JP3746878B2 - Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment - Google Patents

Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment Download PDF

Info

Publication number
JP3746878B2
JP3746878B2 JP19714897A JP19714897A JP3746878B2 JP 3746878 B2 JP3746878 B2 JP 3746878B2 JP 19714897 A JP19714897 A JP 19714897A JP 19714897 A JP19714897 A JP 19714897A JP 3746878 B2 JP3746878 B2 JP 3746878B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
semiconductor manufacturing
plasma
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19714897A
Other languages
Japanese (ja)
Other versions
JPH1143734A (en
Inventor
政洋 柳川
淳 久本
和久 河田
敏行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19714897A priority Critical patent/JP3746878B2/en
Publication of JPH1143734A publication Critical patent/JPH1143734A/en
Application granted granted Critical
Publication of JP3746878B2 publication Critical patent/JP3746878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、半導体製造装置用のアルミニウム( 以下、Alと言う)合金に関し、更には、このAl合金表面にアルマイト皮膜を形成したガス腐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料に関するものである。
【0002】
【従来の技術】
CVD やPVD などの化学的或いは物理的真空蒸着装置、またはドライエッチング装置などの半導体製造装置は、ヒーターブロック、チャンバーウォール、ライナー、真空チャック、サセプタ、ガス拡散板などの主要部材から構成される。半導体製造装置の内部には、反応ガスとしてClやF などのハロゲン元素を含む腐食性のガスが導入されるため、これらの主要部材には、これら腐食性のガスに対する耐食性 (ガス耐食性) が要求される。また、プラズマCVD 装置などの場合には、前記腐食性のガスに加えて、ハロゲン系のプラズマも発生するので、このプラズマに対する腐食性 (プラズマ耐食性) が要求される。
【0003】
更に、前記半導体製造装置の中でも、特にヒーターブロック、チャンバーウォールなどは、半導体製造のプロセス条件により、使用中に200 〜450 ℃の温度域での熱サイクル(使用温度の上昇と下降の繰り返し)を数多く受ける。このため、この熱サイクルによる使用材料の内部組織の変化( 結晶粒の異常粒成長や析出物の粗大化など) が生じないこと (耐熱性) が要求される。また、この他熱伝導性に優れ、軽量であることも、使用材料選択の重要な要素となっている。
【0004】
従来から、この種材料としては、ステンレス鋼が用いられてきた。しかし、近年の半導体製造装置の高効率化やコンパクト化の要求に伴い、ステンレス鋼を使用した部材では、熱伝導性が不十分で装置作動時に時間を要する、また重量も大きく装置全体が重量化することなどが問題になっている。しかも、ステンレス鋼に含まれるNiやCrなどの重金属が何らかの要因でプロセス中に放出されて汚染源となり、半導体製品の品質を劣化させるという問題もある。
【0005】
このため、軽量で、熱伝導性が高いAl合金が、このステンレス鋼に代えて用いられるようになっている。用いられているAl合金としては、Mn:1.0〜1.5%-Cu:0.05〜0.20% などを含むJIS 3003Al合金、Mg:2.2〜2.8%-Cr:0.15〜0.35% などを含むJIS 5052Al合金、Cu:0.15 〜0.40%-Mg:0.8〜1.2%-Cr:0.04〜0.35% などを含むJIS 6061Al合金等がある。これらのAl合金の中でも、例えばJIS 3003Al合金は、前記耐熱性を必要とするヒーターブロック用などの材料として実際に用いられている。しかし、このJIS 3003Al合金は、必須添加元素として、Mnを高濃度に含んでいる。そして、このMnは、前記熱サイクルによる使用材料の内部組織の変化による強度等の機械的性質の劣化( 耐熱性) に対しては効果があるものの、前記腐食性のガスやプラズマに対しての耐食性が悪いという問題がある。また、このJIS 3003Al合金に限らず、前記既存のAl合金表面は、前記腐食性のガスやプラズマに対して耐食性が優れる訳ではない。したがって、Al合金を半導体製造装置の材料として適用するためには、このガスやプラズマに対する耐食性を改善することが必須の条件となる。そして、このガスやプラズマに対する耐食性を有するためには、Al合金表面に何らかの表面処理を施す必要性がある。
【0006】
そこで、ガスやプラズマに対する耐食性を上げるために、これらの耐食性に優れたアルマイト(Al2O3) 皮膜を、前記Al合金表面に形成する技術が、特公平5 −53870 号で提案されている。ただ、このアルマイト皮膜も、皮膜の膜質によって、前記ガスやプラズマに対する耐食性が大きく異なるため、アルマイト皮膜の膜質を向上させる試みも種々提案されている。例えば、特開平8-144088号や特開平8-144089号公報では、陽極酸化によりアルマイト皮膜を形成する際、陽極酸化の初期電圧より終期電圧を高くすることが提案されている。また、特開平8-260195号や特開平8-260196号公報では、まずポーラス型陽極酸化処理を施し、次いで非ポーラス型陽極酸化処理を施こすことが提案されている。
【0007】
この陽極酸化処理に関する従来技術は、いずれも、図1 に示す通り、基材アルミニウム合金1 の表面に、電解開始とともにポア3 と呼ばれる凹部を形成しながらAl合金1 の深さ方向に成長するセル2 からなるポーラス層4 と、ポアの無いバリア層5 からなる陽極酸化 (アルマイト) 皮膜6 を設けることを基本としている。そして、このポアの無いバリア層5 がガス透過性を有しないからガスやプラズマが、Al合金1 と接触するのを防止している。また、特開平8-193295号公報などでは、この2 重構造のアルマイト皮膜のプラズマに対する耐食性を更に向上させるため、ポーラス層4 の表面側のポア径をできるだけ小さくする一方、皮膜の割れや剥離を抑制するため、ポーラス層4 の基材側のポア径をできるだけ大きくし、かつガスに対する耐食性を向上させるため、バリア層5 を厚く形成することが提案されている。
【0008】
【発明が解決しようとする課題】
前記ポーラス層とポアの無いバリア層とを有する乃至更にポーラス層の表面側のポア径やセル径をできるだけ小さくしたアルマイト皮膜は、確かに、前記ガスやプラズマに対する耐食性に優れる。しかし、本発明者らが知見したところによれば、実際に、前記従来技術の陽極酸化処理によって得られたアルマイト皮膜は、必ずしも前記ガスやプラズマに対する耐食性に優れるとは限らない。これは、アルマイト皮膜の膜質や密着性が母材乃至基材であるAl合金の組成や組織に大きな影響を受け、前記ガスやプラズマに対する耐食性に優れたアルマイト皮膜乃至アルマイト皮膜の密着性が、陽極酸化処理条件のみによっては得られにくいからである。また、本発明が対象とする半導体の製造装置用材料に対する耐食性や耐熱性の要求 (課題) も、近年益々厳しくなっている。特に、半導体の製造装置用部材では、半導体の製造のプロセス条件により、前記した通り、使用中に高温域での熱サイクルを数多く受けるという厳しい使用環境下にある。このため、半導体の製造装置部材では、この熱サイクル下で、しかも、前記ガスやプラズマの腐食環境下にあっても、実施例で後述する▲1▼耐ハロゲンガス腐食性試験、▲2▼耐プラズマ腐食性試験、▲3▼熱サイクル組織安定性評価試験の基準を満たす、高温熱サイクルおよび腐食環境下での優れた耐食性や耐熱性が要求される。
【0009】
本発明はこの様な事情に着目してなされたものであって、その目的は、前記ガスやプラズマに対する耐食性および耐熱性に優れるアルマイト皮膜を形成することができ、かつ耐熱性に優れた新規な組成や組織のAl合金を提供しようとするものである。また、このAl合金表面にアルマイト皮膜を形成した、特に高温熱サイクルおよび腐食環境下での、ガス耐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料を提供しようとするものである。
【0010】
【課題を解決するための手段】
この目的を達成するために、本発明の要旨は、半導体製造装置用Al合金の合金成分を、Mn:0.3〜1.5% (質量% 、以下同じ) 、Cu:0.3〜1.5%、Fe:0.1〜1.0%、を含有し、残部Alおよび不可避的不純物からなるものとするとともに、組織の平均結晶粒径を50μm 以下とすることである。
【0011】
また、本発明の合金成分として、更にMg:0.3〜1.2%、Si:0.3〜1.5%を含有しても良く、また更にCr:0.05 〜0.3%、Zr:0.05 〜0.3%の内から一種または二種を含有しても良い。
【0012】
更に、これら耐熱性と前記ガスやプラズマに対する耐食性に優れる構造のアルマイト皮膜形成性に優れたAl合金表面に、目的とするポーラス層とポアの無いバリア層とを有するアルマイト皮膜を密着性良く形成して、特に高温熱サイクルおよび腐食環境下での、ガス耐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料とする。
【0013】
【発明の実施の形態】
本発明Al合金における、必須成分について説明する。まず、MnはAl合金マトリックス中で熱的に安定な化合物であるAl6Mn あるいはAl6(Mn、Fe) を形成し、熱サイクルによるAl合金の内部組織の変化による強度等の機械的性質の劣化( 結晶粒の異常粒成長や析出物の粗大化など) を抑制する効果を有する。Mnの含有量が0.3%未満ではこの効果がなく、Mnの含有量が多いほど効果を発揮するので、1.0%以上の含有が好ましい。しかし、一方でMnの含有量が1.5%を越えると、粗大な前記化合物が形成され、却って、熱サイクルによる前記Al合金の内部組織の変化を助長する。また、ガスやプラズマに対する耐食性を劣化させる。したがって、Mnの含有量は0.3 〜1.5%の範囲、好ましくは1.0 〜1.5%の範囲とする。
【0014】
Cuは本発明Al合金において、最も特徴的な元素である。Cuは、前記図1 に示したアルマイト皮膜の二重構造を保証し、しかもポーラス層4 の表面側のポア径をできるだけ小さくする一方、ポーラス層4 の基材側のポア径をできるだけ大きくし、バリア層5 を厚く形成したアルマイト皮膜6 を、基材Al合金1 の表面に設ける効果を有する。このCuによる良好なアルマイト皮膜形成効果のメカニズムは、Cuの含有により、ポーラス層のポアがセル界面にも形成され、熱サイクルが加わった時に緩衝の役割を果たし、皮膜の割れを抑制するものと推考される。そして、このようなアルマイト皮膜とすることにより、前記ガスやプラズマに対する耐食性に優れ、かつ密着性や耐熱性にも優れた皮膜とすることができる。Cu含有量が0.3%未満ではこの効果がなく、Cuの含有量が多いほどこの良好なアルマイト皮膜形成効果を発揮するので、1.0%以上の含有が好ましい。しかし、一方でCuの含有量が1.5%を越えると、粗大な化合物が形成され、却って、前記良好なアルマイト皮膜の形成効果が無くなる。したがって、Cuの含有量は0.3 〜1.5%の範囲、好ましくは1.0 〜1.5%の範囲とする。
【0015】
Feは、前記Mnとともに、熱的に安定な化合物であるAl6(Mn、Fe) を形成し、熱サイクルによるAl合金の内部組織の変化による強度等の機械的性質の劣化( 結晶粒の異常粒成長や析出物の粗大化など) を抑制する効果および平均結晶粒径の細粒化効果を有する。Feの含有量が0.1%未満ではこの効果がなく、Feの含有量が多いほど効果を発揮するので、0.7%以上の含有が好ましい。しかし、一方でFeの含有量が1.0%を越えると、粗大な前記化合物が形成され、却って、熱サイクルによる前記Al合金の内部組織の変化を助長し、結晶粒径の細粒化効果も少なくなり、かつ材料の加工硬化が大きくなり、冷間圧延性や成形加工性を低下させる。また、ガスやプラズマに対する耐食性を劣化させる。したがって、Feの含有量は0.1 〜1.0%の範囲、好ましくは0.7 〜1.0%の範囲とする。
【0016】
次に、本発明における選択的添加元素としての、Mg、Si、Cr、Zrについて説明する。MgとSiは、Al合金マトリックス中で微細なMg2Si を析出させ、この微細なMg2Si が前記ガスやプラズマに対する耐食性に優れ、かつ熱サイクルによる皮膜の割れ性や密着性にも優れたアルマイト皮膜を形成する効果を有する。よって、アルマイト皮膜のこの特性を更に向上させたい場合に選択的に含有させる。MgとSiの含有量が各々0.3%未満ではこの効果がなく、また一方でSiの含有量が1.5%を越え、かつMgの含有量が1.2%を越えると、粗大な化合物が形成され、却って、前記アルマイト皮膜の形成効果が無くなる。また、Siの含有量が1.5%を越えると、平均結晶粒径の微細化にも悪影響を及ぼす。したがって、MgとSiの含有量は、各々0.3 〜1.2%、0.3 〜1.5%の範囲とする。
【0017】
CrとZrは、Al合金マトリックス中で微細なAl3Cr あるいはAl3Zr を析出させ、この微細なAl3Cr あるいはAl3Zr が熱サイクルによるAl合金の内部組織の変化による強度等の機械的性質の劣化( 結晶粒の異常粒成長や析出物の粗大化など) を抑制する効果を有する。よって、Al合金のこの特性を更に向上させたい場合に選択的に一種または二種を含有させる。CrとZrの含有量が各々0.05% 未満ではこの効果がなく、また一方でCrとZrの含有量が各々0.3%を越えると、粗大な化合物が形成され、却って、前記Al合金の耐熱性効果を阻害する。したがって、CrとZrの含有量は、各々0.05〜0.3%の範囲とする。
【0018】
次に、本発明Al合金における平均結晶粒径の特定について説明する。Al合金における結晶粒径も、アルマイト皮膜の膜質に重大な影響を与え、密着性や耐熱性に優れた健全なアルマイト皮膜を設けるためには、Al合金組織の平均結晶粒径を50μm 以下とする必要がある。平均結晶粒径が微細なほど前記効果は向上し、この点からは、30μm 以下とすることが好ましい。平均結晶粒径が50μm を越えた場合、アルマイト皮膜の密着性が低下し、半導体製造装置としての使用中に熱サイクルによるアルマイト皮膜の割れ発生の可能性も大きくなる。なお、本発明Al合金における平均結晶粒径の測定は、伸銅品の結晶粒度試験方法であるJIS H 0501により、Al合金表面を研磨して光学顕微鏡により観察し、平均結晶粒径を計算して行う。
【0019】
また、本発明では、Al合金表面に陽極酸化によりアルマイト皮膜を形成して、ガス耐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料とする。この際、形成するアルマイト皮膜は、硫酸やしゅう酸などの電解液によるポーラス層とポアの無いバリア層とを有するアルマイト皮膜であっても、ほう酸などの電解液によるバリア層を主体とするアルマイト皮膜でも良い。しかし、これらの効果を確実に保証し、より高い効果を発揮させるためには、前記ガスやプラズマに対する耐食性および耐熱性に優れるポーラス層とポアの無いバリア層とを有するアルマイト皮膜を形成することが好ましい。そして、更に、ポーラス層の表面側のポア径をできるだけ小さくする一方、ポーラス層の基材側のポア径をできるだけ大きくし、更にバリア層を厚く形成したアルマイト皮膜を形成することがより好ましい。具体的には、表面側のポア径を80nm以下とし、基材側のポア径をこれより大きくすることが好ましく、また、バリア層を50nm以上の厚みとすることが好ましい。このようなアルマイト皮膜とすることにより、半導体製造装置としての使用中に、アルマイト皮膜とハロゲンなどの腐食性ガスやプラズマが接触した時に生じる応力や体積変化を緩和することができ、その結果、腐食や損傷の起点となる皮膜の割れや剥離を抑制して、優れたガス耐食性とプラズマ耐食性および耐熱性を発揮する。
【0020】
また、このアルマイト皮膜全体の厚みは、アルマイト皮膜の前記優れた耐食性および耐熱性を発揮させるためには、0.05μm 以上が好ましく、0.1 μm 以上であればより好ましい。但し、皮膜の厚みが厚すぎると、内部応力の影響により割れを生じて、表面の被覆が不十分となったり、皮膜の剥離を引き起して、却って皮膜性能を阻害するので50μm 以下とすることが好ましい。
【0021】
更に、本発明に係るAl合金乃至半導体製造装置用材料の製造方法について説明する。まず、本発明に係るAl合金は、前記本発明の成分範囲内に調整されたAl合金鋳塊を、例えば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して製造する。次いで、このAl合金鋳塊に常法により均質化熱処理を施す。この均質化温度が450 ℃未満では、鋳塊の均質化が不十分となり、熱間圧延時に耳割れを招く場合がある。一方、550 ℃の温度を超えて均質化処理を施すと、バーニング等が発生し表面性状等の不具合を招く場合がある。したがって、熱間圧延性を良くするためには均質化処理温度を450 〜550 ℃の範囲とすることが好ましい。
【0022】
そして、均質化処理を施したAl合金鋳塊を、好ましくは、終了温度250 ℃以下で熱間圧延を行う。この熱間圧延終了温度は、Al合金の平均結晶粒径に影響を与える。熱間圧延終了温度が250 ℃を超えると、結晶粒径が大きくなり過ぎ、本発明で規定する50μm 以下の平均結晶粒径が得られない場合がある。但し、200 ℃未満の熱間圧延終了温度では、材料の圧延性が低下し、圧延自体が困難になるため、下限の温度は200 ℃とすることが好ましい。この熱間圧延により所定の最終製品板厚として、必要により仕上げ焼鈍を行い、Al合金板とする。仕上げ焼鈍では、前記本発明で規定する50μm 以下の平均結晶粒径が得られるような条件で行う。なお、必要により、常法により、バッチ炉、連続焼鈍炉等で中間熱処理をしつつ、冷間圧延を行って所定の最終板厚としても良いが、Al合金板の製造コストを考慮すると、冷間圧延によらず、熱間圧延において所定の最終製品板厚とすることが好ましい。
【0023】
次に、半導体製造装置用材料として、このAl合金板にアルマイト皮膜形成のための陽極酸化処理を行う。陽極酸化処理は、通常の方法で良く、硫酸、りん酸、クロム酸などの無機酸や、ギ酸やしゅう酸などの有機酸などの電解液が適宜使用される。ただ、陽極酸化の電解電圧を広い範囲で制御できる点から、しゅう酸を1g/l以上含有する電解液が好ましい。そして、陽極酸化の電解電圧は、5 〜200Vの範囲から選択する。本発明Al合金は、前記ガスやプラズマに対する耐食性や耐熱性および密着性に優れた二重構造を有するアルマイト皮膜を、通常の陽極酸化処理の範囲にて形成しうる点(従来のAl合金では、通常の陽極酸化処理の範囲では二重構造を有するアルマイト皮膜を形成し得ない)で優れている。しかし、前記ポーラス層とポアの無いバリア層との二重構造を有するアルマイト皮膜を形成するとともに、更に、ポーラス層4 の表面側のポア径やセル径をできるだけ小さくする一方、ポーラス層4 の基材側のポア径をできるだけ大きくし、バリア層5 を厚くしたアルマイト皮膜を形成し、より優れたガスやプラズマに対する耐食性や耐熱性および密着性を発揮させるために好ましい。具体的には、表面側のポア径を80nm以下とし、基材側のポア径をこれより大きくすることが好ましく、また、バリア層を50nm以上とすることが好ましい。このような陽極酸化皮膜とすることにより、使用中に、陽極酸化皮膜とハロゲンなどの腐食性ガスやプラズマが接触した時に生じる応力や体積変化を緩和することができ、その結果、腐食や損傷の起点となる皮膜の割れや剥離を抑制して、高温熱サイクルおよび腐食環境下でのAl合金表面と優れた密着性を発揮するとともに、結果として、優れたガス耐食性とプラズマ耐食性を発揮する。
【0024】
ポーラス層の表面側のポア径やセル径をできるだけ小さくする乃至バリア層を厚くする方法は、前記特開平8-144088号や特開平8-260196号公報に開示された陽極酸化方法により行って良い。より具体的には、前記特開平8-144088号公報のように、陽極酸化の初期電圧を50V 以下とするとともに陽極酸化の終期電圧を50V 以上と高くして、電解電圧を連続的に変化させて形成しても良く、また、特開平8-260196号公報のように、まず、硫酸、りん酸、クロム酸などの溶液 (電解液) で5 〜200Vの電解電圧により、ポアを有するポーラス層皮膜形成のためのポーラス型陽極酸化処理を施し、次いで、ほう酸系、りん酸系、フタル酸系、アジピン酸系、炭酸系、クエン酸系、酒石酸系などの溶液 (電解液) で60〜500Vの電解電圧により、ポアの無いバリア層皮膜形成のための非ポーラス型陽極酸化処理を施こす方法もある。
【0025】
【実施例】
表1 、2 に示す組成のAl合金鋳塊をDC鋳造法により溶製後、450 〜550 ℃の範囲で均質化処理を施し、終了温度250 ℃以下で熱間圧延し、5mm の板厚のAl合金板とした。その後仕上げ焼鈍にて、表1 に示す平均結晶粒径に調整した後、通常の陽極酸化処理として、しゅう酸を10g/l 含有する電解液で、電解電圧を80 Vにて陽極酸化を行い、1 μm 厚みのアルマイト皮膜を設けた。このアルマイト皮膜を設けたAl合金板に対し、▲1▼耐ハロゲンガス腐食性試験、▲2▼耐プラズマ腐食性試験、▲3▼熱サイクル組織安定性評価試験、を各々行った。これらの結果を表1 、2 に示す。
【0026】
▲1▼耐ハロゲンガス腐食性試験は、半導体製造装置での実際の使用条件に合わせ、前記アルマイト皮膜を設けたAl合金板の試験片と5%Cl2-Ar混合ガスとを130 ℃で1 時間接触させ、その後の試験片の最大塩素侵入深さを調べた。そしてテープ剥離試験も行って、アルマイト皮膜の剥離が無いことを前提に、最大塩素侵入深さが、30μm 未満のものを◎、30μm 以上50μm 未満のものを○、50μm 以上100 μm 未満のものを△、アルマイト皮膜の剥離が生じている乃至最大塩素侵入深さが100 μm 以上のものを×として評価した。
【0027】
▲2▼耐プラズマ腐食性試験は、半導体製造装置での実際の使用条件に合わせ、前記アルマイト皮膜を設けたAl合金板の試験片に、低バイアス条件下で15分間の塩素プラズマを照射し、前記▲1▼耐ハロゲンガス腐食性試験と同様に、その後の試験片の最大塩素侵入深さを調べた。最大塩素侵入深さが、30μm 未満のものを◎、30μm 以上50μm 未満のものを○、50μm 以上100 μm 未満のものを△、100 μm 以上のものを×として評価した。
【0028】
▲3▼熱サイクル組織安定性評価試験は、半導体製造装置での実際の使用条件に合わせ、前記アルマイト皮膜を設けたAl合金板の試験片に、200 ℃から450 ℃の温度範囲での熱サイクル( 昇温速度と降温速度は40℃/hr とし、450 ℃の最高温度で1 時間保持) を10回負荷し、その後の試験片のミクロ組織を光学顕微鏡で観察した。そしてこの組織観察の結果、組織変化が無いものを○、結晶粒径や析出物径がわずかに増大したものを△、結晶粒径や析出物径が大きく増大したものを×として評価した。
【0029】
表1 から明らかな通り、発明例No.1〜13は、▲1▼耐ハロゲンガス腐食性試験、▲2▼耐プラズマ腐食性試験、▲3▼熱サイクル組織安定性評価試験のいずれにおいても、優れた結果が得られている。その中でも、Mn含有量が1.0%以上、Fe含有量が0.7%以上、Cu含有量が1.0%以上と比較的多く、また平均結晶粒径が30μm 以下とより細かいNo.2、3 、7 、8 、11〜13の例が、特に高温熱サイクルおよび腐食環境下での、ガス耐食性とプラズマ耐食性に優れている。これらは前記したMnやFe含有によるAl合金マトリックスの耐熱性向上効果と、Cu含有や平均結晶粒径の微細化による前記ガス耐食性やプラズマ耐食性および密着性や耐熱性に優れた前記ポーラス層とポアの無いバリア層とを有するアルマイト皮膜構造の形成効果との相乗作用によるものと考えられる。実際に、発明例No.1〜13の試験片のアルマイト皮膜構造を電子顕微鏡により組織観察した結果、発明例はいずれも図1 に示すポーラス層とポアの無いバリア層とを有するアルマイト皮膜構造となっていた。
【0030】
これに対し、表2 から明らかな通り、比較例No.14 〜29は、▲1▼耐ハロゲンガス腐食性試験、▲2▼耐プラズマ腐食性試験、▲3▼熱サイクル組織安定性評価試験のいずれにおいても、発明例よりも劣っている。より具体的には、No.14 、15はMn含有量が本発明で規定する範囲の上限および下限よりはずれている。No.16 、17はFe含有量が本発明で規定する範囲の上限および下限よりはずれている。No.18 、19はCu含有量が本発明で規定する範囲の上限および下限よりはずれている。No.20 、27はAl合金成分は本発明範囲内であるものの、平均結晶粒径が本発明で規定する範囲の上限よりはずれる。No.21 〜26は、Mg、Si、Cr、Zrなどの選択的添加元素を含むものの、Mn、Fe、Cuの含有量が、各々本発明で規定する範囲の上限および下限よりはずれている。更に、No.28 、29は、Cr、Zrの選択的添加元素の含有量が、各々本発明で規定する範囲の上限よりはずれている。
【0031】
この比較例の中でも、特に、CuやFe含有量が本発明で規定する範囲の下限よりはずれているNo.16 、18、23、25および平均結晶粒径が本発明で規定する範囲の上限よりはずれるNo.20 、27は、Al合金マトリックスの耐熱性に対し、あるいはAl合金マトリックスの耐熱性ともども、ガス耐食性とプラズマ耐食性に劣っている。実際に、比較例No.14 〜29の試験片のアルマイト皮膜構造を電子顕微鏡により組織観察した結果、比較例はいずれも図1 に示すポーラス層とポアの無いバリア層とを有するアルマイト皮膜構造となっておらず、ポーラス層からなるアルマイト皮膜構造となっていた。したがって、比較例はいずれも、ポーラス層からなるアルマイト皮膜構造としても性能的に劣った皮膜となっていると言える。そして、これらの点から、本発明におけるCuやFe含有および平均結晶粒径の微細化が、前記ガス耐食性やプラズマ耐食性および密着性や耐熱性に優れたアルマイト皮膜構造の形成のために重要であることが分かる。
【0032】
このように、本発明材料は、半導体や液晶などの製造に用いられる半導体製造装置の中でも、特に高温熱サイクルおよび腐食環境下に曝される主要部材である、ヒーターブロック、チャンバー、ライナー、真空チャック、静電チャック、クランパー、ベローズ、ベローズカバー、サセプタ、ガス拡散板、電極などの部材に好適に用いることができる。
【0033】
【表1】

Figure 0003746878
【0034】
【表2】
Figure 0003746878
【0035】
【発明の効果】
本発明に係る半導体製造装置用Al合金および材料によれば、CVD やPVD などの化学的或いは物理的真空蒸着装置、またはドライエッチング装置等の、半導体や液晶の製造に用いられる半導体製造装置用の部材として好適な、ガス耐食性やプラズマ耐食性および耐熱性に優れた半導体製造装置用材料を提供することができる。従って、これら半導体製造装置の高効率化及び軽量化上を促進し、更に半導体や液晶の高効率での生産を可能にする等の優れた効果を奏する。
【図面の簡単な説明】
【図1】陽極酸化皮膜の概略構造を示す一部断面説明図である。
【符号の説明】
1:Al合金基材 2:セル 3: ポア
4:ポーラス層 5:バリア層 6: アルマイト皮膜[0001]
[Industrial application fields]
The present invention relates to an aluminum alloy for semiconductor manufacturing equipment (hereinafter referred to as Al), and further, a material for semiconductor manufacturing equipment excellent in gas corrosion resistance, plasma corrosion resistance and heat resistance in which an alumite film is formed on the surface of the Al alloy. It is about.
[0002]
[Prior art]
A semiconductor manufacturing apparatus such as a chemical or physical vacuum deposition apparatus such as CVD or PVD, or a dry etching apparatus is composed of main members such as a heater block, a chamber wall, a liner, a vacuum chuck, a susceptor, and a gas diffusion plate. Since corrosive gases containing halogen elements such as Cl and F are introduced as reaction gases inside semiconductor manufacturing equipment, these main components are required to have corrosion resistance (gas corrosion resistance) against these corrosive gases. Is done. In addition, in the case of a plasma CVD apparatus or the like, in addition to the corrosive gas, halogen-based plasma is also generated, so that corrosiveness (plasma corrosion resistance) against this plasma is required.
[0003]
Further, among the semiconductor manufacturing apparatuses, especially heater blocks, chamber walls, etc., undergo thermal cycles (repeated increase and decrease in use temperature) in the temperature range of 200 to 450 ° C. during use depending on the process conditions of semiconductor manufacturing. Receive a lot. For this reason, it is required that the internal structure of the material used due to this thermal cycle (abnormal grain growth, coarsening of precipitates, etc.) does not occur (heat resistance). In addition, excellent thermal conductivity and light weight are also important factors in selecting the materials used.
[0004]
Conventionally, stainless steel has been used as this kind of material. However, due to the recent demands for higher efficiency and compactness in semiconductor manufacturing equipment, stainless steel components are insufficient in thermal conductivity and require time when the equipment is operating, and the weight is large and the whole equipment is heavy. To do so is a problem. In addition, there is a problem that heavy metals such as Ni and Cr contained in stainless steel are released during the process for some reason and become a pollution source, thereby degrading the quality of the semiconductor product.
[0005]
For this reason, an Al alloy that is lightweight and has high thermal conductivity is used in place of this stainless steel. Al alloys used include JIS 3003Al alloys including Mn: 1.0-1.5% -Cu: 0.05-0.20%, JIS 5052Al alloys including Mg: 2.2-2.8% -Cr: 0.15-0.35%, Cu There are JIS 6061Al alloys including 0.15 to 0.40% -Mg: 0.8 to 1.2% -Cr: 0.04 to 0.35%. Among these Al alloys, for example, JIS 3003Al alloy is actually used as a material for heater blocks that require the heat resistance. However, this JIS 3003Al alloy contains Mn at a high concentration as an essential additive element. This Mn is effective against deterioration of mechanical properties such as strength (heat resistance) due to changes in the internal structure of the material used due to the thermal cycle, but against corrosive gases and plasmas. There is a problem of poor corrosion resistance. Further, not only the JIS 3003Al alloy, but the existing Al alloy surface does not have excellent corrosion resistance against the corrosive gas or plasma. Therefore, in order to apply an Al alloy as a material for a semiconductor manufacturing apparatus, it is an essential condition to improve the corrosion resistance against this gas and plasma. And in order to have corrosion resistance with respect to this gas and plasma, it is necessary to perform some surface treatment on the Al alloy surface.
[0006]
Therefore, Japanese Patent Publication No. 5-53870 proposes a technique for forming an alumite (Al 2 O 3 ) film having excellent corrosion resistance on the surface of the Al alloy in order to improve corrosion resistance against gas and plasma. However, since this anodized film also has greatly different corrosion resistance to the gas and plasma depending on the film quality, various attempts to improve the quality of the anodized film have been proposed. For example, Japanese Patent Application Laid-Open Nos. 8-144088 and 8-144089 propose that when an alumite film is formed by anodic oxidation, the final voltage is made higher than the initial voltage of anodic oxidation. Japanese Patent Application Laid-Open No. 8-260195 and Japanese Patent Application Laid-Open No. 8-260196 propose that a porous type anodizing treatment is performed first, followed by a non-porous type anodizing treatment.
[0007]
As shown in FIG. 1, all of the prior arts related to this anodizing treatment are cells that grow in the depth direction of the Al alloy 1 while forming recesses called pores 3 on the surface of the base aluminum alloy 1 as the electrolysis starts. Basically, an anodic oxidation (alumite) film 6 consisting of a porous layer 4 made of 2 and a barrier layer 5 without pores is provided. Since the pore-free barrier layer 5 does not have gas permeability, gas or plasma is prevented from coming into contact with the Al alloy 1. In JP-A-8-193295, etc., the pore diameter on the surface side of the porous layer 4 is made as small as possible in order to further improve the plasma corrosion resistance of the double-structure anodized film, while cracking and peeling of the film are prevented. In order to suppress this, it has been proposed to make the barrier layer 5 thick in order to increase the pore diameter of the porous layer 4 on the substrate side as much as possible and improve the corrosion resistance against gas.
[0008]
[Problems to be solved by the invention]
An anodized film having a porous layer and a barrier layer without pores or having a pore diameter or cell diameter on the surface side of the porous layer as small as possible is surely excellent in corrosion resistance to the gas or plasma. However, according to the findings of the present inventors, actually, the anodized film obtained by the anodizing treatment of the prior art is not necessarily excellent in corrosion resistance against the gas and plasma. This is because the film quality and adhesion of the anodized film are greatly affected by the composition and structure of the Al alloy as the base material or base material, and the adhesion of the anodized film or anodized film with excellent corrosion resistance against the gas or plasma is This is because it is difficult to obtain only by the oxidation treatment conditions. In addition, the requirements (problems) of corrosion resistance and heat resistance for semiconductor manufacturing equipment materials targeted by the present invention have become increasingly severe in recent years. In particular, the members for semiconductor manufacturing apparatuses are in a severe usage environment where they undergo many thermal cycles in a high temperature range during use, as described above, depending on the process conditions of semiconductor manufacturing. For this reason, in semiconductor manufacturing equipment members, (1) halogen gas corrosion resistance test and (2) resistance to resistance described later in the examples even under this thermal cycle and in the corrosive environment of gas and plasma. Excellent corrosion resistance and heat resistance in a high temperature thermal cycle and corrosive environment that satisfy the standards of the plasma corrosion test and (3) thermal cycle structure stability evaluation test are required.
[0009]
The present invention has been made paying attention to such circumstances, and the object thereof is to form a novel alumite film excellent in corrosion resistance and heat resistance against the gas and plasma and excellent in heat resistance. It is intended to provide an Al alloy having a composition and structure. Another object of the present invention is to provide a material for a semiconductor manufacturing apparatus having an alumite film formed on the surface of the Al alloy and having excellent gas corrosion resistance, plasma corrosion resistance, and heat resistance, particularly under a high temperature thermal cycle and a corrosive environment.
[0010]
[Means for Solving the Problems]
In order to achieve this object, the gist of the present invention is that the alloy component of the Al alloy for semiconductor manufacturing equipment is Mn: 0.3 to 1.5% (mass%, the same applies hereinafter), Cu: 0.3 to 1.5%, Fe: 0.1 to 1.0%, and the balance is made of Al and inevitable impurities, and the average crystal grain size of the structure is 50 μm or less.
[0011]
Further, the alloy component of the present invention may further contain Mg: 0.3-1.2%, Si: 0.3-1.5%, and further Cr: 0.05-0.3%, Zr: 0.05-0.3%, Two types may be contained.
[0012]
Furthermore, an alumite film having a target porous layer and a pore-free barrier layer is formed on the Al alloy surface with excellent heat resistance and alumite film structure with excellent corrosion resistance against the gas and plasma with good adhesion. In particular, a material for a semiconductor manufacturing apparatus having excellent gas corrosion resistance, plasma corrosion resistance, and heat resistance under a high temperature thermal cycle and a corrosive environment.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The essential components in the Al alloy of the present invention will be described. First, Mn forms Al 6 Mn or Al 6 (Mn, Fe), which is a thermally stable compound in the Al alloy matrix, and has mechanical properties such as strength due to changes in the internal structure of the Al alloy due to thermal cycling. It has the effect of suppressing deterioration (such as abnormal grain growth and coarsening of precipitates). If the Mn content is less than 0.3%, this effect is not obtained, and the higher the Mn content, the more effective the effect. Therefore, a content of 1.0% or more is preferable. On the other hand, however, if the Mn content exceeds 1.5%, the coarse compound is formed, and on the other hand, the change in the internal structure of the Al alloy due to the thermal cycle is promoted. In addition, the corrosion resistance against gas and plasma is deteriorated. Therefore, the Mn content is in the range of 0.3 to 1.5%, preferably in the range of 1.0 to 1.5%.
[0014]
Cu is the most characteristic element in the Al alloy of the present invention. Cu guarantees the double structure of the alumite film shown in FIG. 1 and further reduces the pore diameter on the surface side of the porous layer 4 as much as possible, while making the pore diameter on the substrate side of the porous layer 4 as large as possible, The alumite film 6 having a thick barrier layer 5 is provided on the surface of the base Al alloy 1. The mechanism of the good anodized film formation effect by Cu is that the pores of the porous layer are also formed at the cell interface due to the inclusion of Cu, acting as a buffer when thermal cycle is applied, and suppressing cracking of the film Inferred. And by setting it as such an alumite film | membrane, it can be set as the film | membrane excellent in the corrosion resistance with respect to the said gas and plasma, and also excellent in adhesiveness and heat resistance. If the Cu content is less than 0.3%, this effect is not obtained, and the higher the Cu content, the better the effect of forming an alumite film. Therefore, the content is preferably 1.0% or more. However, on the other hand, if the Cu content exceeds 1.5%, a coarse compound is formed, and on the contrary, the effect of forming the good alumite film is lost. Therefore, the Cu content is in the range of 0.3 to 1.5%, preferably in the range of 1.0 to 1.5%.
[0015]
Fe, together with Mn, forms Al 6 (Mn, Fe), a thermally stable compound, and deteriorates mechanical properties such as strength due to changes in the internal structure of the Al alloy due to thermal cycling (an abnormal grain condition). For suppressing grain growth and coarsening of precipitates) and for reducing the average crystal grain size. If the Fe content is less than 0.1%, this effect is not achieved, and the higher the Fe content, the more effective, so 0.7% or more is preferable. However, on the other hand, if the Fe content exceeds 1.0%, the coarse compound is formed. On the other hand, the change in the internal structure of the Al alloy due to the thermal cycle is promoted, and the grain size reduction effect is small. In addition, the work hardening of the material is increased, and the cold rollability and the formability are reduced. In addition, the corrosion resistance against gas and plasma is deteriorated. Therefore, the Fe content is in the range of 0.1 to 1.0%, preferably in the range of 0.7 to 1.0%.
[0016]
Next, Mg, Si, Cr, and Zr as selective additive elements in the present invention will be described. Mg and Si precipitate fine Mg 2 Si in the Al alloy matrix, and this fine Mg 2 Si is excellent in corrosion resistance to the gas and plasma, and also excellent in cracking and adhesion of the film due to thermal cycling. Has the effect of forming an alumite film. Therefore, it is selectively contained when it is desired to further improve this property of the alumite film. If the Mg and Si contents are each less than 0.3%, this effect is not achieved. On the other hand, if the Si content exceeds 1.5% and the Mg content exceeds 1.2%, a coarse compound is formed. The effect of forming the alumite film is lost. If the Si content exceeds 1.5%, the average crystal grain size is adversely affected. Therefore, the contents of Mg and Si are in the range of 0.3 to 1.2% and 0.3 to 1.5%, respectively.
[0017]
Cr and Zr precipitate fine Al 3 Cr or Al 3 Zr in the Al alloy matrix, and this fine Al 3 Cr or Al 3 Zr is mechanically affected by changes in the internal structure of the Al alloy due to thermal cycling. It has the effect of suppressing property deterioration (such as abnormal grain growth and coarsening of precipitates). Therefore, when it is desired to further improve this characteristic of the Al alloy, one or two kinds are selectively contained. If the Cr and Zr contents are less than 0.05% each, this effect is not obtained.On the other hand, if the Cr and Zr contents exceed 0.3% each, a coarse compound is formed, on the other hand, the heat resistance effect of the Al alloy. Inhibits. Therefore, the contents of Cr and Zr are each in the range of 0.05 to 0.3%.
[0018]
Next, identification of the average crystal grain size in the Al alloy of the present invention will be described. The crystal grain size of Al alloy also has a significant effect on the quality of the anodized film. To provide a sound anodized film with excellent adhesion and heat resistance, the average crystal grain size of the Al alloy structure should be 50 μm or less. There is a need. The finer the average crystal grain size, the more the effect is improved. From this point, it is preferably 30 μm or less. When the average crystal grain size exceeds 50 μm, the adhesion of the alumite film decreases, and the possibility of cracking of the alumite film due to thermal cycling during use as a semiconductor manufacturing apparatus increases. The average crystal grain size of the Al alloy of the present invention is measured according to JIS H 0501, which is a grain size test method for copper products, and the surface of the Al alloy is polished and observed with an optical microscope to calculate the average crystal grain size. Do it.
[0019]
In the present invention, an alumite film is formed on the surface of the Al alloy by anodic oxidation to obtain a material for semiconductor manufacturing equipment having excellent gas corrosion resistance, plasma corrosion resistance, and heat resistance. At this time, the alumite film to be formed is an alumite film having a porous layer made of an electrolyte such as sulfuric acid or oxalic acid and a barrier layer without pores, but mainly composed of a barrier layer made of an electrolyte such as boric acid. But it ’s okay. However, in order to ensure these effects and to achieve higher effects, it is necessary to form an alumite film having a porous layer excellent in corrosion resistance and heat resistance against the gas and plasma and a barrier layer without pores. preferable. Further, it is more preferable to form an alumite film in which the pore diameter on the surface side of the porous layer is made as small as possible, while the pore diameter on the substrate side of the porous layer is made as large as possible and the barrier layer is made thicker. Specifically, the pore diameter on the surface side is preferably 80 nm or less, the pore diameter on the base material side is preferably larger than this, and the barrier layer is preferably 50 nm or more in thickness. By using such an anodized film, stress and volume changes that occur when the anodized film and a corrosive gas such as halogen or plasma come into contact with each other during use as a semiconductor manufacturing apparatus can be mitigated. Suppresses cracking and peeling of the film, which is the starting point of damage, and exhibits excellent gas corrosion resistance, plasma corrosion resistance, and heat resistance.
[0020]
Further, the thickness of the entire anodized film is preferably 0.05 μm or more, more preferably 0.1 μm or more in order to exhibit the excellent corrosion resistance and heat resistance of the anodized film. However, if the thickness of the film is too thick, it will crack due to the effect of internal stress, resulting in insufficient surface coating or peeling of the film, which will adversely affect the film performance. It is preferable.
[0021]
Furthermore, the manufacturing method of the Al alloy thru | or semiconductor manufacturing device material which concerns on this invention is demonstrated. First, an Al alloy according to the present invention is prepared by using an Al alloy ingot adjusted within the component range of the present invention, for example, a normal melt casting method such as a continuous casting rolling method or a semi-continuous casting method (DC casting method). Are appropriately selected and manufactured. Next, the Al alloy ingot is subjected to a homogenization heat treatment by a conventional method. If this homogenization temperature is less than 450 ° C., the ingot is not sufficiently homogenized and may cause ear cracks during hot rolling. On the other hand, when the homogenization treatment is performed at a temperature exceeding 550 ° C., burning or the like may occur, resulting in problems such as surface properties. Therefore, in order to improve the hot rollability, it is preferable that the homogenization temperature is in the range of 450 to 550 ° C.
[0022]
The homogenized Al alloy ingot is preferably hot-rolled at an end temperature of 250 ° C. or lower. This hot rolling finish temperature affects the average crystal grain size of the Al alloy. When the hot rolling finish temperature exceeds 250 ° C., the crystal grain size becomes too large, and the average crystal grain size of 50 μm or less defined in the present invention may not be obtained. However, at the hot rolling end temperature of less than 200 ° C., the rollability of the material is lowered and rolling itself becomes difficult, so the lower limit temperature is preferably 200 ° C. By this hot rolling, a predetermined final product sheet thickness is obtained, and if necessary, finish annealing is performed to obtain an Al alloy sheet. The final annealing is performed under conditions that can obtain an average crystal grain size of 50 μm or less as defined in the present invention. If necessary, cold rolling may be performed to obtain a predetermined final thickness while performing intermediate heat treatment in a batch furnace, continuous annealing furnace, or the like, if necessary. Regardless of hot rolling, it is preferable to have a predetermined final product thickness in hot rolling.
[0023]
Next, an anodic oxidation treatment for forming an alumite film is performed on the Al alloy plate as a material for a semiconductor manufacturing apparatus. The anodizing treatment may be performed by a normal method, and an electrolytic solution such as an inorganic acid such as sulfuric acid, phosphoric acid or chromic acid, or an organic acid such as formic acid or oxalic acid is appropriately used. However, an electrolytic solution containing 1 g / l or more of oxalic acid is preferable from the viewpoint that the electrolysis voltage for anodization can be controlled in a wide range. The electrolytic voltage for anodic oxidation is selected from the range of 5 to 200V. The Al alloy of the present invention can form an alumite film having a dual structure excellent in corrosion resistance, heat resistance and adhesion to the gas and plasma in the range of normal anodizing treatment (in the conventional Al alloy, In the range of normal anodizing treatment, an alumite film having a double structure cannot be formed. However, while forming an alumite film having a double structure of the porous layer and the barrier layer without pores, and further reducing the pore diameter and cell diameter on the surface side of the porous layer 4 as much as possible, It is preferable in order to form an alumite film having the pore diameter on the material side as large as possible and the barrier layer 5 thick, and to exhibit better corrosion resistance, heat resistance and adhesion to gas and plasma. Specifically, the pore diameter on the surface side is preferably 80 nm or less, the pore diameter on the substrate side is preferably larger than this, and the barrier layer is preferably 50 nm or more. By using such an anodized film, stress and volume changes that occur when the anodized film comes into contact with corrosive gases such as halogen or plasma during use can be mitigated. It suppresses cracking and peeling of the starting film and exhibits excellent adhesion to the Al alloy surface in high temperature thermal cycles and corrosive environments. As a result, it exhibits excellent gas corrosion resistance and plasma corrosion resistance.
[0024]
The method of reducing the pore diameter and cell diameter on the surface side of the porous layer as much as possible or increasing the thickness of the barrier layer may be performed by the anodizing method disclosed in the above-mentioned JP-A Nos. 8-144088 and 8-260196. . More specifically, as described in JP-A-8-144088, the initial voltage of anodic oxidation is set to 50 V or lower and the final voltage of anodic oxidation is increased to 50 V or higher to continuously change the electrolytic voltage. In addition, as disclosed in JP-A-8-260196, first, a porous layer having pores in a solution (electrolytic solution) of sulfuric acid, phosphoric acid, chromic acid or the like with an electrolysis voltage of 5 to 200 V Porous anodizing treatment for film formation, then boric acid, phosphoric acid, phthalic acid, adipic acid, carbonic acid, citric acid, tartaric acid solution (electrolyte) 60-500V There is also a method of applying a non-porous type anodizing treatment for forming a barrier layer film without pores by using an electrolysis voltage.
[0025]
【Example】
After melting the Al alloy ingot with the composition shown in Tables 1 and 2 by the DC casting method, homogenization treatment was performed in the range of 450 to 550 ° C, hot rolling at an end temperature of 250 ° C or less, and a thickness of 5 mm. Al alloy plate was used. Then, after adjusting the average grain size shown in Table 1 by finish annealing, as an ordinary anodizing treatment, anodizing was performed at an electrolytic voltage of 80 V with an electrolytic solution containing 10 g / l oxalic acid, An alumite film with a thickness of 1 μm was provided. The Al alloy plate provided with this alumite film was subjected to (1) halogen gas corrosion resistance test, (2) plasma corrosion resistance test, and (3) thermal cycle structure stability evaluation test. These results are shown in Tables 1 and 2.
[0026]
(1) Halogen gas corrosion resistance test was conducted at 130 ° C by combining a test piece of Al alloy plate provided with the alumite film and a 5% Cl 2 -Ar mixed gas in accordance with the actual use conditions in the semiconductor manufacturing equipment. The test piece was contacted for a period of time, and then the maximum chlorine penetration depth of the test piece was examined. A tape peel test is also performed, assuming that there is no peeling of the anodized film, the maximum chlorine penetration depth is less than 30 μm, ◎, 30 μm or more and less than 50 μm, ○, 50 μm or more and less than 100 μm. Δ, evaluation was made as x when the alumite film was peeled off or the maximum chlorine penetration depth was 100 μm or more.
[0027]
(2) In the plasma corrosion resistance test, a test piece of Al alloy plate provided with the alumite film was irradiated with chlorine plasma for 15 minutes under a low bias condition in accordance with the actual use conditions in a semiconductor manufacturing apparatus. Similarly to the above (1) halogen gas corrosion resistance test, the maximum chlorine penetration depth of the subsequent test piece was examined. The maximum chlorine penetration depth of less than 30 μm was evaluated as “◎”, the case of 30 μm or more and less than 50 μm was evaluated as “◯”, the case of 50 μm or more and less than 100 μm as “Δ”, and the case of 100 μm or more as “X”.
[0028]
(3) Thermal cycle structure stability evaluation test is performed in the temperature range of 200 ° C to 450 ° C on the test piece of Al alloy plate provided with the alumite film according to the actual use conditions in the semiconductor manufacturing equipment. (The temperature increase rate and the temperature decrease rate were set to 40 ° C./hr and held at the maximum temperature of 450 ° C. for 1 hour), and the microstructure of the test specimen was observed with an optical microscope. As a result of the observation of the structure, the case where there was no change in the structure was evaluated as ◯, the case where the crystal grain size or the precipitate diameter was slightly increased was evaluated as Δ, and the case where the crystal grain size or the precipitate diameter was greatly increased was evaluated as x.
[0029]
As is apparent from Table 1, Invention Examples Nos. 1 to 13 are: (1) Halogen gas corrosion resistance test, (2) Plasma corrosion resistance test, and (3) Thermal cycle structure stability evaluation test, Excellent results have been obtained. Among them, the Mn content is 1.0% or more, the Fe content is 0.7% or more, the Cu content is 1.0% or more, and the average crystal grain size is 30 μm or less and finer No. 2, 3, 7, Examples 8 and 11 to 13 are excellent in gas corrosion resistance and plasma corrosion resistance particularly in a high temperature thermal cycle and a corrosive environment. These include the effect of improving the heat resistance of the Al alloy matrix by containing Mn and Fe, and the porous layer and pore excellent in the gas corrosion resistance, plasma corrosion resistance, adhesion, and heat resistance due to Cu content and refinement of the average crystal grain size. This is considered to be due to a synergistic effect with the formation effect of the alumite film structure having the barrier layer having no surface. Actually, as a result of observing the structure of the alumite film structure of the test pieces of Invention Examples No. 1 to 13 with an electron microscope, all of the invention examples have an alumite film structure having a porous layer and a barrier layer without pores as shown in FIG. It was.
[0030]
On the other hand, as shown in Table 2, Comparative Examples Nos. 14 to 29 are (1) Halogen gas corrosion resistance test, (2) Plasma corrosion resistance test, and (3) Thermal cycle structure stability evaluation test. In any case, it is inferior to the invention examples. More specifically, in Nos. 14 and 15, the Mn content deviates from the upper limit and the lower limit of the range defined in the present invention. In Nos. 16 and 17, the Fe content deviates from the upper and lower limits of the range defined in the present invention. In Nos. 18 and 19, the Cu content deviates from the upper limit and the lower limit of the range defined in the present invention. In Nos. 20 and 27, although the Al alloy component is within the range of the present invention, the average crystal grain size deviates from the upper limit of the range defined by the present invention. Nos. 21 to 26 contain selective additive elements such as Mg, Si, Cr, and Zr, but the contents of Mn, Fe, and Cu are respectively deviated from the upper and lower limits of the range defined in the present invention. Further, in Nos. 28 and 29, the contents of selectively added elements of Cr and Zr deviate from the upper limit of the range defined in the present invention.
[0031]
Among these comparative examples, in particular, Nos. 16, 18, 23, and 25 in which the Cu and Fe contents deviate from the lower limit of the range defined by the present invention and the average crystal grain size from the upper limit of the range defined by the present invention. No. 20 and No. 27 that come off are inferior in gas corrosion resistance and plasma corrosion resistance to the heat resistance of the Al alloy matrix or the heat resistance of the Al alloy matrix. Actually, as a result of observing the structure of the alumite film structure of the test pieces of Comparative Examples Nos. 14 to 29 with an electron microscope, all of the comparative examples had an alumite film structure having a porous layer and a barrier layer without pores as shown in FIG. It was not an alumite film structure consisting of a porous layer. Therefore, it can be said that all of the comparative examples are films inferior in performance as an alumite film structure composed of a porous layer. From these points, the Cu and Fe content and the refinement of the average crystal grain size in the present invention are important for the formation of the alumite film structure having excellent gas corrosion resistance, plasma corrosion resistance, adhesion and heat resistance. I understand that.
[0032]
As described above, the material of the present invention is a heater block, chamber, liner, vacuum chuck, which is a main member exposed to a high-temperature thermal cycle and a corrosive environment, among semiconductor manufacturing apparatuses used for manufacturing semiconductors and liquid crystals. It can be suitably used for members such as electrostatic chucks, clampers, bellows, bellows covers, susceptors, gas diffusion plates, and electrodes.
[0033]
[Table 1]
Figure 0003746878
[0034]
[Table 2]
Figure 0003746878
[0035]
【The invention's effect】
According to the Al alloy and material for a semiconductor manufacturing apparatus according to the present invention, a chemical or physical vacuum vapor deposition apparatus such as CVD or PVD, or a dry etching apparatus, etc. It is possible to provide a material for a semiconductor manufacturing apparatus excellent in gas corrosion resistance, plasma corrosion resistance and heat resistance, which is suitable as a member. Therefore, it is possible to enhance the efficiency and weight of these semiconductor manufacturing apparatuses, and to achieve excellent effects such as enabling the production of semiconductors and liquid crystals with high efficiency.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional explanatory view showing a schematic structure of an anodized film.
[Explanation of symbols]
1: Al alloy base material 2: Cell 3: Pore
4: Porous layer 5: Barrier layer 6: Anodized film

Claims (11)

合金成分として、Mn:0.3〜1.5% ( 質量 % 、以下同じ ) 、Cu:0.3〜1.5%、Fe:0.1〜1.0%、を含有し、残部Alおよび不可避的不純物からなり、かつ平均結晶粒径が50μm 以下であることを特徴とするガス耐食性とプラズマ耐食性に優れるアルマイト皮膜形成性および耐熱性に優れた半導体製造装置用Al合金。As an alloy component, it contains Mn: 0.3 to 1.5% ( mass % , the same shall apply hereinafter ) , Cu: 0.3 to 1.5%, Fe: 0.1 to 1.0%, the balance consisting of Al and inevitable impurities, and the average crystal grain size An aluminum alloy for semiconductor manufacturing equipment excellent in gas corrosion resistance and plasma corrosion resistance, and excellent in anodizing and heat resistance. 合金成分として、更にMg:0.3〜1.2%、Si:0.3〜1.5%を含有する請求項1に記載のガス耐食性とプラズマ耐食性に優れるアルマイト皮膜形成性および耐熱性に優れた半導体製造装置用Al合金。  The alloy according to claim 1, further comprising Mg: 0.3 to 1.2% and Si: 0.3 to 1.5% as an alloy component, and having excellent alumite film forming property and heat resistance, both excellent in gas corrosion resistance and plasma corrosion resistance. . 合金成分として、更にCr:0.05 〜0.3%、Zr:0.05 〜0.3%の内から一種または二種を含有する請求項1または2に記載のガス耐食性とプラズマ耐食性に優れるアルマイト皮膜形成性および耐熱性に優れた半導体製造装置用Al合金。  3. Anodizing and heat resistance with excellent gas corrosion resistance and plasma corrosion resistance according to claim 1 or 2, further comprising one or two of Cr: 0.05 to 0.3% and Zr: 0.05 to 0.3% as alloy components. Excellent aluminum alloy for semiconductor manufacturing equipment. 前記合金成分の内、Mn:1.0〜1.5%を含有する請求項1乃至3のいずれか1項に記載のガス耐食性とプラズマ耐食性に優れるアルマイト皮膜形成性および耐熱性に優れた半導体製造装置用Al合金。  The Al for semiconductor manufacturing apparatus excellent in gas corrosion resistance and plasma corrosion resistance excellent in alumite film formation property and heat resistance according to any one of claims 1 to 3, which contains Mn: 1.0 to 1.5% among the alloy components. alloy. 前記合金成分の内、Cu:1.0〜1.5%を含有する請求項1乃至4のいずれか1項に記載のガス耐食性とプラズマ耐食性に優れるアルマイト皮膜形成性および耐熱性に優れた半導体製造装置用Al合金。  The Al for semiconductor manufacturing apparatus excellent in gas corrosion resistance and plasma corrosion resistance excellent in alumite film formation property and heat resistance according to any one of claims 1 to 4, containing Cu: 1.0 to 1.5% among the alloy components. alloy. 前記合金成分の内、Fe:0.7〜1.0%を含有する請求項1乃至5のいずれか1項に記載のガス耐食性とプラズマ耐食性に優れるアルマイト皮膜形成性および耐熱性に優れた半導体製造装置用Al合金。  The Al for semiconductor manufacturing apparatus excellent in gas corrosion resistance and plasma corrosion resistance excellent in alumite film formation property and heat resistance according to any one of claims 1 to 5 containing Fe: 0.7 to 1.0% among the alloy components. alloy. 前記平均結晶粒径が30μm 以下である請求項1乃至6のいずれか1項に記載のガス耐食性とプラズマ耐食性に優れるアルマイト皮膜形成性および耐熱性に優れた半導体製造装置用Al合金。  The Al alloy for a semiconductor manufacturing apparatus excellent in gas corrosion resistance and plasma corrosion resistance excellent in anodizing film formation and heat resistance according to any one of claims 1 to 6, wherein the average crystal grain size is 30 µm or less. 請求項1乃至7のいずれかのAl合金の表面にアルマイト皮膜を形成したガス耐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料。  A material for a semiconductor manufacturing apparatus excellent in gas corrosion resistance, plasma corrosion resistance, and heat resistance, in which an alumite film is formed on the surface of the Al alloy according to any one of claims 1 to 7. 前記アルマイト皮膜がポーラス層とポアの無いバリア層とを有する請求項8に記載のガス耐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料。  The material for a semiconductor manufacturing apparatus excellent in gas corrosion resistance, plasma corrosion resistance, and heat resistance according to claim 8, wherein the alumite film has a porous layer and a barrier layer without pores. 前記アルマイト皮膜の厚みが、0.05〜50μm の範囲である請求項9に記載のガス耐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料。  The material for a semiconductor manufacturing apparatus excellent in gas corrosion resistance, plasma corrosion resistance, and heat resistance according to claim 9, wherein the thickness of the alumite film is in a range of 0.05 to 50 µm. 前記半導体製造装置用材料が、Al合金の熱間圧延板表面にアルマイト皮膜を形成したものである請求項8乃至10のいずれか1項に記載のガス耐食性とプラズマ耐食性および耐熱性に優れた半導体製造装置用材料。  The semiconductor excellent in gas corrosion resistance, plasma corrosion resistance, and heat resistance according to any one of claims 8 to 10, wherein the semiconductor manufacturing apparatus material is formed by forming an alumite film on the surface of an Al alloy hot-rolled sheet. Material for manufacturing equipment.
JP19714897A 1997-07-23 1997-07-23 Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment Expired - Lifetime JP3746878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19714897A JP3746878B2 (en) 1997-07-23 1997-07-23 Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19714897A JP3746878B2 (en) 1997-07-23 1997-07-23 Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH1143734A JPH1143734A (en) 1999-02-16
JP3746878B2 true JP3746878B2 (en) 2006-02-15

Family

ID=16369568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19714897A Expired - Lifetime JP3746878B2 (en) 1997-07-23 1997-07-23 Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3746878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521046B2 (en) * 2000-02-04 2003-02-18 Kabushiki Kaisha Kobe Seiko Sho Chamber material made of Al alloy and heater block
JP2003034894A (en) 2001-07-25 2003-02-07 Kobe Steel Ltd Al ALLOY MEMBER SUPERIOR IN CORROSION RESISTANCE
JP5019391B2 (en) * 2005-06-17 2012-09-05 国立大学法人東北大学 Metal oxide film, laminate, metal member and method for producing the same
CN101218376A (en) 2005-06-17 2008-07-09 国立大学法人东北大学 Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure
SG144830A1 (en) * 2007-01-18 2008-08-28 Applied Materials Inc High temperature fine grain aluminum heater
US9917001B2 (en) 2008-01-21 2018-03-13 Applied Materials, Inc. High temperature fine grain aluminum heater
JP5416436B2 (en) * 2008-10-30 2014-02-12 株式会社神戸製鋼所 Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method
KR20220142509A (en) * 2020-02-19 2022-10-21 램 리써치 코포레이션 Method for Conditioning Semiconductor Processing Chamber Components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus
US8404059B2 (en) 2006-08-11 2013-03-26 Kobe Steel, Ltd. Aluminum alloy for anodizing having durability, contamination resistance and productivity, method for producing the same, aluminum alloy member having anodic oxide coating, and plasma processing apparatus

Also Published As

Publication number Publication date
JPH1143734A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
KR100473691B1 (en) Vacuum chamber made of aluminum or its alloy
US6521046B2 (en) Chamber material made of Al alloy and heater block
JP4194143B2 (en) Aluminum alloy material with excellent gas and plasma corrosion resistance
TWI248991B (en) Aluminum alloy member superior in corrosion resistance and plasma resistance
TW554080B (en) Aluminum alloy member having excellent corrosion resistance
TWI352749B (en)
TWI794488B (en) Aluminum alloy member for forming fluoride film and aluminum alloy member with fluoride film
JP3919996B2 (en) Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus
JPH11229185A (en) Aluminum material excellent in resistance to heat cracking and corrosion
JP3746878B2 (en) Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment
JP7468512B2 (en) Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
JP2900822B2 (en) Al or Al alloy vacuum chamber member
JP2900820B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
JP3871544B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP3871560B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP3891815B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JPH1161410A (en) Vacuum chamber member and its production
JP4068742B2 (en) Method for producing anodized film-coated member for semiconductor production equipment having excellent heat cracking resistance and corrosion resistance
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
JP5416436B2 (en) Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method
JPH111797A (en) Vacuum chamber member made of al or al alloy
JP2002256488A (en) Aluminium alloy for anodizing and aluminium alloy material superior in gas corrosion resistance
WO2023042812A1 (en) Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
CN117677735A (en) Aluminum member for semiconductor manufacturing apparatus and method for manufacturing the same
JP2010059450A (en) Aluminum material for vacuum apparatus and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

EXPY Cancellation because of completion of term