JP3747051B1 - Vehicle control device linked with steering device - Google Patents

Vehicle control device linked with steering device Download PDF

Info

Publication number
JP3747051B1
JP3747051B1 JP2005180327A JP2005180327A JP3747051B1 JP 3747051 B1 JP3747051 B1 JP 3747051B1 JP 2005180327 A JP2005180327 A JP 2005180327A JP 2005180327 A JP2005180327 A JP 2005180327A JP 3747051 B1 JP3747051 B1 JP 3747051B1
Authority
JP
Japan
Prior art keywords
drive wheel
turning
right drive
pinion gear
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005180327A
Other languages
Japanese (ja)
Other versions
JP2007002861A (en
Inventor
均 藤澤
Original Assignee
有限会社ワンダー企画
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ワンダー企画 filed Critical 有限会社ワンダー企画
Priority to JP2005180327A priority Critical patent/JP3747051B1/en
Application granted granted Critical
Publication of JP3747051B1 publication Critical patent/JP3747051B1/en
Publication of JP2007002861A publication Critical patent/JP2007002861A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Regulating Braking Force (AREA)
  • Retarders (AREA)

Abstract

【課題】現在のノン・スリップ・デフは左右の駆動輪の走行距離差が発生した場合,旋回中なのか直進走行中のスリップなのか判別できない点であり,この点を改善し駆動力のムダをなくし操縦性,燃費,走行安定性,走破性を向上させ,タイヤの摩耗を抑制するノン・スリップ・デフを提供する。
【解決手段】操舵装置とノン・スリップ・デフを連動させることで,運転者の負担にならずに直進時と旋回時を自動的に判別させ,直進時は左右の駆動輪軸を直結し,旋回時は路面の走行抵抗差と関係なく旋回内側のサイドギヤに旋回半径に応じた機械的な回転負荷をかけ,左右の駆動輪軸の回転数比を理想的な比率に近づける。また左右の駆動輪軸に回転センサ-を取付け,左右の駆動輪軸の実際の回転数比と計算上の理想的な回転数比を比較し,誤差を回転負荷の大きさにフィ−ドバックさせて理想的な旋回走行状態に近づける。
【選択図】図2
[PROBLEMS] The current non-slip differential cannot improve whether the vehicle is turning or slipping straight when there is a difference in travel distance between the left and right drive wheels. It provides a non-slip differential that improves maneuverability, fuel efficiency, running stability, and running performance by suppressing tire wear.
SOLUTION: By linking a steering device and a non-slip differential, it is possible to automatically discriminate between straight driving and turning without burdening the driver, and when driving straight, the left and right drive wheel shafts are directly connected and turning. At times, regardless of the road resistance difference on the road surface, a mechanical rotational load corresponding to the turning radius is applied to the side gear on the inside of the turn so that the rotation speed ratio of the left and right drive wheel shafts approaches the ideal ratio. Also, rotation sensors are attached to the left and right drive wheel shafts, the actual rotation speed ratio of the left and right drive wheel shafts is compared with the calculated ideal rotation speed ratio, and the error is fed back to the magnitude of the rotation load to provide the ideal Closer to a typical turning state.
[Selection] Figure 2

Description

車両の制御装置に関する Vehicle control device

自動車などでは駆動力は通常1つの動力源から変速装置,伝導装置などを経て最終減速と差動歯車からなるデフと呼ばれる装置で左右の駆動輪に分配される。差動装置は自動車が旋回するときに駆動車輪の旋回半径が異なることによる走行距離の差を調整するための装置で,デフ・ケ−スの中に4つのカサ歯車を互いに向き合わせた差動歯車が,ドライブピニオンで回転される最終減速のリングギヤに取付けられているのが基本的な形式である。 In an automobile or the like, the driving force is normally distributed to the left and right drive wheels from a single power source through a transmission, a transmission device, etc., and a device called a diff consisting of a final reduction gear and a differential gear. The differential device is a device that adjusts the difference in mileage due to the difference in the turning radius of the drive wheel when the vehicle turns. The differential gear is a differential with four bevel gears facing each other in the differential case. The basic type is that the gear is attached to the final reduction ring gear that is rotated by the drive pinion.

この形式の差動装置は,左右の駆動輪の路面との摩擦力の差により作動し,自動車が走行中に旋回すると,旋回内側の駆動輪は直進時よりも走行距離が少なくなりブレ−キを架けたように摩擦力が増加し,旋回外側の駆動輪は直進時よりも走行距離が多くなるので引きずられて回転させられ摩擦力が減少する。差動装置の左右のサイドギヤの回転数の合計はリングギヤの回転数の2倍になるという機能があるので,路面との摩擦力の大きい駆動輪の回転数が低下した場合,低下した回転数だけ路面との摩擦力が小さい方の駆動輪の回転数が上昇し,路面との摩擦力の差が無くなるところでバランスするように差動装置が働く。 This type of differential device operates by the difference in frictional force between the left and right drive wheels, and if the vehicle turns while the vehicle is running, the drive wheels on the inside of the turn have a shorter travel distance than when driving straight, and the brakes The frictional force increases as if the vehicle is crossed, and the driving wheel on the outside of the turn has a longer travel distance than when traveling straight, so it is dragged and rotated to reduce the frictional force . Since the total number of rotations of the left and right side gears of the differential device is twice the number of rotations of the ring gear, if the number of rotations of the drive wheels with high frictional force with the road surface decreases, only the decreased number of rotations The differential gear works so that the rotational speed of the drive wheel having the smaller frictional force with the road surface increases and balances when the difference in frictional force with the road surface disappears.

厳密に見ると,一般道路での走行では左右の駆動輪の路面との摩擦力が全く同じで全く同回転ということは少なく,直進時,旋回時にかかわらず走行中の左右の駆動輪の駆動力の一部は絶えず路面との摩擦力の大きい方の駆動輪から路面との摩擦力の小さい駆動輪に流れ,直進時に限らず旋回時に於いても左右の駆動輪に不要なスリップを発生し,走行距離の多い自動車では動力のロスやタイヤの摩耗,燃費の悪化への影響は無視できない。 Strictly speaking, when driving on a general road, the frictional force with the road surface of the left and right drive wheels is exactly the same, and it is unlikely that the same rotation will occur. A part of the engine constantly flows from the driving wheel with the larger frictional force with the road surface to the driving wheel with the smaller frictional force with the road surface, and generates unnecessary slip on the left and right driving wheels not only when going straight, but also when turning. In automobiles with a large mileage, the effects on power loss, tire wear, and fuel economy cannot be ignored.

また左右の駆動輪の路面との摩擦力の差が大きくなる不整地や雪道などの走行では左右の駆動輪の路面との摩擦力の差が増大する傾向にあり,最悪の場合は片輪の路面との摩擦力が無くなり空転して自動車が走行不能になることがある。また高速走行中に路面状況により瞬間的に一方の駆動輪がスリップすると,スリップした駆動輪の回転数が瞬間的に増加し,再度接地したときには強い駆動力が架かるので走行が不安定になることがある。これらの改善策として,色々な差動制御装置が開発され実用化されている。 Also, when driving on rough terrain or snowy roads where the difference in friction force between the left and right drive wheels increases, the difference in friction force between the left and right drive wheels tends to increase. There is a case where the frictional force with the road surface disappears and the vehicle runs idle and the vehicle cannot run. Also, if one drive wheel slips momentarily due to road conditions during high-speed driving, the rotational speed of the slipping drive wheel increases momentarily, and when driving again, a strong driving force is applied, which makes the running unstable. There is. As a countermeasure for these, various differential control devices have been developed and put into practical use.

左右の駆動輪軸の回転差をスラスト荷重に変え左右の駆動輪軸を機械的に直結・ロックすることでスリップを押さえるクラッチ式,左右の駆動輪軸の回転差で攪拌されると発熱し膨張する性質の粘性体で左右の駆動輪軸を繋げて片輪のスリップを押さえるビスカスカップリング式,歯車の噛み合い抵抗を利用したヘリカルギヤを組み合わせた方法,遊星歯車と電磁クラッチを組み合わせた方法などが実用化され市販車に搭載されている。 Clutch for holding the slip by mechanically directly connected locks the left and right drive wheel shaft changing the rotational difference between the right and left driving wheels shaft thrust load, and heating the agitated by the rotation difference between the left and right drive wheel shaft of property of expanding A viscous coupling that connects the left and right drive wheel shafts to suppress slipping of one wheel, a method that combines helical gears that use the meshing resistance of gears, and a method that combines planetary gears and electromagnetic clutches have been put into practical use. It is mounted on.

しかし殆どの差動制御装置は一定の差動量が発生した後に働くという事後処理的な制御で,本来差動装置に必要な旋回とスリップの判別ができる差動装置は現在のところ殆ど見当たらない。スリップを押さえるために左右の駆動輪軸の許容回転差を必要以上に制限すれば旋回走行時に車輪ロックが発生し運転上も機械構造上も問題になる。また現在市場に見られる差動制御装置は複雑化し重く高価になる傾向にあり,低価格で簡単な構造で軽量,確実な制御装置の普及が期待される。 However, most differential control devices are post-processing controls that work after a certain amount of differential occurs, and there are currently few differential devices that can distinguish between turning and slip that are originally required for differential devices. . If the allowable rotation difference between the left and right drive wheel shafts is limited more than necessary to suppress slip, wheel locks occur during turning, which causes problems in operation and mechanical structure. In addition, differential control devices found in the market tend to be complicated, heavy and expensive, and it is expected that low-cost, simple structure, light weight and reliable control devices will spread.

特開平11−348595JP-A-11-348595 細川武志著 「クルマのメカ&仕組み図鑑」(株)グランプリ出版 2003年Takeshi Hosokawa “Mechanical & Mechanical Picture Book of Cars” Grand Prix Publishing 2003 伊藤 茂著 「メカニズムの辞典」 理工学社Shigeru Ito “Dictionary of Mechanisms”

自動車の旋回,直進の二つの走行状態を機械的且つ自動的に判断させ,左右の駆動輪軸の回転数を計算上の回転数比に近づけることで不要なスリップ,駆動力のロスを減らし,燃費,走行安定性の向上,タイヤの摩耗抑制を目的とする。 The two driving states of the car, turning and straight, are judged mechanically and automatically, and the rotational speed of the left and right drive wheel shafts is brought close to the calculated rotational speed ratio to reduce unnecessary slip and loss of driving force, thereby reducing fuel consumption. The purpose is to improve running stability and suppress tire wear.

操舵装置と,ピニオンギヤ及び左右のサイドギヤをデフ・ケ−ス内に備える差動装置とを有し, 前記ピニオンギヤは前記デフ・ケ−スに対して固定及び解放可能に設けられるとともに,前記左右のサイドギヤは左右の駆動輪軸に対してそれぞれ軸方向に摺動可能に設けられ,前記左右の駆動輪軸の外周には,該左右の駆動輪軸の軸方向外側への移動により,該左右の駆動輪軸にそれぞれ制動力を加える摩擦板を設けた車両の制御装置において,前記ピニオンギヤの前記デフ・ケ−スに対する固定及び解放,並びに,前記左右の駆動輪軸の軸方向の移動を前記操舵装置の操作と連動させ,直進時には前記ピニオンギヤを前記デフ・ケ−スに固定して前記左右の駆動輪軸を直結状態とし,旋回時には前記ピニオンギヤを解放するとともに,旋回内側の駆動輪軸に車両の旋回半径に応じた制動力を加える。A steering device, and a differential device provided with a pinion gear and left and right side gears in the differential case. The pinion gear is provided so as to be fixed and releasable with respect to the differential case, and The side gears are provided so as to be slidable in the axial direction with respect to the left and right drive wheel shafts, and the left and right drive wheel shafts are moved to the outer sides of the left and right drive wheel shafts by moving outwardly in the axial direction. In a vehicle control device provided with a friction plate for applying a braking force, the pinion gear is fixed and released with respect to the differential case, and the axial movement of the left and right drive wheel shafts is linked with the operation of the steering device. When driving straight, the pinion gear is fixed to the differential case so that the left and right drive wheel shafts are directly connected. When turning, the pinion gear is released and turning Apply a braking force corresponding to the turning radius of the vehicle to a drive wheel shaft side.
旋回時に左右の駆動輪軸の実際の回転数比を算出し,前記操舵装置の操舵角度から算出される車両の旋回半径に応じた左右の駆動輪軸の回転数比と前記実際の回転数比との誤差を計算し,この誤差の値が予め設定した許容範囲内に入るように旋回内側の駆動輪軸に加える制動力の大きさをフィ−ドバック制御する。The actual rotation speed ratio of the left and right drive wheel shafts during turning is calculated, and the rotation speed ratio of the left and right drive wheel shafts according to the turning radius of the vehicle calculated from the steering angle of the steering device and the actual rotation speed ratio are calculated. An error is calculated, and feedback control is performed on the magnitude of the braking force applied to the drive wheel shaft inside the turn so that the value of the error falls within a preset allowable range.

本発明の車両の制御装置は,不要なスリップを極力無くすことで自動車の燃費の向上,走行安定性の向上,タイヤの摩耗抑制等が期待できる。また旋回時の駆動力を左右の駆動輪軸に分配する時期や分配の比率を調整することが可能になり,自動車の旋回性能を変えることができる。また駆動力のロスがなく,大馬力の無限軌道車の操舵方法を自動車と同様にハンドル式に変えることも可能と思われる。 The vehicle control apparatus of the present invention can be expected to improve the fuel consumption of the automobile, improve the running stability, suppress the tire wear, etc. by eliminating unnecessary slips as much as possible. It is also possible to adjust the timing and distribution ratio for distributing the driving force during turning to the left and right drive wheel axles , and to change the turning performance of the automobile. In addition, there is no loss of driving force, and it seems possible to change the steering method of a large horsepower endless track vehicle to a steering wheel type like an automobile.

二輪駆動車や四輪駆動車の差動制御装置としての利用の他に,駆動力の配分を任意に制御することで逆位相操舵や同位相操舵などの四輪操舵と同じ効果を持たせることができ,これにより高速走行時や駐車時,旋回時の操作性の向上が期待できる。構造が簡単で重量的にも価格的にも現状の差動制御装置と十分競争できると考える。 In addition to being used as a differential control device for two-wheel drive vehicles and four-wheel drive vehicles, the same effect as four-wheel steering such as anti-phase steering and in-phase steering can be achieved by arbitrarily controlling the distribution of driving force. This can be expected to improve operability during high-speed driving, parking, and turning. We think that the structure is simple and can compete sufficiently with the current differential control device in terms of weight and price.

自動車の差動装置を操舵装置と連動させ,操舵装置から操舵角度を検出し直線走行と旋回走行を自動的に判断させる。直線走行時には左右の駆動輪軸を直結状態にし,旋回走行時には操舵装置の操舵角度から旋回半径を計算し,左右の駆動輪の路面との摩擦力の差に関係なく差動装置の旋回内側の駆動輪軸に旋回半径に応じた制動力を与える。左右の駆動輪軸の実際の回転数比を計測し,計算上の回転数比との誤差を駆動輪軸に与える制動力の大きさにフィ−ドバックし,予め設定した許容範囲の中に回転数比の誤差を納めることで不要なスリップが無い計算上の走行状態に近づける。 A differential device of an automobile is linked with a steering device, a steering angle is detected from the steering device, and straight running and turning are automatically judged. When driving straight, the left and right drive wheel axles are directly connected, and when turning, the turning radius is calculated from the steering angle of the steering device, and the drive inside the turn of the differential device is performed regardless of the difference in frictional force with the road surface of the left and right drive wheels. A braking force corresponding to the turning radius is applied to the wheel shaft . Measure the actual rotational speed ratio of the left and right drive wheel shafts , feed back the calculated difference in rotational speed ratio to the magnitude of the braking force applied to the drive wheel shaft, and set the rotational speed ratio within a preset allowable range. By putting the error of, it will be closer to the calculated running state without unnecessary slip.

通常,自動車(4輪車)は図−1のようにスリップせずに旋回するようにアッカ−マン機構により全車輪が旋回中心
O を中心とした同心で異なる半径の円周上を通るようにタイヤが取付けられている。後輪を駆動輪とすると,自動車が旋回する時の左右の駆動輪それぞれの走行距離は,車輪の旋回半径と旋回角度の積である。旋回外側駆動輪の走行距離LoはLo=Ro×θ,旋回内側駆動輪の走行距離LiはLi=Ri×θであるから,走行距離の差ΔLはΔL=Lo-Li=(Ro×θ)−(Ri×θ)であり,左右駆動輪のトレッド幅をTRとするとRo=Ri+TRであるから,差動装置が調整すべき左右駆動輪の走行距離差はΔL=Lo-Li=TR×θ(トレッド幅×旋回角度)となる。
Normally, an automobile (four-wheeled vehicle) turns all the wheels at the turning center by an Acckerman mechanism so that it turns without slipping as shown in FIG.
Tires are mounted so that they pass on the circumference of concentric and different radii centered on O. When the rear wheel is a drive wheel, the distance traveled by the left and right drive wheels when the vehicle turns is the product of the wheel turning radius and the turning angle. Since the traveling distance Lo of the turning outer drive wheel is Lo = Ro × θ and the traveling distance Li of the turning inner drive wheel is Li = Ri × θ, the difference ΔL in the traveling distance is ΔL = Lo−Li = (Ro × θ) − (Ri × θ), and if the tread width of the left and right drive wheels is TR, then Ro = Ri + TR, so the difference in travel distance between the left and right drive wheels that the differential device should adjust is ΔL = Lo-Li = TR × θ (Tread width × turning angle).

ここで,左右のタイヤ径は同じであるから車輪の走行距離は(タイヤ径×回転数)であり,旋回時の左右駆動輪の走行距離の比は左右駆動輪軸の回転数の比になり,走行距離の比はLo/Li=(Ro×θ)/(Ri×θ)=1+(TR/Ri)となる。自動車が同じ旋回半径で走行すれば旋回角度(θ)に関係なく左右駆動輪軸の回転数比は一定になる。   Here, since the tire diameters on the left and right are the same, the distance traveled by the wheel is (tire diameter x number of revolutions), and the ratio of the distance traveled by the left and right drive wheels during turning is the ratio of the number of revolutions of the left and right drive wheel axles. The ratio of the travel distance is Lo / Li = (Ro × θ) / (Ri × θ) = 1 + (TR / Ri). If the vehicle travels with the same turning radius, the rotation speed ratio of the left and right drive wheel shafts is constant regardless of the turning angle (θ).

市販の小型車で旋回時に必要な左右の駆動輪軸の回転数比を計算してみると,駆動輪のトレッド幅TR(=1.6m),旋回外側車輪の回転半径を最小回転半径Ro(=4.8m) で旋回した場合,Ri(=3.2m)であるから旋回外側と旋回内側の駆動輪軸の回転数比は1.50となり,旋回時に必要な駆動輪軸の回転数比は1.50前後が実用上の最大値と見込まれる。   When calculating the rotation speed ratio of the left and right drive wheel shafts required for turning in a commercially available small car, the tread width TR (= 1.6 m) of the drive wheel and the turning radius of the turning outer wheel are set to the minimum turning radius Ro (= 4). When turning at .8m), Ri (= 3.2m), the rotation speed ratio of the drive wheel shaft on the outside and inside of the turn is 1.50, and the rotation speed ratio of the drive wheel shaft required for turning is 1.50. Around is expected to be the maximum practical value.

本発明の車両の制御装置は,4個のかさ歯車を組み合わせデフ・ケ−スの中に組み込む機械式の差動装置で,直進時にピニオンギヤを固定,旋回時はピニオンギヤを解放し旋回内側の駆動輪軸に旋回半径に応じた制動力をかけるという原理は同じであるが,ピニオンギヤを固定,解放させる方法や駆動輪軸制動力をかける方法に機械式(図−2参照)と油圧式(図−6参照)の2通りの操作方法がある。 Control apparatus for a vehicle of the present invention, four combinations of bevel gear differential Ke - in differential mechanical incorporation into the scan, secure the pinion gear during straight, turning at the time of release pivoted inside the driving pinion gear The principle of applying a braking force according to the turning radius to the wheel shaft is the same, but the mechanical (see Fig. 2) and hydraulic (see Fig. 2) methods for fixing and releasing the pinion gear and for applying the braking force to the drive wheel shaft . 6)).

当発明の車両の制御装置の主要な部品を図−2を用いて説明すると,ドライブピニオン(1),リングギヤ(2),デフ・ケ−ス(18),ピニオンギヤ(10),サイドギヤ(11),ピニオンギヤの回転軸(12),サイドギヤの回転軸(17),固定摩擦板(9-1),(9-2)及び移動摩擦板(15-1),(15-2),バネ(8),コントロ−ルシャフト(4),回転レバ−(5),操作レバ−(14),ブレ−キハウジング(22)で構成され,これらがデフ・キャリア(3)の中で組み合わされ,駆動力を分配するための操作用のプッシュリング(19)がデフ・キャリア(3)の外側に出ている左右のサイドギヤの回転軸(17)を受けるパイプ部分の外径に取り付けられ,左右の駆動輪軸(13)がサイドギヤの回転軸(17)端部に取り付けられる。 The main parts of the vehicle control device according to the present invention will be described with reference to FIG. 2. The drive pinion (1), ring gear (2), differential case (18), pinion gear (10), side gear (11) , Pinion gear rotating shaft (12), side gear rotating shaft (17), fixed friction plate (9-1), (9-2), moving friction plate (15-1), (15-2), spring (8 ), Control shaft (4), rotary lever (5), operation lever (14), brake housing (22), which are combined in the differential carrier (3) to drive force Push ring (19) for distributing the motor is attached to the outer diameter of the pipe part that receives the rotation shaft (17) of the left and right side gears that are outside the differential carrier (3), and the left and right drive wheel shafts (13) is attached to the end of the rotating shaft (17) of the side gear.

図−2のようにデフ・ケ−ス(18)には,一般的な機械式差動装置のデフ・ケ−スと同様にリングギヤ(2)にデフ・ケ−ス(18)を固定し,デフ・ケ−ス(18)の中心を通るリングギヤ(2)の回転軸芯と直交するようにピニオンギヤの回転軸(12)を取り付けるデフ・ケ−ス(18)の上下2ヶ所に矩形の取付穴(25)を設ける。 As shown in Fig. 2, the differential case (18) is fixed to the ring gear (2) in the same way as the differential case of a general mechanical differential. , Attach the rotation shaft (12) of the pinion gear so that it is perpendicular to the rotation shaft center of the ring gear (2) passing through the center of the differential case (18). Provide mounting holes (25).

ピニオンギヤ(10)は,ピニオンギヤの回転軸(12)とは別々に自由に回転するようにピニオンギヤの回転軸(12)芯と軸芯を合わせボス部分に円形の取付穴を開け,歯面裏側にはド−ナツ形の固定摩擦板(9-2)を取り付ける。
サイドギヤ(11)は,外径をスプライン(20)加工したサイドギヤの回転軸(17)上を噛み合いながらスライドするように,軸芯を合わせてボス部分に取付穴を開け,取付穴にサイドギヤの回転軸(17)に噛み合うスプライン(20)を加工する。
The pinion gear (10) is aligned with the rotation axis (12) of the pinion gear so that it can freely rotate separately from the rotation axis (12) of the pinion gear, and a circular mounting hole is made in the boss portion, and the back of the tooth surface Install a donut-shaped fixed friction plate (9-2).
The side gear (11) is fitted with a shaft hole in the boss so that it slides while meshing on the rotating shaft (17) of the side gear whose outer diameter has been splined (20). The spline (20) that meshes with the shaft (17) is machined.

ピニオンギヤの回転軸(12)は中央の非円形断面のカム(16)部分とその上下にコントロ−ルシャフト(4)を上から被せるための円形軸,更にその先に回転レバ−(5)を取り付ける円形軸の3つの異なる断面と共通の回転軸芯を持ち,中央部分の非円形断面のカム(16)部分を挟んで上下同じ形をしている。中央部分の非円形断面のカム(16)部分の断面形状は,回転軸芯を中心とする半円形断面の直径部分に短径が半円形断面の直径と同じ楕円形断面の半分を繋ぎ合わせた,半分が円形で半分が半楕円形の滑らかな断面外形を持つ。
中央のカム(16)部分の上下に取り付けられる円形軸と,更にその先に取り付けられる直径を小さくした円形軸の段差部分に,カム(6)となる突起を取り付ける。
The pinion gear rotating shaft (12) has a central non-circular cross-section cam (16), a circular shaft for covering the control shaft (4) from above and below, and a rotating lever (5) attached to the tip. It has a rotating shaft core common to three different cross sections of the circular shaft, and has the same shape up and down across the cam (16) portion of the non-circular cross section at the center. The cross-sectional shape of the cam (16) part with a non-circular cross section at the center is the half part of the elliptical cross section whose minor axis is the same as the diameter of the semicircular cross section. , Has a smooth cross-section with half circular and half elliptical.
A projection that becomes the cam (6) is attached to the stepped portion of the circular shaft that is attached to the top and bottom of the central cam (16) and the diameter of the circular shaft that is further attached to the tip.

サイドギヤの回転軸(17)には,回転軸の途中に軸心を合わせて軸と一体化した固定円盤(21)を取付け,固定円盤(21)を挟んで回転軸の片側外径にサイドギヤ(11)の取付穴に加工したスプラインと噛み合うスプライン(20)を加工し,軸端面をサイドギヤの回転軸(17)芯と直角な平面とする。固定円盤(21)を挟んだ反対側の軸外径にはサイドギヤの回転軸(17)に取り付ける移動摩擦板(15-1)の取付穴のスプラインと噛み合うスプライン(20)を加工し,軸端面には駆動輪軸(13)を取り付けるための加工を施す。   The rotating shaft (17) of the side gear is fitted with a fixed disk (21) that is integrated with the shaft by aligning the shaft center in the middle of the rotating shaft, and the side gear ( Cut the spline (20) that meshes with the spline drilled in the mounting hole of 11), and make the shaft end face a plane perpendicular to the core of the side gear rotation shaft (17). A spline (20) that engages with the spline in the mounting hole of the moving friction plate (15-1) attached to the rotating shaft (17) of the side gear is machined on the opposite shaft outer diameter across the fixed disk (21). Is processed to attach the drive wheel shaft (13).

固定摩擦板(9-2)はピニオンギヤ(10)の歯面裏側に取り付け,固定摩擦板(9-1)はコントロ−ルシャフト(4)のピニオンギヤ(10)の歯面裏側に押しつけられる方のフランジ面に取り付ける。固定摩擦板は両方共にピニオンギヤの回転軸(12)が貫通する中心部を円形にくり抜いたド−ナツ形とする。

移動摩擦板(15-1)は,固定円盤(21)から駆動輪軸(13)を取り付ける軸端面までのサイドギヤの回転軸(17)に取付けるド−ナツ形円盤でスプライン軸上を噛み合いながらスライドする。移動摩擦板(15-2)は,ブレ−キハウジング(22)内径のスプラインと噛み合いながらスライドするサイドギヤの回転軸(17)が貫通する中心部を円形にくり抜いたド−ナツ形円盤で,移動摩擦板(15-1)と移動摩擦板(15-2)を交互に組み合わせて使用する。
The fixed friction plate (9-2) is attached to the back of the tooth surface of the pinion gear (10), and the fixed friction plate (9-1) is the flange that is pressed against the back of the tooth surface of the pinion gear (10) of the control shaft (4). Attach to the surface. Both of the fixed friction plates have a donut shape in which a central portion through which the rotation shaft (12) of the pinion gear passes is circularly cut out.

The moving friction plate (15-1) slides while meshing on the spline shaft with a donut disk attached to the rotating shaft (17) of the side gear from the fixed disk (21) to the shaft end face to which the drive wheel shaft (13) is attached. . The moving friction plate (15-2) is a donut-shaped disk with a circular cut out at the center through which the rotating shaft (17) of the side gear that slides while meshing with the spline of the inner diameter of the brake housing (22). A friction plate (15-1) and a moving friction plate (15-2) are used in combination.

コントロ−ルシャフト(4)は,外側が矩形で内側が円形のパイプの両端にフランジを取り付ける。一端にはコントロ−ルシャフト(4)内側の円形パイプに挿入される円形軸が貫通する中心部分に穴を開けたド−ナツ形をした円形フランジを取り付け,円形フランジの裏面にはピニオンギヤ(10)の歯面裏側に取り付けたド−ナツ形の摩擦板(9-2)と相対するド−ナツ形の摩擦板(9-1)を取り付ける。
他端には,コントロ−ルシャフト(4)の矩形パイプの外形と同じ大きさのフランジにピニオンギヤの回転軸(12)両端の回転レバ−(5)を取り付ける円形軸が貫通する部分をくり抜いた矩形のフランジ(7)を取り付け,ピニオンギヤの回転軸(12)端に取り付けたときに円形軸の段差部分のカム(6)の突起が当たるフランジ(7)の裏側部分に,突起と組み合う凹部分を加工する。
The control shaft (4) is fitted with flanges at both ends of a pipe that is rectangular on the outside and circular on the inside. At one end, a donut-shaped circular flange with a hole in the central part through which the circular shaft inserted into the circular pipe inside the control shaft (4) passes is attached, and the pinion gear (10) is attached to the back of the circular flange. A donut-shaped friction plate (9-1) opposite to the donut-shaped friction plate (9-2) attached to the back side of the tooth surface is attached.
At the other end, a rectangular hole is cut out through the circular shaft that attaches the rotary lever (5) at both ends of the rotary shaft (12) of the pinion gear to the flange of the same size as the rectangular pipe of the control shaft (4). The flange (7) is attached, and when the pinion gear is attached to the end of the rotating shaft (12), the concave portion that is combined with the protrusion is formed on the back side of the flange (7) where the protrusion of the cam (6) of the stepped portion of the circular shaft hits. Process.

回転レバ−(5)はコの字形のフレ−ムで,フレ−ム中央部に操作レバ−(14)と組み合わせるノブ(23)を取り付け,両端をピニオンギヤの回転軸(12)の両端に取り付ける。
操作レバ−(14)は,デフ・ケ−ス(18)の左右に取り付けられたブレ−キハウジング(22)のサイドギヤの回転軸(17)を受けるパイプ部分の外径に,パイプ部分をガイドとしてスライドするブッシングを取り付け,リングギヤ(2)を貫通して ]形をしたフレ−ムをデフ・ケ−ス(18)を囲うように両側からスライドするブッシングに取り付けて□形フレ−ムとし,□形フレ−ムの中心線がピニオンギヤの回転軸(12)芯と直交しながら左右のサイドギヤの回転軸(17)芯上を動くように操作レバ−(14)を取り付ける。回転レバ−(5)のノブ(23)は□形フレ−ムの回転レバ−(5)のコの字形のフレ−ムと直交する片側の
]形をしたフレ−ムの中間部分に設けた取り付け部分と組み合わせる。
The rotary lever (5) is a U-shaped frame. At the center of the frame, the knob (23) to be combined with the operation lever (14) is attached, and both ends are attached to the both ends of the pinion gear rotary shaft (12). .
The operation lever (14) guides the pipe part to the outer diameter of the pipe part that receives the rotation shaft (17) of the side gear of the brake housing (22) attached to the left and right of the differential case (18). Attach the bushing that slides as follows, and attach the frame shaped through the ring gear (2) to the bushing that slides from both sides so as to surround the differential case (18) to form a square frame. □ Attach the operation lever (14) so that the center line of the frame is perpendicular to the rotation axis (12) core of the pinion gear and moves on the rotation shaft (17) core of the left and right side gears. The knob (23) of the rotary lever (5) is provided in the middle part of the square-shaped frame on one side perpendicular to the U-shaped frame of the rotary lever (5). Combine with the mounting part.

図−3に組合せ構造の概要を示す。
ピニオンギヤの回転軸(12)の両側から固定摩擦板(9-2)を歯面裏側に取り付けたピニオンギヤ(10)を,歯面を向かい合わせて差し込み,ピニオンギヤ(10)の上から,ピニオンギヤ(10)の固定摩擦板(9-2)とコントロ−ルシャフト(4)のフランジ裏面に取り付けた固定摩擦板(9-1)が向き合うように,ピニオンギヤの回転軸(12)の両側の直径が異なる2本の円形軸の段差部分にコントロ−ルシャフト(4)のフランジ(7)を引っ掛けて取り付け,向かい合う固定摩擦板(9-1)(9-2)間に異物が入らないようにゴムカバ−(24)を取り付ける。
Fig. 3 shows an outline of the combination structure.
Insert the pinion gear (10) with the fixed friction plate (9-2) attached to the back side of the tooth surface from both sides of the rotation shaft (12) of the pinion gear, with the tooth surface facing each other, and insert the pinion gear (10 ) The fixed friction plate (9-2) and the fixed friction plate (9-1) attached to the back of the flange of the control shaft (4) face each other with different diameters on both sides of the rotation shaft (12) of the pinion gear. The flange (7) of the control shaft (4) is hooked and attached to the step part of the circular shaft, and a rubber cover (24 is used to prevent foreign matter from entering between the fixed friction plates (9-1) and (9-2) facing each other. ).

コントロ−ルシャフト(4)の矩形パイプ部分の外側にバネ(8)を取り付け,ピニオンギヤの回転軸(12)をデフ・ケ−ス(18)の矩形の取付穴(25)に取り付ける。矩形のコントロ−ルシャフト(4)は,デフ・ケ−ス(18)のピニオンギヤの回転軸(12)の取付穴(25)から直径が異なる2本の円形軸をガイドにしてピニオンギヤの回転軸(12)芯方向にカム(6)の突起高さだけ上下にスライドする。デフ・ケ−ス(18)の矩形の取付穴(25)から突き出したピニオンギヤの回転軸(12)の両端にコの字形の回転レバ−(5)を取り付け固定する。    Install the spring (8) on the outside of the rectangular pipe part of the control shaft (4), and install the rotation shaft (12) of the pinion gear in the rectangular mounting hole (25) of the differential case (18). The rectangular control shaft (4) is connected to the pinion gear rotation shaft (2) by using two circular shafts with different diameters from the mounting hole (25) of the rotation shaft (12) of the pinion gear of the differential case (18). 12) Slide up and down by the height of the cam (6) in the core direction. A U-shaped rotating lever (5) is attached and fixed to both ends of the rotating shaft (12) of the pinion gear protruding from the rectangular mounting hole (25) of the differential case (18).

ピニオンギヤの回転軸(12)に向かい合って取り付けられたピニオンギヤ(10)に,左右からサイドギヤ(11)を噛み合わせ,ピニオンギヤの回転軸(12)中央にある非円形断面のカム(16)部分の半円形の直径部分にサイドギヤの回転軸(17)端面が接するように,サイドギヤ(11)のスプライン部分(20)を噛み合わせ,デフ・ケ−ス(18)の中央部分でピニオンギヤの回転軸(12)芯と直交するリングギヤ(2)の回転軸芯にサイドギヤの回転軸(17)芯を合わせ取り付ける。 The side gear (11) is meshed with the pinion gear (10) mounted facing the rotation shaft (12) of the pinion gear from the left and right, and the cam (16) half of the non-circular cross section at the center of the rotation shaft (12) of the pinion gear is engaged. The spline part (20) of the side gear (11) is meshed so that the end surface of the side gear rotation shaft (17) is in contact with the circular diameter part, and the pinion gear rotation shaft (12 ) Align the rotation shaft (17) core of the side gear with the rotation shaft core of the ring gear (2) orthogonal to the core.

デフ・ケ−ス(18)の左右外側には固定円盤(21)から駆動輪軸が取り付けられる軸端末までのサイドギヤの回転軸(17)が突き出し,突き出たサイドギヤの回転軸(17)に移動摩擦板(15-1),移動摩擦板(15-2)を組合せて取り付け,ブレ−キハウジング(22)内側のスプラインと噛み合わせながらブレ−キハウジング(22)の中に取り付ける。   On the left and right outer sides of the differential case (18), the rotating shaft (17) of the side gear from the fixed disk (21) to the shaft end on which the drive wheel shaft is mounted protrudes, and the friction friction is transferred to the protruding rotating shaft (17) of the side gear. Install the plate (15-1) and moving friction plate (15-2) in combination, and install them in the brake housing (22) while meshing with the splines inside the brake housing (22).

ピニオンギヤの回転軸(12)の両端に取り付けた回転レバ−(5)のノブ(23)の位置が,ピニオンギヤの回転軸(12)軸芯と非円形断面のカム(16)の最大回転半径点を結ぶ直線上にくるように回転レバ−(5)を取り付ける。回転レバ−(5)と直交する操作レバ−(14)のフレ−ムのノブ取り付け部分にノブ(23)を組合せながら,デフ・ケ−ス(18)の左右に取り付けられたブレ−キハウジング(22)の,サイドギヤの回転軸(17)を受けるパイプ部分の外径をガイドとしてスライドする操作レバ−(14)を取り付ける。
装置全体をデフ・キャリア(3)で覆い,デフ・キャリア(3)の左右から出ているサイドギヤの回転軸(17)を受けるブレ−キハウジング(22)のパイプ部分の外径に,操舵装置と連動してデフ・キャリア(3)の中の操作レバ−(14)を動かすプッシュリング(19)を嵌め込む。
The position of the knob (23) of the rotating lever (5) attached to both ends of the rotating shaft (12) of the pinion gear is the maximum rotating radius point of the rotating shaft (12) axis of the pinion gear and the cam (16) of non-circular cross section. Install the rotating lever (5) so that it is on the straight line connecting Brake housings mounted on the left and right sides of the differential case (18) while combining the knob (23) with the knob mounting part of the operating lever (14) frame orthogonal to the rotating lever (5) Install the operation lever (14) that slides with the outer diameter of the pipe part that receives the rotating shaft (17) of side gear (22) as a guide.
The entire device is covered with a differential carrier (3), and the steering device is connected to the outer diameter of the pipe portion of the brake housing (22) that receives the rotation shaft (17) of the side gear protruding from the left and right sides of the differential carrier (3). The push ring (19) that moves the operation lever (14) in the differential carrier (3) is engaged with the push ring (19).

自動車が直進している時は,ピニオンギヤの回転軸(12)の両側にある軸径が異なる軸の段差部分に取り付けられたカム(6)部分が,デフ・ケ−ス(18)の矩形の取付穴(25)に組み合わされて回転しないコントロ−ルシャフト(4)のフランジ(7)部分の凹部分と組み合い,デフ・ケ−ス(18)とコントロ−ルシャフト(4)の間に取り付けられたバネ(8)の力でコントロ−ルシャフト(4)の固定摩擦板(9-1)がピニオンギヤ(10)の歯面裏側の固定摩擦板(9-2)に押付けられ,ピニオンギヤ(10)が固定される。上下のピニオンギヤが固定されるので噛み合っている左右両方のサイドギヤも固定され,左右の駆動輪軸は回転しないピニオンギヤ(10)とサイドギヤ(11)を介して直結状態になる。 When the car is moving straight, the cam (6) attached to the stepped part of the shaft with different shaft diameters on both sides of the rotating shaft (12) of the pinion gear is the rectangular case of the differential case (18). Combined with the concave part of the flange (7) part of the control shaft (4) that does not rotate in combination with the mounting hole (25), it was mounted between the differential case (18) and the control shaft (4) The fixed friction plate (9-1) of the control shaft (4) is pressed against the fixed friction plate (9-2) on the back side of the tooth surface of the pinion gear (10) by the force of the spring (8), and the pinion gear (10) is fixed. Is done. Since the upper and lower pinion gears are fixed, both the left and right side gears engaged with each other are also fixed, and the left and right drive wheel shafts are directly connected via the pinion gear (10) and the side gear (11) that do not rotate.

サイドギヤ(11)のスプロケット(20)と噛み合っている左右のサイドギヤの回転軸(17)端面は,ピニオンギヤの回転軸(12)中央部分の半円形と楕円形の半分を組み合わせた非円形断面のカム(16)部分の半円形直径部分に接して向き合い,サイドギヤの回転軸(17)に取り付けられた固定円盤(21)はブレ−キハウジング(22)の中の移動摩擦板(15-1),(15-2)をブレ−キハウジング(22)に押付けていないので,左右両方のサイドギヤの回転軸(17)にもサイドギヤ(11)にも制動力は架からず,自動車の駆動力は左右のサイドギヤの回転軸(17)が直結して1本化した状態の駆動輪軸に伝わる。 The rotating shaft (17) end face of the left and right side gear meshing with the sprocket (20) of the side gear (11) is a cam with a non-circular cross section that combines a semicircular and an elliptical half of the central portion of the rotating shaft (12) of the pinion gear (16) The fixed disk (21) facing the semicircular diameter part of the part and attached to the rotating shaft (17) of the side gear is a moving friction plate (15-1) in the brake housing (22), Since (15-2) is not pressed against the brake housing (22), no braking force is built on the rotating shaft (17) or side gear (11) of both the left and right side gears, and the driving force of the vehicle is The rotating shaft (17) of the side gear is directly connected to the single drive wheel shaft.

自動車が旋回する時には,デフ・キャリアに取り付けられた旋回外側のプッシュリング(19)が操舵装置と連動して旋回内側方向に押し込まれる。押し込まれたプッシュリング(19)は操作レバ−(14)を旋回内側方向にスライドさせ,操作レバ−(14)と噛み合わされた回転レバ−(5)のノブ(23)を旋回内側方向に回転させ,回転レバ−(5)を取り付けたピニオンギヤの回転軸(12)は旋回内側方向に回転される。   When the vehicle turns, the push ring (19) on the outside of the turn attached to the differential carrier is pushed in the inside of the turn in conjunction with the steering device. The pushed push ring (19) slides the operation lever (14) in the inward turning direction and rotates the knob (23) of the rotating lever (5) meshed with the operating lever (14) in the inward turning direction. Thus, the rotating shaft (12) of the pinion gear to which the rotating lever (5) is attached is rotated in the turning inner direction.

ピニオンギヤの回転軸(12)が回転すると2つの動作が始まる。
ピニオンギヤの回転軸(12)が回転すると,コントロ−ルシャフト(4)のフランジ(7)部分の凹部分と噛み合っていたカム(6)部分が凹部分から外れて,コントロ−ルシャフト(4)のフランジ(7)部分を持ち上げ,コントロ−ルシャフト(4)をバネの力に逆らってピニオンギヤの回転軸(12)芯方向に持ち上げ,ピニオンギヤ(10)の歯面裏側の摩擦板(9-1)を押付けていたコントロ−ルシャフト(4)の摩擦板(9-2)が持ち上げられ,ピニオンギヤ(10)が自由に回転することが可能になり,左右の駆動輪軸(13)に駆動力を配分することが可能になる。(図−5参照)
When the rotation shaft (12) of the pinion gear rotates, two operations start.
When the rotation shaft (12) of the pinion gear is rotated, the cam (6) portion engaged with the concave portion of the flange (7) portion of the control shaft (4) is disengaged from the concave portion, and the control shaft (4) flange ( 7) Lift the part and lift the control shaft (4) against the spring force in the direction of the pinion gear's rotating shaft (12) and press the friction plate (9-1) on the back of the tooth surface of the pinion gear (10). The friction plate (9-2) of the control shaft (4) is lifted so that the pinion gear (10) can freely rotate and the driving force can be distributed to the left and right drive wheel shafts (13). become. (See Figure-5)

ピニオンギヤの回転軸(12)の半径方向の動きは,ピニオンギヤの回転軸(12)が旋回内側方向に回転すると,ピニオンギヤの回転軸(12)中央の非円形断面のカム(16)部分の断面半径が大きい半楕円形断面部分が旋回内側方向に回転されるため,旋回内側のサイドギヤの回転軸(17)端面が接触する非円形断面のカム(16)部分の接触部分までの固定されたピニオンギヤの回転軸(12)芯からの距離が長くなるので,旋回内側のサイドギヤの回転軸(17)端面はピニオンギヤの回転軸(12)中央の半楕円形断面カム(16)部分に押され,旋回内側方向に押し出される力を受ける。(図−4参照)   The radial movement of the rotation shaft (12) of the pinion gear is such that when the rotation shaft (12) of the pinion gear rotates in the turning inner direction, the cross-sectional radius of the cam (16) portion of the non-circular cross section at the center of the rotation shaft (12) of the pinion gear Because the semi-elliptical cross section with a large radius is rotated in the direction of turning inside, the pinion gear fixed to the contact part of the non-circular cross section cam (16) where the rotating shaft (17) end face of the side gear inside the turning contacts Since the distance from the center of the rotating shaft (12) becomes longer, the end surface of the rotating shaft (17) of the side gear inside the turning is pushed by the semi-elliptical section cam (16) at the center of the rotating shaft (12) of the pinion gear. Receives force pushed in the direction. (See Figure 4)

旋回外側方向のサイドギヤの回転軸(17)は,ピニオンギヤの回転軸(12)が旋回内側方向に回転しても非円形断面のカム(16)部分の半円形断面の外周部分に沿って接するので,ピニオンギヤの回転軸(12)芯から旋回外側のサイドギヤの回転軸(17)端面が接触する部分までの距離は変わらず,旋回外側のサイドギヤの回転軸(17)は直進時と同様に力を受けないので制動力が架からない。 The rotating shaft (17) of the side gear in the direction of the turning outer side is in contact with the outer peripheral portion of the semicircular cross section of the cam (16) portion of the non-circular cross section even if the rotating shaft (12) of the pinion gear rotates in the turning inner direction. , The distance from the pinion gear's rotating shaft (12) core to the part where the end surface of the rotating side gear's rotating shaft (17) contacts does not change, and the rotating shaft (17) of the rotating outer side gear applies force in the same way as when driving straight. Because it does not receive, braking force can not be built.

旋回内側方向に押し出される力を受けるサイドギヤの回転軸(17)は,軸途中にある固定円盤(21)が旋回内側の方のブレ−キハウジング(22)内に取り付けられた移動摩擦板(15-1),(15-2)をブレ−キハウジング(22)のケ−スに押し付け,旋回内側のサイドギヤの回転軸(17)に制動力を架ける。
これにより旋回内側のサイドギヤの回転数が低下するが,左右のサイドギヤの回転数の合計がデフ・ケ−ス(18)の回転数の2倍になるという差動装置の原理により,旋回外側のサイドギヤの回転数は旋回内側のサイドギヤの低下した回転数分だけ回転数が増加する。
The rotating shaft (17) of the side gear that receives the force pushed inward of the turning is a moving friction plate (15) with a stationary disk (21) in the middle of the shaft attached in the brake housing (22) on the inside of the turning. -1) and (15-2) are pressed against the case of the brake housing (22), and braking force is applied to the rotating shaft (17) of the side gear inside the turning.
This reduces the rotational speed of the side gear inside the turn, but the differential gear principle that the total rotational speed of the left and right side gears is twice the rotational speed of the differential case (18). The rotational speed of the side gear increases by the amount corresponding to the decreased rotational speed of the side gear inside the turn.

駆動輪にスリップが無い計算上の旋回走行では,旋回半径の大きさにより旋回内側の駆動輪の走行距離と旋回外側の駆動輪の走行距離の比が計算で求められるが,実際の自動車の旋回走行では,操舵装置の操舵角度から決まる旋回半径の時の計算上の旋回内側と旋回外側の駆動輪軸の回転数比に近づけるように,旋回内側の駆動輪軸と繋がっている旋回内側のサイドギヤの回転軸(17)に予め実験等で求めた制動力を架け,スリップが無い計算上の走行状態に近づけることができる。 In the calculation of turning with no slip on the driving wheel, the ratio of the driving distance of the driving wheel inside the turning and the driving distance of the driving wheel outside the turning can be calculated according to the size of the turning radius. When traveling, the rotation of the side gear on the inside of the turn connected to the drive wheel shaft on the inside of the turn is brought close to the calculated rotational speed ratio of the drive wheel shaft on the inside of the turn and the outside of the turn at the turn radius determined from the steering angle of the steering device. A braking force obtained in advance through experiments or the like can be applied to the shaft (17) in advance to approximate the calculated running state without slipping.

本発明の車両の制御装置を回転数比を実測せずに単独で使用する場合は,操舵装置の旋回角度と旋回半径の関係等と共に,予め実験的にピニオンギヤの回転軸(12)の回転角度とサイドギヤの回転軸(17)に架かる制動力や左右のサイドギヤの回転軸(17)回転数比などの関係を求めておき,旋回角度と旋回内側に必要な制動力を架けるためのピニオンギヤの回転軸(12)の必要回転角度を求めておく。 When the vehicle control device of the present invention is used alone without actually measuring the rotational speed ratio, the rotational angle of the rotation shaft (12) of the pinion gear is experimentally determined in advance along with the relationship between the turning angle of the steering device and the turning radius. and to previously obtain a relation between such side gears of the rotation axis of the braking force and the left and right side gears across the (17) rotation axis (17) rotational speed ratio, the rotation of the pinion gear for applying a braking force required and the orbiting inward turning angle The required rotation angle of the shaft (12) is obtained.

正確に制御する場合は,旋回時にリングギヤを挟んで左右対称位置にある回転部分(サイドギヤ(11),サイドギヤの回転軸(17),固定円盤(21),駆動輪軸(13)等)の実際の回転数比を回転センサ−で測定し,計算上の回転数比と比較,その誤差をピニオンギヤの回転軸(12)の回転角度にフィ−ドバックして旋回内側のサイドギヤ(11)にかける制動力の大きさを制御することで,実際の左右対称位置にある回転部分の回転数比を計算上の回転数比の許容誤差範囲内に納めることで正確に制御することができる。(図−7参照) In the case of precise control, the actual rotating parts (side gear (11), side gear rotating shaft (17), fixed disk (21), drive wheel shaft (13), etc.) located symmetrically across the ring gear during turning rotation sensor the rotational speed ratio - measured in comparison with the rotational speed ratio of the computational Fi and the error in rotation angle of the pinion gear axis of rotation (12) - the braking force applied to the Dobakku to pivot inside the side gears (11) By controlling the magnitude of, it is possible to accurately control the rotational speed ratio of the rotating portion at the actual symmetrical position within the allowable error range of the calculated rotational speed ratio. (See Fig. 7)

自動車が旋回から直進する場合は,操舵装置と連動して旋回内側のプッシュリング(19)がデフ・ケ−ス(3)の中に押し込まれ,操作レバ−(14)を旋回外側方向にスライドし,ピニオンギヤの回転軸(12)両軸端に取り付けられた回転レバ−(5)の操作レバ−(14)と組み合わされたノブ(23)が中立位置に戻される。これにより左右のサイドギヤの回転軸(17)端面が,ピニオンギヤの回転軸(12)中央の非円形断面のカム(16)の円形断面の直径部分に向かい合って接するようになり,旋回内側のサイドギヤの回転軸(17)にかけた制動力が取り除かれる。 When the car goes straight from the turn, the push ring (19) inside the turn is pushed into the differential case (3) in conjunction with the steering device, and the operation lever (14) is slid outward in the turn. Then, the knob (23) combined with the operating lever (14) of the rotating lever (5) attached to both ends of the rotating shaft (12) of the pinion gear is returned to the neutral position. As a result, the end surfaces of the rotation shafts (17) of the left and right side gears come into contact with the diameter of the circular cross section of the cam (16) having a non-circular cross section at the center of the rotation shaft (12) of the pinion gear. The braking force applied to the rotating shaft (17) is removed.

同時に,ピニオンギヤの回転軸(12)の軸芯方向のカム(6)がピニオンギヤの回転軸(12)が回転することにより,バネ(8)の力に逆らってカム(6)の突起部分が持ち上げていたコントロ−ルシャフト(4)は,カム(6)の突起部分がフランジ(7)の凹部分と噛み合いコントロ−ルシャフト(4)が下がり,デフ・ケ−ス(3)の四角い取付け穴に噛合わされ回り止めされたコントロ−ルシャフト(4)の摩擦板(9-1)がバネ(8)によりピニオンギヤ(10)の歯面裏側の摩擦板(9-2)に押付けられ,ピニオンギヤ(10)が固定され,左右の駆動輪軸(13)は直結状態になり,駆動力のロスの無い直進走行状態になる。 At the same time, the cam (6) in the axial direction of the rotation shaft (12) of the pinion gear rotates the rotation shaft (12) of the pinion gear, so that the protruding portion of the cam (6) lifts against the force of the spring (8). In the control shaft (4), the protruding part of the cam (6) meshes with the concave part of the flange (7), and the control shaft (4) is lowered and meshes with the square mounting hole of the differential case (3). the combined detent been control - friction plates Rushafuto (4) (9-1) is pressed against the pinion gear tooth surface rear side of the friction plate (10) (9-2) by a spring (8), the pinion gear (10) Fixed , the left and right drive wheel axles (13) are in a directly connected state, and are in a straight running state with no loss of driving force .

ピニオンギヤの回転軸(12)の両側にある直進・旋回切り換え用カム(6)の形状や位置を変えることにより,ピニオンギヤ(10)の固定開始時期,解放時期,固定から解放までの時間,解放の程度や不感帯などを変えることが可能で,自動車の旋回走行性能を変えることができる。 By changing the shape and position of the straight-turning switching cam on both sides (6) of the pinion gear axis of rotation (12), the pinion gear (10) fixed starting time of the release period, the time from the fixed to the release, the release The degree and dead zone can be changed, and the turning performance of the car can be changed.

またピニオンギヤの回転軸(12)の直進・旋回切り換え用カム(6)部分は,軸の回転方向に関係なくコントロ−ルシャフト(4)を上下させてピニオンギヤ(10)の固定,解放動作をするので,旋回時のピニオンギヤの回転軸(12)の回転方向を任意に変えることで,旋回外側のサイドギヤ(11)に制動力をかける逆位相や,旋回時の旋回内側のサイドギヤ(11)にかける制動力を強くかけることで同位相効果を出すなど四輪操舵と同じ効果を出すことが可能になる。 In addition, the cam (6) for switching between straight and swivel of the rotation shaft (12) of the pinion gear moves the control shaft (4) up and down regardless of the rotation direction of the shaft, so that the pinion gear (10) is fixed and released . by changing the pinion gear axis of rotation during a turn the direction of rotation (12) optionally, applying and opposite phase to apply a braking force to the side gears (11) of the turning outer, side gears (11) of the turning inner cornering braking It is possible to achieve the same effect as four-wheel steering, such as producing the same phase effect by applying strong power .

油圧で操作する場合(図−6),油圧ポンプで発生させた圧油をバルブで制御し,取付けた加圧器(小型の油圧シリンダ−)に送りピニオンギヤ(10)の固定,解放操作及び制動力操作をする。 When operating with hydraulic pressure (Fig. 6), the pressure oil generated by the hydraulic pump is controlled by a valve and sent to the attached pressurizer (small hydraulic cylinder) to fix, release and brake the pinion gear (10). Operate.

直進と旋回を切り替えるコントロ−ルシャフト(4)の上げ下げはギヤ・ケ−ス(18)と一緒に回転する直・旋切替金具(31)先端のクサビをコントロ−ルシャフト(4)上部に開いた孔に小型の油圧シリンダ−(34)で出し入れすることで制御し,サイドギヤ(11)にかける制動力は,デフ・ケ−ス(3)の外側からブレ−キハウジング(22)内の移動摩擦板(15-1),(15-2)を小型の油圧シリンダ−(33)でサイドギヤ(11)背面に取付けた摩擦板(15-3)に押付けて制動力をかけるので機械式の場合のピニオンギヤの回転軸(12)のカム(6),(16)は2箇所とも不要になる。 The control shaft (4), which switches between straight and swivel, is raised and lowered by a hole opened at the top of the control shaft (4) with a wedge at the tip of the straight / revolution switch (31) that rotates together with the gear case (18). The braking force applied to the side gear (11) from the outside of the differential case (3) is moved from the outside of the differential case (3) to the moving friction plate in the brake housing (22). (15-1) and (15-2) are pressed against the friction plate (15-3) mounted on the back of the side gear (11) with a small hydraulic cylinder (33), and braking force is applied. The two cams (6) and (16) of the rotating shaft (12) are unnecessary.

ピニオンギヤの回転軸(30)の回転軸中央部分(35)は円形断面で,小型の油圧シリンダ−(33)で加圧されたときにピニオンギヤ(10)とサイドギヤ(11)の噛合い状態を保持し,コントロ−ルシャフト(4)のガイドも兼務する。
またサイドギヤ(11)の位置は制動力状態に関係なく動かないので,ギヤと回転軸は一体型とし,サイドギヤ(11)の背面に制動力を受止める摩擦板(15-3)を取付ける。
The central part (35) of the rotary shaft (30) of the pinion gear has a circular cross section and maintains the meshing state of the pinion gear (10) and the side gear (11) when pressurized by a small hydraulic cylinder (33). It also serves as a guide for the control shaft (4).
Since the position of the side gear (11) does not move regardless of the braking force state, the gear and the rotating shaft are integrated, and a friction plate (15-3) for receiving the braking force is attached to the back of the side gear (11).

機械式の操作方法と同様に,旋回時の駆動力を正確に配分するには,左右の駆動輪軸(13)に回転センサ−を取付け左右の駆動輪軸(13)の実際の回転数比を測定し,計算上の回転数比と比較し誤差を旋回内側のサイドギヤ(11)にかける小型の油圧シリンダ−(33)の加圧回数若しくは油圧力にフィ−ドバックし回転数比の許容誤差範囲内に納まるように制御する。(図−8参照) As with the mechanical operation method, to accurately distribute the driving force during turning , mount a rotation sensor on the left and right drive wheel shafts (13) and measure the actual rotation speed ratio between the left and right drive wheel shafts (13). Compared with the calculated rotational speed ratio, the error is fed back to the number of pressurizations or hydraulic pressure of the small hydraulic cylinder (33) applied to the side gear (11) inside the turning, and within the allowable error range of the rotational speed ratio. Control to fit in. (See Figure-8)

回転数比を測らずに本発明の車両の制御装置を単独で使用する場合は,機械式の操作方法と同様に,ピニオンギヤ(10)の固定開始時期,解放時期,固定から解放までの時間,解放の程度や不感帯,操舵角度と小型の油圧シリンダ−(33)の加圧力と制動力の関係など制御に必要な事項を予め実験的に求め機械的な設定をする。 When the vehicle control device of the present invention is used alone without measuring the rotation speed ratio, the pinion gear (10) is started to be fixed, the release time, the time from fixing to releasing , as in the mechanical operation method, Items necessary for control, such as the degree of release , dead zone, steering angle, and the relationship between the pressure and braking force of the small hydraulic cylinder (33), are experimentally determined in advance and set mechanically.

差動制御装置を装備していない自動車では,左右の駆動輪の摩擦力が同じ場合,差動装置は駆動力を左右の駆動輪に均等に分配するが,左右の駆動輪の摩擦力の差が大きくなった場合,摩擦力の大きい方の駆動輪と繋がったサイドギヤに制動力が架かったのと同じ状態なので,回転数が低下する。差動装置の原理で摩擦力の小さい方の駆動輪と繋がったサイドギヤの回転数が低下した分上昇するため,摩擦力の小さい方の駆動輪の接地状態を更に悪化させ,駆動力を浪費させる。 In the motor vehicle not equipped with a differential control device, when the friction force of the left and right driving wheels are the same, although the differential evenly distributing the driving force to left and right drive wheels, the difference in frictional forces of the left and right drive wheels When is increased, the rotational speed decreases because the braking force is applied to the side gear connected to the drive wheel having the larger frictional force . Since the rotation speed of the side gear that is connected with the drive wheels of the smaller frictional force on the principle of differential device is divided elevated and lowered, further exacerbating the ground state of the drive wheels of the smaller frictional force, thereby wasting driving force .

本発明の車両の制御装置を装備した場合,直進走行では左右の駆動輪軸を直結状態にし,駆動力は左右の駆動輪の摩擦力の大きさに比例して駆動力が配分されるので,片側の駆動輪に摩擦力が全く無い状態でも他方の駆動輪側に十分な摩擦力があれば走行可能であり,駆動力のロスがない。
また旋回時は操舵装置と連動してピニオンギヤの回転軸(12)が回転し,旋回内側の駆動輪軸と繋がったサイドギヤの回転軸に予め実験等で決められた旋回半径に応じた制動力を架けることで,摩擦力の差とは関係なく旋回内側と旋回外側のサイドギヤの回転軸の回転数比を計算上の回転数比に近づけることによりスリップなどの動力ロスを防ぐことができる。
When the vehicle control device of the present invention is installed, the left and right drive wheel shafts are directly connected in straight traveling, and the drive force is distributed in proportion to the frictional force of the left and right drive wheels. Even if there is no frictional force on the driving wheel, it is possible to run if there is sufficient frictional force on the other driving wheel side, and there is no loss of driving force.
When turning, the rotation shaft (12) of the pinion gear rotates in conjunction with the steering device, and a braking force corresponding to the turning radius determined in advance by experiments is applied to the rotation shaft of the side gear connected to the drive wheel shaft inside the turning. Thus, power loss such as slip can be prevented by bringing the rotational speed ratio of the rotating shafts of the inner and outer side gears close to the calculated rotational speed ratio regardless of the difference in frictional force .

本発明の車両の制御装置は操舵装置と連動させることにより,運転者の負担にならず直進時も旋回時も駆動力を無駄なく左右の駆動輪軸に分配する。左右の駆動輪軸の回転数比を計算上の回転数比に近づけることで,車輪の摩耗や走行安定性,燃費の向上,不整地や雪道での走行性能の向上などが期待できる。 The vehicle control device according to the present invention is linked to the steering device so that the driving force is distributed to the left and right driving wheel shafts without waste when traveling straight or turning without being a burden on the driver . By bringing the rotational speed ratio of the left and right drive wheel shafts closer to the calculated rotational speed ratio, it is possible to expect wheel wear, running stability, improved fuel consumption, and improved running performance on rough terrain and snowy roads.

また駆動輪軸の回転数比を任意に変えることにより旋回時の自動車の回頭性の向上や高速走行中のレ−ン変更時や縦列駐車,狭い場所での旋回等で有効な四輪操舵と同様の効果が期待できる。建設機械等の無限軌道車の操縦も,本発明の車両の制御装置を使用し左右の無限軌道に無駄なく動力分配することで,操舵方法をハンドル式に変えることが可能と思われる。 Also, by changing the rotation speed ratio of the drive wheel shaft arbitrarily, the turning performance of the car at the time of turning is improved, the same as the four-wheel steering effective at the time of changing the lane during high-speed driving, parallel parking, turning in a narrow place, etc. Can be expected. It is considered that the steering method can be changed to the steering wheel type by using the vehicle control device of the present invention to distribute power to the left and right endless tracks without waste.

旋回時の車輪の走行軌跡の説明図Explanatory diagram of wheel trajectory during turning 本発明の機械式操作方法の車両の制御装置の構造例Structural example of vehicle control apparatus of mechanical operation method of the present invention 本発明の機械式操作方法の車両の制御装置の内部構造の説明図Explanatory drawing of the internal structure of the vehicle control apparatus of the mechanical operation method of the present invention 本発明の機械式操作方法の車両の制御装置の作動説明図Operation explanatory diagram of the vehicle control device of the mechanical operation method of the present invention 本発明の機械式操作方法の車両の制御装置の操作部分の説明図Explanatory drawing of the operation part of the control apparatus of the vehicle of the mechanical operation method of this invention 本発明の油圧式操作方法の車両の制御装置の構造例Structural example of vehicle control apparatus of hydraulic operation method of the present invention 本発明の機械式操作方法の車両の制御装置を使用した例Example using vehicle control apparatus of mechanical operation method of the present invention 本発明の油圧式操作方法の車両の制御装置を使用した例Example of using vehicle control apparatus of hydraulic operation method of the present invention

符号の説明Explanation of symbols

1 ドライブピニオン
リングギヤ
3 デフ・キャリア
4 コントロ−ルシャフト
5 回転レバ−
6 カム
7 フランジ
8 バネ
9−1 固定摩擦板
9−2 固定摩擦板
10 ピニオンギヤ
11 サイドギヤ
12 ピニオンギヤの回転軸
13 駆動輪軸
14 操作レバ−
15−1 移動摩擦板
15−2 移動摩擦板
15−3 摩擦板
16 カム
17 サイドギヤの回転軸
18 デフ・ケ−ス
19 プッシュリング
20 スプライン
21 固定円盤
22 ブレ−キハウジング
23 ノブ
24 カバ−
25 取付穴
30 ピニオンギヤの回転軸
31 直進・旋回切替金具
32 バネ
33 小型油圧シリンダ−
34 小型油圧シリンダ−
35 ピニオンギヤの回転軸中央部分
1 drive pinion 2 ring gear 3 differential carrier 4 control shaft 5 rotating lever
6 Cam 7 Flange 8 Spring 9-1 Fixed friction plate 9-2 Fixed friction plate 10 Pinion gear 11 Side gear 12 Pinion gear rotating shaft 13 Drive wheel shaft 14 Operation lever
15-1 Moving friction plate 15-2 Moving friction plate 15-3 Friction plate 16 Cam 17 Rotating shaft of side gear 18 Differential case 19 Push ring 20 Spline 21 Fixed disk 22 Brake housing 23 Knob 24 Cover
25 Mounting hole 30 Rotating shaft of pinion gear 31 Straight / swivel switching bracket
32 Spring 33 Small hydraulic cylinder
34 Small hydraulic cylinder
35 Pinion gear rotation shaft center part

Claims (2)

操舵装置と,ピニオンギヤ及び左右のサイドギヤをデフ・ケ−ス内に備える差動装置とを有し,A steering device and a differential having a pinion gear and left and right side gears in the differential case;
前記ピニオンギヤは前記デフ・ケ−スに対して固定及び解放可能に設けられるとともに,The pinion gear is provided so as to be fixed and releasable with respect to the differential case,
前記左右のサイドギヤは左右の駆動輪軸に対してそれぞれ軸方向に摺動可能に設けられ,The left and right side gears are provided to be slidable in the axial direction with respect to the left and right drive wheel shafts, respectively.
前記左右の駆動輪軸の外周には,該左右の駆動輪軸の軸方向外側への移動により,該左右の駆動輪軸にそれぞれ制動力を加える摩擦板を設けた車両の制御装置において,In the vehicle control device, provided on the outer periphery of the left and right drive wheel shafts is a friction plate that applies a braking force to the left and right drive wheel shafts by moving the left and right drive wheel shafts outward in the axial direction.
前記ピニオンギヤの前記デフ・ケ−スに対する固定及び解放,並びに,前記左右の駆動輪軸の軸方向の移動を前記操舵装置の操作と連動させ,Fixing and releasing the pinion gear with respect to the differential case, and the axial movement of the left and right drive wheel shafts in conjunction with the operation of the steering device;
直進時には前記ピニオンギヤを前記デフ・ケ−スに固定して前記左右の駆動輪軸を直結状態とし,When driving straight, the pinion gear is fixed to the differential case so that the left and right drive wheel shafts are directly connected,
旋回時には前記ピニオンギヤを解放するとともに,旋回内側の駆動輪軸に車両の旋回半径に応じた制動力を加えることを特徴とする車両の制御装置。A vehicle control device that releases the pinion gear during turning and applies a braking force in accordance with the turning radius of the vehicle to a driving wheel shaft inside the turning.
旋回時に左右の駆動輪軸の実際の回転数比を算出し,Calculate the actual speed ratio of the left and right drive wheel axles when turning,
前記操舵装置の操舵角度から算出される車両の旋回半径に応じた左右の駆動輪軸の回転数比と前記実際の回転数比との誤差を計算し,Calculating an error between the rotational speed ratio of the left and right drive wheel shafts according to the turning radius of the vehicle calculated from the steering angle of the steering device and the actual rotational speed ratio;
この誤差の値が予め設定した許容範囲内に入るように旋回内側の駆動輪軸に加える制動力の大きさをフィ−ドバック制御することを特徴とする請求項1記載の車両の制御2. The vehicle control according to claim 1, wherein a feedback control is performed on the magnitude of the braking force applied to the drive wheel shaft inside the turn so that the error value falls within a preset allowable range. 装置。apparatus.
JP2005180327A 2005-06-21 2005-06-21 Vehicle control device linked with steering device Expired - Fee Related JP3747051B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180327A JP3747051B1 (en) 2005-06-21 2005-06-21 Vehicle control device linked with steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180327A JP3747051B1 (en) 2005-06-21 2005-06-21 Vehicle control device linked with steering device

Publications (2)

Publication Number Publication Date
JP3747051B1 true JP3747051B1 (en) 2006-02-22
JP2007002861A JP2007002861A (en) 2007-01-11

Family

ID=36032082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180327A Expired - Fee Related JP3747051B1 (en) 2005-06-21 2005-06-21 Vehicle control device linked with steering device

Country Status (1)

Country Link
JP (1) JP3747051B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978243A (en) * 2021-11-11 2022-01-28 北京吉利学院 Multifunctional drive axle of car

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024619B4 (en) * 2010-06-22 2021-06-10 Volkswagen Ag Pre-tensioned differential gear without tooth flank change
CN110239551A (en) * 2019-07-10 2019-09-17 海汇新能源汽车有限公司 A kind of single-wheel braking reduces turning radius control system and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978243A (en) * 2021-11-11 2022-01-28 北京吉利学院 Multifunctional drive axle of car

Also Published As

Publication number Publication date
JP2007002861A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JPS59176121A (en) Front wheel drive control unit for 4-wheel-drive car
JP5112890B2 (en) Driving force transmission system for four-wheel drive vehicles
CN101871529B (en) Automatic anti-slip tooth-embedded cone gear differential mechanism
JP3747051B1 (en) Vehicle control device linked with steering device
US20120010798A1 (en) Control device and control method for four-wheel drive vehicle
RU134484U1 (en) EASY WHEEL ATV WITH SKID STEER
CN103847715A (en) Anti-locking brake assembly for a vehicle, vehicle and method for braking a vehicle
JP3100403U (en) Transmission mechanism having a single differential mechanism
EP1366970B1 (en) Hydrostatic transmission device for articulated terrain carts
JP3659422B1 (en) Differential gear linked with steering gear
KR20140033471A (en) Load carrying truck provided with a traction system and a method for the control of a traction system of a load carrying truck
KR101273485B1 (en) Variable radius pulley and continuously variable transmission
JPS58136563A (en) Three-wheeled vehicle for wasteland driving
JP2006118572A (en) Non-slip differential device in linkage with steering device
CN202806709U (en) Automobile in-situ rotation steering device
CN101417710A (en) Slipping steerage device of aircraft tractor
JP2006052822A (en) Differential gear interlocked with steering device
CN201090708Y (en) Drive axle with differential lock
JPS6182048A (en) Differential-gear restricting apparatus
JPS58178040A (en) Diff lock apparatus
KR20140090449A (en) Automatic locking differential
JP3045446B2 (en) Wheelbase adjustment method and wheelbase adjustment device for four-wheel drive tractor
JPH0450185Y2 (en)
CN203753109U (en) Automobile rear brake device
JP3579983B2 (en) Tractor auto brake controller

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees