 50 directly transfers heat and can be heated effectively.
[0013]
Further, the clean steam generator of the present invention is provided with a replenishing water tank 4 for replenishing clean water or pure water in the heating chamber 10 in the evaporator main body 2, and the replenishing water tank 4 is heated in the heating chamber 10. In order to cool the clean water or pure water together with the concentrated saturated water exceeding the reference value by the electric conductivity detector 7, there is provided a concentrated liquid cooler 33 that passes through the inside of the replenishing water tank 4 and discharges it outside. It is a clean steam generator.
According to the above, clean water or pure water heated in the heating chamber 10 and concentrated saturated water exceeding the reference value by the electric conductivity detector 7 are cooled by the concentrate in the process of passing through the inside of the makeup water tank 4. Cooled by the vessel 33 and discharged to the outside.
Accordingly, the clean water or pure water heated in the heating chamber 10 and the concentrated saturated water exceeding the reference value by the electric conductivity detector 7 can be supplied to the make-up water tank 4 even if there is a time difference when entering or leaving the make-up water tank 4. 4 can be continuously cooled to a predetermined temperature by the concentrate cooler 33 in the process of passing through the inside, and can be discharged outside in a safe state.
[0014]
Moreover, the clean steam generator of the present invention is a clean steam generator in which the condensed water storage chamber 18 is configured so that a predetermined amount of condensed water 34 can be stored at all times.
According to the above, the condensate water storage chamber 18 is set so that the condensate 34 having a predetermined temperature can be always stored in a predetermined amount.
Therefore, since the clean water or pure water in the heating chamber 10 is always preheated by the condensed water that can be stored in the condensed water storage chamber 18 through the feed water preheating pipe 22 or the heat pipe 50, heat loss can be reduced. it can.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the clean steam generator according to the present invention will be described in detail with reference to the accompanying drawings and FIGS. FIG. 1 is an overall view of a clean steam generator according to an embodiment of the present invention, FIG. 2 is a sectional view showing the internal structure of the evaporator main body, and FIG. 3 is an inside of the evaporator main body of the clean steam generator according to another embodiment. FIG. 4 is a partially enlarged sectional view showing an example of a bulging portion of the trunk can in the heating chamber, FIG. 5 is a sectional view showing a modification of the trunk can bulging portion, and FIG. It is sectional drawing which shows the evaporator main body internal structure of the clean steam generator which concerns on this embodiment.
[0016]
In FIG. 1, reference numeral 1 denotes a clean steam generator, and this clean steam generator 1 generates clean water or pure water steam using a general factory steam or the like as a heating heat medium. Is used as a heating medium for heating, and the clean water or pure water is heated to generate clean steam, and the heating chamber 10 in the evaporator main body 2 is supplied with clean water or pure water. And a replenishment water tank 4 provided with a concentrate cooler that cools and discharges excess water heated in the heating chamber 10 or concentrated saturated water exceeding a reference value detected by the electric conductivity detector. Has been.
[0017]
The evaporator main body 2 is provided with upper and lower partition plates 5 and 6 that divide the upper and lower portions of the evaporator main body 2, and heat transfer tubes 8 that function as a number of heat transfer tubes that are attached to both ends and face in the vertical direction. An inlet 12 for introducing clean water or pure water is disposed below the heating chamber 10 surrounded by 5 and 6, and an outlet 14 through which steam generated in the heating chamber 10 flows out is provided above the inlet 12. , A barrel can 15 at a substantially intermediate portion in the heating chamber 10 is bulged in the diameter direction to form a bulging portion 16, and condensate water storage partitioned by a lower partition plate 6 in the lower evaporator body 2. A heating chamber serving as a heat source flowing down a number of heat transfer tubes 8 from the heating steam supply chamber 20 at the top of the evaporator main body 2 partitioned by the upper partition plate 5, and While storing condensed condensed water, the lower partition plate 5 A feed water preheating pipe 22 having a diameter about 1.5 to 2 times that of the heat transfer pipe 8 is provided in a liquid-tight manner in the heating chamber 10 so as to communicate with the condensed water storage chamber 18. The re-evaporated steam generated in the step is introduced into the feed water preheating pipe 22.
[0018]
More specifically, the liquid level is electrically detected by the liquid level detector 28 of the liquid level gauge 26 so that the bulging portion 16 formed at a substantially intermediate portion of the barrel can 15 is filled with clean water or pure water. If a signal indicating a drop in the liquid level is detected, the pump 30 is activated by the detection signal, and the clean water or pure water in the makeup water tank 4 is introduced into the barrel can 15 below the bulging portion 16. The heating chamber 10 is replenished through the mouth 12.
[0019]
In addition, an electrical conductivity detector 7 for detecting the electrical conductivity of the saturated water 25 of purified water or pure water heated in the heating chamber 10 and concentrated by evaporation is provided on the outer periphery of the bulging portion 16. At the same time, on the lower surface of the lead-out pipe 27 to which the electrical conductivity detector 7 is attached, excess water of pure water or pure water and saturated water 25 whose electrical conductivity exceeds the reference value are coiled in the replenishing water tank 4. A discharge port 29 that flows out toward the concentrate cooler 33 constituted by piping is provided.
[0020]
Further, a plurality of baffle plates 32 crossing a large number of heat transfer tubes 8 are alternately arranged in the heating chamber 10 in the trunk can 15 above the bulging portion 16, and the side surface of the trunk can 15 above the heating chamber 10. Is provided with an outlet 14 for sending clean steam generated in the heating chamber 10 to the user.
[0021]
Next, the condensed water storage chamber 18 is provided with a discharge port 35 for discharging the condensed water 34 and a throttle valve 40 on the lower surface, and the condensed water 34 accommodated therein at a predetermined height position of the condensed water storage chamber 18. Is provided with an overflow pipe 36 and a regulating valve 38 so that 90% to 95% of the total load can flow out. A pipe 42 connected to the throttle valve 40 on the downstream side of the regulating valve 38 is provided with a trap 42. .
[0022]
The replenishing water tank 4 that always stores clean water or pure water is electrically connected to the pipe between the inlet side of the concentrated liquid cooler 33 accommodated therein and the outlet 29 for discharging saturated water or the like. A motor-operated valve 44 that is actuated by a detection signal that exceeds a reference value from the conductivity detector 7 is provided, and a flow meter 45 is provided on the discharge side piping of the concentrate cooler 33.
[0023]
Next, the effect | action which concerns on one Embodiment of the clean steam generator 1 comprised as mentioned above is demonstrated with reference to FIG. 1 and FIG.
[0024]
First, during operation, the feed water preheating pipe 22 is efficiently transferred by the re-evaporated steam of the condensed water 34 that has flowed down to the condensed water storage chamber 18 through the heat transfer pipe 8, so that a bulging portion is formed in the barrel can at a substantially intermediate position. The clean water or pure water introduced into the heating chamber in which is formed is heated by a feed water preheating tube together with a number of heat transfer tubes to generate clean steam, which is supplied to an external user.
[0025]
Therefore, in the clean steam generator 1 according to the present embodiment, the clean water or pure water introduced into the heating chamber 10 uses the re-evaporated steam of the condensed water that has flowed down to the condensed water storage chamber 18 to supply water preheating pipe 22. Since a higher heat transfer effect (thermosyphon effect) can be obtained, the heating can be effectively performed, and of course, the evaporation rate is slowed by the bulging portion 16 of the barrel can 15 formed at a substantially intermediate portion of the heating chamber 10. By doing so, it is possible to generate clean steam with a reduced amount of water droplets mixed in the water vapor, and it is possible to reduce the influence of the axial thermal stress acting on the body can during heating.
[0026]
Also, the clean water or pure water heated in the heating chamber 10 and the concentrated saturated water 25 exceeding the reference value by the electric conductivity detector 7 cause a time difference when entering and exiting the replenishing water tank 4. In the course of passing through the inside of the replenishing water tank 4, it can be continuously cooled to a predetermined temperature by the concentrate cooler 33, and can be discharged outside at a safe temperature.
[0027]
Further, since the condensate water storage chamber 18 is set so that a predetermined amount of condensate 34 at a predetermined temperature can always be stored, a predetermined amount can be stored in the condensate water storage chamber 18, and the feed water preheating pipe 22 can be stored in the condensate water. Since the clean water or pure water in the heating chamber 10 is always preheated through, the heat loss can be reduced.
[0028]
Next, another embodiment of the present invention will be described with reference to FIG. In addition, about the same structural member as the structural member in the said embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
[0029]
Reference numeral 48 denotes an evaporator main body according to another embodiment, and this evaporator main body 48 is different only in a configuration in which an upper portion of a heat pipe is inserted into the feed water preheating pipe 22.
[0030]
That is, the feed water preheating pipe 22 is configured as a cylindrical cap-shaped sheath pipe that opens downward or is inserted into the upper part of the heat pipe 50 that is vertically held so that the lower end is positioned on the bottom surface side in the condensed water storage chamber 18. Is.
[0031]
According to the feed water preheating pipe configured as described above, the heating steam flowing down with the condensed water in the condensed water storage chamber 18 and the heat pipe 50 or the sheath pipe heated by the heat of the re-evaporated steam of the condensed water. By transferring heat to the feed water preheating pipe 22, the clean water or pure water introduced into the heating chamber is heated by the re-evaporated steam of the heating steam that has flowed into the condensed water storage chamber 18 together with the condensed water. Alternatively, the purified water or pure water introduced into the heating chamber 10 by transferring heat to the feed water preheating pipe 22 via the sheath pipe is effectively heated by the feed water preheating pipe together with the multiple heat transfer pipes 8 to obtain clean steam. Can be generated.
[0032]
Accordingly, the clean water or pure water introduced into the heating chamber 10 is heated using the heated steam that has flowed down to the condensed water storage chamber 18 together with the condensed water through the heat transfer tubes 8 and the re-evaporated steam of the condensed water. Heat is transferred through the heat pipe 50 or the sheath pipe, and can be effectively heated.
[0033]
Next, FIGS. 4 and 5 are partially enlarged cross-sectional views showing an example of the bulging portion. The bulging portion 16 shown in FIG. The straight portion S is formed in the longitudinal direction and a slight straight portion is also formed in the diametrical direction, and an arc R (54A, 54B) having a curvature with a predetermined radius is formed between the straight portions. ) And a circular arc R (55A, 55B), and the upper and lower ends of the body can 15 are welded at the upper and lower ends of the linear portion S.
[0034]
Thereby, when a thermal stress acts in the longitudinal direction of the evaporator main body 2, the arc R (54A, 54B) and the arc R (55A, 55B) are deformed to absorb the thermal stress. In addition, since the outer wall of the bulging portion 16 is formed of a vertical straight portion, the evaporated vapor can be guided upward.
[0035]
Next, the bulging part 17 shown in FIG. 5 is a modification of the bulging part of FIG. 4, and the outer periphery of the bulging part 17 is connected by two arcs r (56A, 56B) having a large-diameter curvature. The outer periphery of the barrel can 15 is connected by arcs 58A and 58B having a small radius of curvature, and the upper and lower sides of the barrel can 15 are welded at the apexes of the two arcs r (56A and 56B).
[0036]
In this way, when thermal stress is applied in the longitudinal direction of the evaporator main body 2, the two arcs r (56A, 56B) having a large radius of curvature and the arcs 58A, 58B having a small radius of curvature are deformed, thereby expanding the steam. Thermal stress can be absorbed in the same manner as the protruding portion 16. Moreover, the installation floor area which the evaporator main body 2 occupies can be decreased by comprising these bulging parts 16 and 17. FIG.
[0037]
Next, still another embodiment will be described with reference to FIG. In addition, about the same structural member as the structural member in the said embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
[0038]
Here, the reference numeral 52 indicates the evaporator main body according to the present embodiment, and the evaporator main body 52 has the feed water preheating pipe erected and held so that the lower end is positioned on the bottom surface side in the condensed water storage chamber 18. This is configured as an upper part of the heat pipe 50.
[0039]
According to the feed water preheating pipe configured as described above, heat is transferred to the heat pipe 50 heated by the re-evaporated steam of the heated steam that has flowed into the condensed water storage chamber 18 together with the condensed water, so that the inside of the heating chamber 10 The clean water or pure water introduced into the water is directly heated by the heat pipe 50 together with the large number of heat transfer tubes 8 to generate clean steam.
[0040]
Accordingly, the clean water or pure water introduced into the heating chamber 10 is heated using the heated steam that has flowed down to the condensed water storage chamber 18 together with the condensed water through the heat transfer tubes 8 and the re-evaporated steam of the condensed water. Since heat is directly transferred by the heat pipe 50, it can be heated effectively.
[0041]
【The invention's effect】
The present invention has the following effects.
[0042]
As described above in detail, according to the invention described in claim 1 of the present application, the clean water or pure water introduced into the heating chamber is higher in the feed water preheating pipe using the re-evaporated steam of the condensed water flowing into the condensed water storage chamber. Since a heat transfer effect (thermo siphon effect) is obtained, it is possible to heat effectively, and of course, by reducing the evaporation rate by the bulging part of the barrel can formed at a substantially intermediate portion of the heating chamber, Clean steam with a reduced amount of water droplets mixed therein can be generated, and the influence of thermal stress acting on the barrel can during heating can be reduced.
[0043]
According to the invention described in claim 2 of the present application, the clean water or pure water introduced into the heating chamber is composed of the heating steam flowing down to the condensed water storage chamber together with the condensed water through a number of heat transfer tubes, and the re-evaporated steam of the condensed water. Heat is transferred through a heat pipe or a sheath pipe heated by use, and can be effectively heated.
[0044]
According to the invention described in claim 3 of the present application, the clean water or pure water introduced into the heating chamber is composed of the heated steam flowing down to the condensed water storage chamber together with the condensed water through a number of heat transfer tubes, and the re-evaporated steam of the condensed water. Heat is transferred directly by the heat pipe heated by use, and can be effectively heated.
[0045]
According to the invention described in claim 4 of the present application, clean water or pure water heated in the heating chamber and concentrated saturated water exceeding the reference value by the electric conductivity detector have a time difference when entering and leaving the makeup water tank. Even if it occurs, it can be continuously cooled to a predetermined temperature by the concentrate cooler while passing through the inside of the makeup water tank, and can be discharged to the outside in a safe state.
[0046]
According to the invention of claim 5 of the present application, clean water or pure water in the heating chamber is always preheated by the condensed water that can be stored in the condensed water storage chamber through the feed water preheating pipe or the heat pipe. Can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall view of a clean steam generator according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the internal structure of the evaporator main body.
FIG. 3 is a cross-sectional view showing an internal structure of an evaporator main body of a clean steam generating apparatus according to another embodiment.
FIG. 4 is a partial enlarged cross-sectional view showing an example of a bulging portion of a barrel can in a heating chamber.
FIG. 5 is a cross-sectional view showing a modified example of the barrel can bulge portion.
FIG. 6 is a cross-sectional view showing an internal structure of an evaporator main body of a clean steam generating apparatus according to still another embodiment.
FIG. 7 is an overall view of a conventional clean steam generator.
FIG. 8 is a cross-sectional view showing the internal structure of a conventional evaporator body.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Clean steam generator 2 Evaporator main body 4 Replenishment water tank 5, 6 Partition plate 7 Electrical conductivity detector 8 Heat transfer tube 10 Heating chamber 12 Inlet 14 Outlet 15 Trunk can 16, 17 Expansion part 18 Condensate water storage chamber 20 Heated steam supply chamber 22 Feed water preheating pipe 25 Saturated water 26 Level gauge 27 Outlet pipe 28 Liquid level detector 29 Discharge port 30 Pump 32 Baffle plate 33 Condensate cooler 34 Condensate 35 Discharge port 36 Overflow pipe 38 Adjusting valve 40 Restriction Valve 42 Trap 44 Motorized valve 45 Flow meter 48 Evaporator body 50 Heat pipe 52 Evaporator body 58A, 58B Arc R, r Arc S with small diameter curvature Straight line

Claims (5)

蒸気発生装置1の蒸発缶本体2内において一般の蒸気を加熱用熱媒体として清浄水または純水の蒸気を発生させる清浄蒸気発生装置であって、上記蒸発缶本体2内の上下部仕切り板5、6に両端を取り付けて上下方向に向く多数の伝熱管8を配設し、上下部の仕切り板5、6で囲まれる加熱室10の下方に清浄水または純水を導入するための導入口を配設すると共にその上方に上記加熱室10内部で発生した蒸気を流出する流出口14を配設し、加熱室10における略中間部位の胴缶15を直径方向に膨出した膨出部16を形成し、下方の蒸発缶本体2内に下部仕切り板6で仕切られた凝縮水貯留室18を形成して、該凝縮水貯留室18に、上部仕切り板5で仕切られた蒸発缶本体2内上部の加熱蒸気供給室20から上記伝熱管8を流下した熱源となる加熱蒸気、およびその凝縮された凝縮水を貯留すると共に、上記下部仕切り板6に、凝縮水貯留室18に連通する給水予熱管22を上記加熱室10内に液密に突設配置して、上記凝縮水貯留室18内で生じた再蒸発蒸気を給水予熱管22に導入するようにしたことを特徴とする清浄蒸気発生装置。A clean steam generator for generating clean water or pure water steam using general steam as a heating heat medium in the evaporator main body 2 of the steam generator 1, and an upper and lower partition plate 5 in the evaporator main body 2. , 6 are arranged with a large number of heat transfer tubes 8 which are vertically oriented and are provided with inlets for introducing clean water or pure water below the heating chamber 10 surrounded by the upper and lower partition plates 5, 6. And an outlet 14 through which the steam generated in the heating chamber 10 flows out is disposed above, and a bulging portion 16 that bulges a barrel can 15 at a substantially intermediate position in the heating chamber 10 in the diameter direction. And a condensed water storage chamber 18 partitioned by the lower partition plate 6 is formed in the lower evaporator body 2, and the evaporator body 2 partitioned by the upper partition plate 5 in the condensed water storage chamber 18. The heat transfer pipe 8 was flowed down from the heating steam supply chamber 20 in the upper part inside. The heating steam that is the source and the condensed water condensed therein are stored, and a water supply preheating pipe 22 that communicates with the condensed water storage chamber 18 is provided on the lower partition plate 6 in a liquid-tight manner in the heating chamber 10. Then, the clean vapor generating apparatus characterized in that the re-evaporated steam generated in the condensed water storage chamber 18 is introduced into the feed water preheating pipe 22. 上記給水予熱管22が、上記凝縮水貯留室18内の底面側に下端が位置するように立設保持させたヒートパイプ50の上部を挿入するサヤ管として構成されている請求項1に記載の清浄蒸気発生装置。The said feed water preheating pipe | tube 22 is comprised as a sheath pipe | tube which inserts the upper part of the heat pipe 50 made to stand and hold | maintain so that a lower end may be located in the bottom face side in the said condensed water storage chamber 18. Clean steam generator. 上記給水予熱管22が、上記凝縮水貯留室18内の底面側に下端が位置するように立設保持させたヒートパイプ50の上部を構成している請求項1に記載の清浄蒸気発生装置。The clean steam generator according to claim 1, wherein the feed water preheating pipe (22) constitutes an upper part of a heat pipe (50) which is vertically arranged and held so that a lower end is located on a bottom surface side in the condensed water storage chamber (18). 蒸発缶本体2内の加熱室10内に清浄水または純水を補給する補給水槽4を設け、上記補給水槽4には、上記加熱室10内の加熱された清浄水または純水を、電気伝導度検出器7による基準値を越えた濃縮飽和水と共に冷却すべく、上記補給水槽4の内部を通過して外部に排出する濃縮液冷却器33が設けられている請求項1に記載の清浄蒸気発生装置。A replenishing water tank 4 for replenishing clean water or pure water is provided in the heating chamber 10 in the evaporator main body 2, and the heated clean water or pure water in the heating chamber 10 is electrically conducted to the replenishing water tank 4. 2. The clean steam according to claim 1, further comprising a concentrate cooler 33 that passes through the inside of the replenishing water tank 4 and is discharged to the outside so as to be cooled together with the concentrated saturated water exceeding the reference value by the degree detector 7. Generator. 上記凝縮水貯留室18は、所定量の凝縮水が常時貯留可能に構成されている請求項1〜3の何れかに記載の清浄蒸気発生装置。The said condensed water storage chamber 18 is a clean steam generator in any one of Claims 1-3 comprised so that a predetermined amount of condensed water can always be stored.
JP2002068408A 2002-03-13 2002-03-13 Clean steam generator Expired - Lifetime JP3747283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068408A JP3747283B2 (en) 2002-03-13 2002-03-13 Clean steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068408A JP3747283B2 (en) 2002-03-13 2002-03-13 Clean steam generator

Publications (2)

Publication Number Publication Date
JP2003269701A JP2003269701A (en) 2003-09-25
JP3747283B2 true JP3747283B2 (en) 2006-02-22

Family

ID=29199518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068408A Expired - Lifetime JP3747283B2 (en) 2002-03-13 2002-03-13 Clean steam generator

Country Status (1)

Country Link
JP (1) JP3747283B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097790A (en) * 2007-10-17 2009-05-07 Kameyama Tekkosho:Kk Steam generator
KR102407535B1 (en) * 2019-09-27 2022-06-10 지영한 High purity steam generation apparatus

Also Published As

Publication number Publication date
JP2003269701A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
NO159404B (en) DEVICE FOR TRANSFER OF RODS BETWEEN A BORROW HOLE AND EROTIC STORAGE.
JP2010164248A (en) Absorption heat pump
US7882809B2 (en) Heat exchanger having a counterflow evaporator
JP3747283B2 (en) Clean steam generator
JP2004506171A (en) Improved ammonia water absorption system generator using structured packing
JP5676914B2 (en) Absorption heat pump
CA2990585C (en) Steam generator
US5791158A (en) Internally fired generator with improved solution flow
JP2663316B2 (en) Structure of evaporation part of loop type heat pipe
KR20060100015A (en) Boiler
RU2661121C2 (en) Shell-and-tube apparatus for heat recovery from hot process stream
US3468292A (en) Domestic hot water heater
CN100595484C (en) Waste-heat boiler and steam drum thereof
RU2716279C1 (en) Deaerator device
JPS6314293Y2 (en)
JP3889925B2 (en) Pure steam generator
JPH06241612A (en) Absorption type chiller
JP6337055B2 (en) Absorption heat pump
JPH02290478A (en) Direct contact type condenser and heat cycle apparatus using the same
JP7390185B2 (en) Vacuum water heater
US3195517A (en) Stable forced circulation boilers
CN206656337U (en) A kind of membrane type steam-generating tube
KR0147749B1 (en) Regenerator for absorptive airconditioner
KR100279875B1 (en) Generator column structure of absorption system
JPH10246401A (en) Clean steam generating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3747283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term