JP3745212B2 - Bonded body of silicon carbide member and bonding method thereof - Google Patents

Bonded body of silicon carbide member and bonding method thereof Download PDF

Info

Publication number
JP3745212B2
JP3745212B2 JP2000292538A JP2000292538A JP3745212B2 JP 3745212 B2 JP3745212 B2 JP 3745212B2 JP 2000292538 A JP2000292538 A JP 2000292538A JP 2000292538 A JP2000292538 A JP 2000292538A JP 3745212 B2 JP3745212 B2 JP 3745212B2
Authority
JP
Japan
Prior art keywords
silicon carbide
adhesive
joint
joined
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000292538A
Other languages
Japanese (ja)
Other versions
JP2002104885A (en
Inventor
洋規 光本
厚男 北沢
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP2000292538A priority Critical patent/JP3745212B2/en
Publication of JP2002104885A publication Critical patent/JP2002104885A/en
Application granted granted Critical
Publication of JP3745212B2 publication Critical patent/JP3745212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭化珪素部材の接合体およびその接合方法に係わり、特に接合部を特定の形状にしスリップ状の接着材を用いて接合した炭化珪素部材の接合体とその製造方法に関する。
【0002】
【従来の技術】
半導体製造時の種々の熱処理工程において、炭化珪素部材はその高純度、耐熱性等優れた特性を有するため、熱処理装置あるいは熱処理治具として用いられている。しかし、Si−SiC系材質は緻密性と高硬度であるため、これらの熱処理装置あるいは熱処理治具の構成部品間の接合は接着ペーストを用いて行っていた。
【0003】
図10に示すように、半導体炉芯管31は、大型でありスリップキャストなどにより管体とガス導入管を一体に成形することは容易なことではなく、従来一般には管体32にガス導入管33を取り付けるには、このガス導入管33の周囲に設けられたリング形状の立上34と管体32の開口35の内周端部35a間に形成される接合部36に接着ペーストPを充填して行っていた。
【0004】
しかし、従来の接着ペーストPを用いる接合方法では、接着ペーストPの粘度が高いため、接着ペーストPが接合部36の細部まで回り込みにくく、また、接着ペーストPは空気を巻き込み易い。その結果、接着ペーストPの回り込み不足や空気の巻き込みによって、接着ペーストP内にポアが発生する。
【0005】
このポアが発生すると、強度的に弱くなり、さらに、炉芯管31の使用を止めた後、再度使用する場合など、接着ペーストPのポアに水分が溜まり、半導体炉芯管31の使用時に、水分が膨張して接合部が破損するおそれがあった。
【0006】
また、図11に示すように、半導体ウェーハを支持する支持溝52が多数設けられた複数本の支持体53により支持して、半導体ウェーハを熱処理するのに用いられるウェーハボート51は、底板に立設された支持体53に天板54が取り付けられている。
【0007】
天板54の支持体53への取り付けは、天板54に設けられた取付孔55と支持体53に設けられた取付部56間の接合部57に接着ペーストPを充填して行っていた。
【0008】
しかし、従来の接着ペーストPを用いる接合方法では、接着ペーストPの回り込み不足や空気の巻き込みによって、ポアが発生する。
【0009】
このポアが発生すると、強度的に弱くなり、さらに、ウェーハボート51の洗浄などにより、接着ペーストPのポアに洗浄水が残留し、このウェーハボート51を用いて熱処理を行うと、ポア内に残留する洗浄水が膨張して接合部が破損するおそれがあった。
【0010】
【発明が解決しようとする課題】
そこで、接合が容易で、使用中に破損のおそれがない炭化珪素部材の接合体およびその接合方法が要望されており、本発明は接合が容易で、使用中に破損のおそれがない炭化珪素部材の接合体およびその接合方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項1の発明は、一の炭化珪素製部材と、この一の炭化珪素製部材に接合され他の接合部材と、前記両部材間に形成された接合部と、この接合部に充填され前記両部材を接合させた接着材とを有し、前記接合部には、一側開口から断面積が漸次減少して狭小部が設けられかつ、この狭小部から折曲して連通する他側開口が設けられたことを特徴とする炭化珪素部材の接合体であることを要旨としている。
【0012】
本願請求項2の発明では、上記接合部の断面積が漸次減少する開先を形成し、この開先角度は20〜45°、狭小部の間隔は1〜3mmであることを特徴とする請求項1に記載の炭化珪素部材の接合体であることを要旨としている。
【0013】
本願請求項3の発明は、接合する両炭化珪素焼結体間に接合部を形成し、この接合部にスリップ状の接着材を流し込む開先を形成するように離間して配置し、しかる後、開先から接着材を接合部に流し込み、その一部が流出口から流出するように充填し、乾燥し、シリコンを含浸させることを特徴とする炭化珪素部材の接合方法であることを要旨としている。
【0014】
本願請求項4の発明では、上記接着材の粘度は0〜1(N・s/m)であることを特徴とする請求項3に記載の炭化珪素部材の接合方法であることを要旨としている。
【0015】
【発明の実施の形態】
以下、本発明に係わる炭化珪素部材の接合体の第1実施形態についてシリコン含浸炭化珪素半導体熱処理用炉芯管を例にとり添付図面を参照して説明する。
【0016】
図1に示すような炭化珪素部材の接合体、例えば横型炉芯管1は、管体2の一端部にガス導入部3、他端部にガス排気部4が設けられ、さらに、これらの両端部間には均熱部2aが形成されている。
【0017】
図2に示すように、ガス導入部3はフランジ5を具備するガス導入管6の端部に設けられている。このガス導入管6の近傍には、熱電対挿入管7が取り付けられている。また、熱電対8は炉内の温度を測定し、炉内温度を制御するためのもので、管体2に取り付けられた熱電対挿入管7を貫通する保護管9内に収納されて、管体2内に挿入される。
【0018】
ガス導入管6は、図1および図2に示すように円筒形状をなし、図3に示すような接合構造10により、その一端で管体2に接着材Bにより管体開口部11に取り付けられている。
【0019】
例えば、図3に示す接合構造10は、管体2とガス導入管6間に形成される接合部12にスリップ状で充填され焼成、固化した接着材Bにより、管体2ガスと導入管6とを接合する構造になっている。そして、接合部12は、一側開口である接着材流し込み時の流入口13から断面が、例えば最小になる狭小部14にかけて設けられた垂直接合部12vと、狭小部14から他側開口である接着材の流出口15にかけて折曲して設けられた水平接合部12hからなっている。
【0020】
さらに、垂直接合部12vは、導入管6のガス流入路16の周囲から一体的に立ち上がった立上部17の立上テーパ部17tと管体開口部11の開口テーパ部11tにより形成されている。また、垂直接合部12vは、ガス導入管6を管体2に接合するときに、スリップ状の接着材Bが容易に流し込めるように、立上テーパ部17tと開口テーパ部11t間に開先18が形成されるようになっており、この開先18は、後述理由により、好ましくは20〜45°の開先角度θを有している。また、開先18の最下端部には上記狭小部14が形成され、この狭小部14の最小間隙Wは1〜3mmが好ましい。1mmより小さいと接着材が流入しにくく、内部に気泡を巻き込む危険があり、3mmを超えるとスリップ状の接着材乾燥時の収縮によりクラックが入る危険性があり、また、接着材の体積が大きくなり強度が低下する。
【0021】
狭小部14と流出口15間に設けられる上記水平接合部12hは、立上部17の立上水平部17hと管体開口部11の開口水平部11h間に形成され、垂直接合部12vから、例えば90°折曲している。
【0022】
次に本発明に係わる炭化珪素部材の接合体の製造方法の実施形態をシリコン含浸炭化珪素半導体熱処理用炉芯管を例にとり説明する。
【0023】
第1実施形態のシリコン含浸炭化珪素半導体熱処理用炉芯管1は、図4に示すような製造工程フロー図により製造される。
【0024】
高純度炭化珪素粉末とバインダーを混練して成形し、これを焼成して、図1に示すような管体2およびガス導入管6の焼成体を製造する(P1)。
【0025】
管体2およびガス導入管6の焼成体を用い、図5に示すように、接合部12には、垂直接合部12vが形成され、好ましくは20〜45°の開先角度θが形成され、また、好ましくは1〜3mmの狭小部14の最小間隔wが形成され、さらに、水平接合部12hが形成されるように配置する(P2)。
【0026】
ここで開先角度θが、20°未満では接合は可能であるが、内部に気泡を巻き込む危険性があり、45°を超えるとスリップ状の接着材乾燥時の収縮によりクラックが入る危険性がある。
【0027】
また、狭小部14の最小間隔wが、1mm未満では接合が可能であるが、内部に気泡を巻き込む危険があり、3mmを超えるとスリップ状の接着材乾燥時の収縮によりクラックが入る危険性があり、また、接着材の体積が大きくなり強度が低下する。
【0028】
次にスリップ状の接着材Bを開先18から接合部12に流し込み、水平接合部12hの端部から一部bが流出するようにする(P3)。
【0029】
この流し込んだ接着材Bは空気を追い出しながら、接合部12を充填し、接着材Bの脱泡と細部までの回り込みにより接着材B内のポアが減少し、ポアが膨張することにより起こる破損を減少させることができる。
【0030】
上記スリップ状の接着材Bの流し込み接合にとって好ましい粘度は、0.2〜1(N・s/ )であり、より好ましくは0.2〜0.5(N・s/ )である。この範囲であれば、作業性、接着材Bの回り込みの両方を満足する。
【0031】
しかし、この範囲より粘度が低い場合には、乾燥時間が遅く接着材Bの回りはよいが、作業性が悪くなり、粘度が高い場合には、乾燥時間は速いが、接着材Bの回り込みが悪くなり、気泡を巻き込み易くなる。
【0032】
上記スリップ状の接着材Bは、SiC粉末、バインダーおよび溶媒の混合割合が最適に調整され、さらに、SiC粉末の粒径あるいは粒形(球状、粉砕状形等)によって調整される。例えば、SiC粉の粒径は0.1〜100μmが好ましく、スリップ状の接着材Bの組成はSiC粉100重量部に対して、バインダーとしてアクリル樹脂を0〜6重量部、溶媒として水8〜40重量部とすることが好ましい。
【0033】
その他のバインダーとしては、プロピレングリコール、フェノール樹脂等を用いることができ、また、溶媒はバインダーの種類によって、水の他にアルコールやアセトンを適宜選択することができる。
【0034】
さらに、接合部11に接着材Bを充填して乾燥する(P4)。
【0035】
乾燥後必要に応じて、水平接合部12hの端部から流出した接着材Bの一部bおよび開先端部の露出部分を切除して、端面をきれいに整える。
【0036】
次にガス導入管6が取り付けられた管体2を大型シリコン含浸炉に入れて、管体2、ガス導入管6および接着材Bに溶融シリコンを含浸させる(P5)。
【0037】
上述のような製造工程により製造された炉芯管1には、スリップ状の接着材Bを接合部12に流し込むことにより、空気を追い出し、かつ、接着材Bの脱泡と細部までの回り込みによりポアを減少させることができシリコン含浸により強固にガス導入管6が接合される。
【0038】
従って、炉芯管1の使用停止後、再使用する場合など、接着材Bのポアに水分が溜まり、水分が膨張して接合部12を破損することがない。
【0039】
次に本発明に係わる炭化珪素部材の接合体の第2実施形態をシリコン含浸炭化珪素ウェーハボートを例にとり説明する。
【0040】
図6に示すように、シリコン含浸炭化珪素半導体ウェーハボート21は、底板22と、この底板22に立設され、半導体ウェーハ支持用の多数の支持溝23が設けられた断面円形状の4本の支持部材24と、この支持部材24に取り付けられた天板25からなっている。
【0041】
図7に示すように、支持部材24には截頭円錐形状の接合凸部26が形成され、この接合凸部26には凸部テーパ部26tが形成されている。また、天板25には接合凸部26が挿入される接合孔27が穿設されており、この接合孔27には孔テーパ部27tが形成されている。
【0042】
天板25が支持部材24に取り付けられた状態で、接合部28が形成され、接合部28にはスリップ状で充填され、焼成、固化した接着材Bが充填され、天板25が支持部材24に強固に接合されている。
【0043】
接合部28は垂直接合部28vと水平接合部28hからなり、垂直接合部28vは天板25を支持部材24に接合するときに、スリップ状の接着材Bが流し込まれ、凸部テーパ部26tと孔テーパ部27t間に形成される開先29が設けられている。この開先29は、第1実施形態に述べた理由により、好ましくは20〜45°の開先角度θを有している。また、開先29の終端部にはその開口幅が最小になる狭小部30が形成され、この狭小部30の最小間隔wは好ましくは1〜3mmである。さらに、狭小部30で90°折曲した垂直接合部28vが天板25と支持部材24の端面24e間に形成されている。
【0044】
上記シリコン含浸炭化珪素ウェーハボート21も図4に示すような製造工程フローに沿って製造される。
【0045】
このようにして製造されたシリコン含浸炭化珪素ウェーハボート21の使用後、洗浄して再使用する場合など、ポアに洗浄水が残留し、シリコン含浸炭化珪素ウェーハボート21の使用時に、この水分が膨張して接合部28が破損することがない。また、水分によって熱処理環境や半導体ウェーハを汚染することがない。
【0046】
【実施例】
1.試験方法: 本発明に係わる炭化珪素部材の接合体として、図8に示すような形状を有する支持体と天板の炭化珪素焼成体を製造し、下記のような接着材を用い、接合後は100℃、3時間の乾燥処理を行い、塩酸含有雰囲気中、1500℃、2時間の純化処理を行った後に、1500℃、2時間のシリコン含浸処理を行った。図9に示すような開先角度θおよび最小間隔wを変化させて行い、各10個の試料について接着材部分を顕微鏡により観察した。
【0047】
【外1】

Figure 0003745212
【0048】
2.結果: 結果を表1に示す。
【0049】
【表1】
Figure 0003745212
【0050】
上記実施例1〜6いずれにおいても、開先角度を設けない従来例に比べ、接着材部分のポア発生状況において、優位性が認められた。
【0051】
また、上記実施例1〜6の中でも、開先角度を20〜45°、最小間隔を1〜3mmとした実施例2〜4が特に優れた効果を奏することが確認された。
【0052】
【発明の効果】
本発明に係わる炭化珪素部材の接合体およびその接合方法によれば、接合が容易で、使用中に破損のおそれがない炭化珪素部材の接合体およびその接合方法を提供することができる。
【0053】
すなわち、一の炭化珪素製部材と、この一の炭化珪素製部材に接合される他の接合部材と、両部材間に形成された接合部と、この接合部に充填され両部材を接合する接着材と有し、接合部は流入口から断面積が漸次減少して狭小部を形成し、かつ、この狭小部から折曲し流出口に連通するので、接合部材は強固に接合される。さらに、スリップ状の接着材を接合部に流し込むことにより、空気を追い出し、かつ、接着材の脱泡と細部までの回り込みによりポアを減少させることができる。接合体が炉芯管やウェーハボート等である場合には、再使用時に、接着材のポアに水分が溜まっていないので、水分が膨張して接合部が破損することがなく、また、水分によって熱処理環境や半導体ウェーハを汚染することがない。
【0054】
また、接合部の断面積が漸次減少する開先を形成し、この開先角度は20〜45°、狭小部の間隔は1〜3mmであるので、接合部材を容易かつ強固に接合することができる。さらに、炉芯管やウェーハボート等を製造するのに用いる場合には、これらの再使用時に、接着材のポアに水分が溜まっていないので、水分が膨張して接合部が破損することがなく、また、水分によって熱処理環境や半導体ウェーハを汚染することがない。
【0055】
また、接着材の粘度は0〜1(N・s/m)であるので、この範囲であれば、作業性、接着材の回り込みの両方を満足し、生産性が向上し、さらに、接着材のポアに水分が溜まるのを防止できる。
【図面の簡単な説明】
【図1】本発明に係わる炭化珪素部材の接合体の第1実施形態である横型炉芯管の断面図。
【図2】本発明に係わる炭化珪素部材の接合体の第1実施形態である横型炉芯管の側面図。
【図3】本発明に係わる炭化珪素部材の接合体の第1実施形態である横型炉芯管の管体にガス導入管を接合した状態を示す断面図。
【図4】本発明に係わる炭化珪素部材の接合体の製造方法の工程フロー図。
【図5】本発明に係わる炭化珪素部材の接合体の製造方法による横型炉芯管の管体にガス導入管を接着する工程の断面図。
【図6】本発明に係わる炭化珪素部材の接合体の第2実施形態であるウェーハボートの斜視図。
【図7】本発明に係わる炭化珪素部材の接合体の第2実施形態であるウェーハボートの支持体と天板を接合した状態を示す断面図。
【図8】本発明に係わる炭化珪素部材の接合体の実施例に用いられる支持体と板体の組立て工程を示す説明図。
【図9】本発明に係わる炭化珪素部材の接合体の実施例に用いられる支持体と板体の組立て状態を示す断面図。
【図10】従来の横型炉芯管の管体にガス導入管を接着した状態を示す断面図。
【図11】従来のウェーハボートの支持体と天板を接着した状態を示す断面図。
【符号の説明】
1 横型炉芯管
2 管体
2a 均熱部
3 ガス導入部
4 ガス排気部
5 フランジ
6 ガス導入管
7 熱電対挿入管
8 熱電対
9 保護管
10 接着構造
11 管体開口部
11h 開口水平部
11t 開口テーパ部
12 接合部
12h 水平接合部
12v 垂直接合部
13 流入口
14 狭小部
15 流出口
16 ガス流入口
17 立上部
17h 立上水平部
17t 立上テーパ部
18 開先
21 シリコン含浸炭化珪素半導体ウェーハボート
22 底板
23 支持溝
24 支持部材
24e 端面
25 天板
26 接合凸部
26t 凸部テーパ部
27 接合孔
27t 孔テーパ部
28 接合部
28v 垂直接合部
28h 水平接合部
29 開先
30 狭小部
B 接着材
θ 開先角度
w 最小間隔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonded body of a silicon carbide member and a bonding method thereof, and more particularly to a bonded body of a silicon carbide member having a bonded portion formed in a specific shape and bonded using a slip-like adhesive and a manufacturing method thereof.
[0002]
[Prior art]
Silicon carbide members are used as heat treatment apparatuses or heat treatment jigs in various heat treatment processes during semiconductor manufacturing because they have excellent characteristics such as high purity and heat resistance. However, since Si—SiC materials are dense and have high hardness, bonding between the components of these heat treatment apparatuses or heat treatment jigs has been performed using an adhesive paste.
[0003]
As shown in FIG. 10, the semiconductor furnace core tube 31 is large and it is not easy to integrally form the tube body and the gas introduction tube by slip casting or the like. In order to attach 33, the adhesive paste P is filled in the joint 36 formed between the ring-shaped rise 34 provided around the gas introduction pipe 33 and the inner peripheral end 35 a of the opening 35 of the pipe 32. I went there.
[0004]
However, in the conventional bonding method using the adhesive paste P, since the viscosity of the adhesive paste P is high, the adhesive paste P is difficult to wrap around the details of the joint portion 36, and the adhesive paste P is easy to entrain air. As a result, pores are generated in the adhesive paste P due to insufficient wraparound of the adhesive paste P or air entrainment.
[0005]
When this pore is generated, the strength is weakened. Furthermore, after the use of the furnace core tube 31 is stopped, water is accumulated in the pores of the adhesive paste P when the semiconductor core tube 31 is used. There was a risk that the joint would be damaged due to the expansion of moisture.
[0006]
Further, as shown in FIG. 11, a wafer boat 51 used to heat-treat semiconductor wafers supported by a plurality of support bodies 53 provided with a plurality of support grooves 52 for supporting semiconductor wafers stands on the bottom plate. A top plate 54 is attached to the support 53 provided.
[0007]
The top plate 54 is attached to the support 53 by filling the bonding portion P between the attachment hole 55 provided in the top plate 54 and the attachment 56 provided in the support 53 with the adhesive paste P.
[0008]
However, in the conventional bonding method using the adhesive paste P, pores are generated due to insufficient wraparound of the adhesive paste P or air entrainment.
[0009]
When this pore is generated, the strength is weakened, and further, cleaning water remains in the pores of the adhesive paste P due to cleaning of the wafer boat 51 and the like, and if heat treatment is performed using this wafer boat 51, it remains in the pores. There was a possibility that the washing water to be expanded expanded and the joint was damaged.
[0010]
[Problems to be solved by the invention]
Accordingly, there is a need for a bonded body of silicon carbide member that can be easily joined and is not likely to be damaged during use, and a joining method thereof. The present invention is a silicon carbide member that can be easily joined and is not likely to be damaged during use. An object of the present invention is to provide a joined body and a joining method thereof.
[0011]
[Means for Solving the Problems]
The invention of claim 1 of the present application made to achieve the above object is formed between one member made of silicon carbide , another joining member joined to the one silicon carbide member, and the two members. A joining portion and an adhesive filled in the joining portion and joining the two members. The joining portion is provided with a narrow portion with a cross-sectional area gradually decreasing from one side opening. The gist of the present invention is a bonded body of silicon carbide members characterized in that an opening on the other side that is bent and communicated with a portion is provided .
[0012]
In the invention of claim 2 of the present application, a groove in which the cross-sectional area of the joint portion gradually decreases is formed, the groove angle is 20 to 45 °, and the interval between the narrow portions is 1 to 3 mm. The gist of the present invention is the bonded body of the silicon carbide member according to Item 1.
[0013]
In the invention of claim 3 of the present application, a joint portion is formed between both silicon carbide sintered bodies to be joined, and a gap is formed so as to form a groove into which a slip-like adhesive is poured. The gist of the present invention is a method for joining silicon carbide members, characterized in that an adhesive is poured from a groove into a joint part, filled so that a part thereof flows out from an outlet, dried, and impregnated with silicon. Yes.
[0014]
According to a fourth aspect of the present invention, the viscosity of the adhesive material is 0 to 1 (N · s / m 2 ). Yes.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a silicon carbide member bonded body according to a first embodiment of the present invention will be described with reference to the accompanying drawings by taking a silicon-impregnated silicon carbide semiconductor heat treatment furnace core tube as an example.
[0016]
A joined body of silicon carbide members as shown in FIG. 1, for example, a horizontal furnace core tube 1, is provided with a gas introduction portion 3 at one end portion of a tube body 2 and a gas exhaust portion 4 at the other end portion. A soaking part 2a is formed between the parts.
[0017]
As shown in FIG. 2, the gas introduction part 3 is provided at the end of a gas introduction pipe 6 having a flange 5. A thermocouple insertion tube 7 is attached in the vicinity of the gas introduction tube 6. The thermocouple 8 measures the temperature in the furnace and controls the temperature in the furnace. The thermocouple 8 is housed in a protective tube 9 penetrating a thermocouple insertion tube 7 attached to the tube body 2, and is It is inserted into the body 2.
[0018]
The gas introduction pipe 6 has a cylindrical shape as shown in FIGS. 1 and 2, and is attached to the pipe body opening 11 by the adhesive B on the pipe body 2 at one end thereof by a joining structure 10 as shown in FIG. ing.
[0019]
For example, the joining structure 10 shown in FIG. 3 has the joining body 12 formed between the tubular body 2 and the gas introduction pipe 6 in a slip-like manner and is baked and solidified by the adhesive material B, and the tubular body 2 gas and the introduction pipe 6. It is the structure which joins. The joint 12 is cross sectional area from the inlet 13 at the time of pouring the adhesive is a one side opening, the vertical joints 12v which is provided over the narrow portion 14 is minimized e.g., in the other side opening from the narrow portion 14 It consists of a horizontal joint 12h that is bent over the outlet 15 of an adhesive .
[0020]
Further, the vertical joint portion 12v is formed by the rising taper portion 17t of the rising portion 17 and the opening taper portion 11t of the tube body opening portion 11 rising integrally from the periphery of the gas inflow path 16 of the introduction pipe 6. Further, the vertical joint portion 12v has a groove between the rising taper portion 17t and the opening taper portion 11t so that the slip-like adhesive B can be easily poured when the gas introduction pipe 6 is joined to the pipe body 2. 18 is formed, and the groove 18 preferably has a groove angle θ of 20 to 45 ° for the reason described later. The narrow portion 14 is formed at the lowermost end portion of the groove 18, and the minimum gap W of the narrow portion 14 is preferably 1 to 3 mm. If it is smaller than 1 mm, it is difficult for the adhesive to flow in, and there is a risk of entraining air bubbles inside. If it exceeds 3 mm, there is a risk of cracks due to shrinkage when drying the slip adhesive, and the volume of the adhesive is large. As a result, the strength decreases.
[0021]
The horizontal joint portion 12h provided between the narrow portion 14 and the outlet 15 is formed between the rising horizontal portion 17h of the rising portion 17 and the opening horizontal portion 11h of the tube body opening portion 11, and from the vertical joint portion 12v, for example, It is bent 90 °.
[0022]
Next, an embodiment of a method for producing a bonded body of silicon carbide members according to the present invention will be described by taking a silicon-impregnated silicon carbide semiconductor heat treatment furnace core tube as an example.
[0023]
The silicon-impregnated silicon carbide semiconductor heat treatment furnace core tube 1 of the first embodiment is manufactured by a manufacturing process flow chart as shown in FIG.
[0024]
A high-purity silicon carbide powder and a binder are kneaded and molded and fired to produce a fired body of the tube 2 and the gas introduction tube 6 as shown in FIG. 1 (P1).
[0025]
Using the fired body of the tube body 2 and the gas introduction tube 6, as shown in FIG. 5, a vertical joint portion 12v is formed at the joint portion 12, and a groove angle θ of preferably 20 to 45 ° is formed. Moreover, it arrange | positions so that the minimum space | interval w of the narrow part 14 of 1-3 mm is preferably formed, and also the horizontal junction part 12h may be formed (P2).
[0026]
Here, when the groove angle θ is less than 20 °, joining is possible, but there is a risk of entrapment of air bubbles inside, and when it exceeds 45 °, there is a risk of cracking due to shrinkage when drying the slip-like adhesive. is there.
[0027]
In addition, when the minimum interval w of the narrow portion 14 is less than 1 mm, joining is possible, but there is a risk of entrapment of air bubbles inside, and if it exceeds 3 mm, there is a risk of cracks due to shrinkage when drying the slip-like adhesive. In addition, the volume of the adhesive increases and the strength decreases.
[0028]
Next, the slip-like adhesive material B is poured from the groove 18 into the joint 12 so that part b flows out from the end of the horizontal joint 12h (P3).
[0029]
The poured adhesive B fills the joint 12 while expelling air, and the pores in the adhesive B decrease due to defoaming and wrapping around the details of the adhesive B, and damage caused by the expansion of the pores. Can be reduced.
[0030]
The preferred viscosity for pouring junction of the slip-like adhesive B is 0.2~1 (N · s / m 2 ), more preferably 0.2~0.5 (N · s / m 2 ) is there. If it is this range, both workability | operativity and the wraparound of the adhesive material B will be satisfied.
[0031]
However, when the viscosity is lower than this range, the drying time is slow and the surroundings of the adhesive B are good, but the workability is poor, and when the viscosity is high, the drying time is fast, but the adhesive B wraps around. It becomes bad and it becomes easy to entrain air bubbles.
[0032]
In the slip-like adhesive B, the mixing ratio of the SiC powder, the binder, and the solvent is optimally adjusted, and further adjusted by the particle size or particle shape (spherical, pulverized shape, etc.) of the SiC powder. For example, the particle size of the SiC powder is preferably 0.1 to 100 μm, and the composition of the slip-like adhesive B is 0 to 6 parts by weight of acrylic resin as a binder and 8 to 8 water as a solvent with respect to 100 parts by weight of SiC powder. The amount is preferably 40 parts by weight.
[0033]
As the other binder, propylene glycol, a phenol resin, or the like can be used, and as the solvent, alcohol or acetone can be appropriately selected in addition to water depending on the type of the binder.
[0034]
Furthermore, the bonding material 11 is filled with the adhesive B and dried (P4).
[0035]
If necessary after drying, a part b of the adhesive B that has flowed out from the end of the horizontal joint 12h and an exposed part of the open tip are excised to clean the end face.
[0036]
Next, the pipe body 2 to which the gas introduction pipe 6 is attached is placed in a large silicon impregnation furnace, and the pipe body 2, the gas introduction pipe 6 and the adhesive B are impregnated with molten silicon (P5).
[0037]
In the furnace core tube 1 manufactured by the manufacturing process as described above, the slip-like adhesive material B is poured into the joint portion 12 to expel air, and the adhesive material B is defoamed and wraps around to the details. The pores can be reduced, and the gas introduction pipe 6 is firmly joined by silicon impregnation.
[0038]
Therefore, when the furnace core tube 1 is stopped and reused, moisture accumulates in the pores of the adhesive B, and the moisture does not expand and damage the joint 12.
[0039]
Next, a silicon carbide member joined body according to a second embodiment of the present invention will be described by taking a silicon-impregnated silicon carbide wafer boat as an example.
[0040]
As shown in FIG. 6, the silicon-impregnated silicon carbide semiconductor wafer boat 21 includes four bottom circular plates and four circular circular sections provided on the bottom plate 22 and provided with a number of support grooves 23 for supporting semiconductor wafers. It consists of a support member 24 and a top plate 25 attached to the support member 24.
[0041]
As shown in FIG. 7, the support member 24 is formed with a frustoconical joint convex portion 26, and the joint convex portion 26 is formed with a convex taper portion 26 t. The top plate 25 is provided with a joint hole 27 into which the joint convex portion 26 is inserted, and the joint hole 27 is formed with a hole taper portion 27t.
[0042]
In the state where the top plate 25 is attached to the support member 24, the joint portion 28 is formed, and the joint portion 28 is filled with the adhesive B that is filled in a slip shape, baked and solidified, and the top plate 25 is filled with the support member 24. Are firmly joined to each other.
[0043]
The joining portion 28 includes a vertical joining portion 28v and a horizontal joining portion 28h. When the top plate 25 is joined to the support member 24, the slip-like adhesive B is poured into the vertical joining portion 28v, and the convex taper portion 26t. A groove 29 formed between the hole taper portions 27t is provided. The groove 29 preferably has a groove angle θ of 20 to 45 ° for the reason described in the first embodiment. Moreover, the narrow part 30 where the opening width becomes the minimum is formed in the terminal part of the groove | channel 29, The minimum space | interval w of this narrow part 30 becomes like this. Preferably it is 1-3 mm. Further, a vertical joint portion 28 v bent by 90 ° at the narrow portion 30 is formed between the top plate 25 and the end surface 24 e of the support member 24.
[0044]
The silicon-impregnated silicon carbide wafer boat 21 is also manufactured along a manufacturing process flow as shown in FIG.
[0045]
When the silicon-impregnated silicon carbide wafer boat 21 manufactured in this manner is used and then cleaned and reused, the cleaning water remains in the pores, and this moisture expands when the silicon-impregnated silicon carbide wafer boat 21 is used. Thus, the joint portion 28 is not damaged. Moreover, the heat treatment environment and the semiconductor wafer are not contaminated by moisture.
[0046]
【Example】
1. Test method: As a bonded body of silicon carbide members according to the present invention, a support body having a shape as shown in FIG. 8 and a silicon carbide fired body of a top plate are manufactured, and the following adhesive is used, and after bonding, A drying treatment was performed at 100 ° C. for 3 hours, and after a purification treatment at 1500 ° C. for 2 hours in an atmosphere containing hydrochloric acid, a silicon impregnation treatment was performed at 1500 ° C. for 2 hours. The groove angle θ and the minimum interval w as shown in FIG. 9 were changed, and the adhesive material portion of each of the ten samples was observed with a microscope.
[0047]
[Outside 1]
Figure 0003745212
[0048]
2. Results: The results are shown in Table 1.
[0049]
[Table 1]
Figure 0003745212
[0050]
In any of the above Examples 1 to 6, superiority was recognized in the occurrence of pores in the adhesive portion compared to the conventional example in which no groove angle was provided.
[0051]
In addition, among Examples 1 to 6, it was confirmed that Examples 2 to 4 having a groove angle of 20 to 45 ° and a minimum interval of 1 to 3 mm exhibited particularly excellent effects.
[0052]
【The invention's effect】
According to the joined body of silicon carbide member and the joining method thereof according to the present invention, it is possible to provide a joined body of silicon carbide member that is easy to join and that is not likely to be damaged during use, and a joining method thereof.
[0053]
That is, one silicon carbide member, another joint member joined to the one silicon carbide member, a joint formed between the two members, and an adhesive filling the joint and joining the two members Since the cross-sectional area gradually decreases from the inflow port to form a narrow portion, and the joint portion is bent from the narrow portion and communicates with the outflow port, the joint member is firmly joined. Furthermore, by pouring slip-like adhesive into the joint, air can be expelled, and pores can be reduced by defoaming the adhesive and wrapping around the details. When the joined body is a furnace core tube, a wafer boat, or the like, since moisture does not accumulate in the pores of the adhesive when reused, the moisture will not expand and the joint will not be damaged. It does not contaminate the heat treatment environment or the semiconductor wafer.
[0054]
Moreover, since the groove | channel where the cross-sectional area of a junction part reduces gradually is formed, this groove angle is 20-45 degrees and the space | interval of a narrow part is 1-3 mm, it can join a joining member easily and firmly. it can. Furthermore, when used to manufacture furnace core tubes, wafer boats, etc., when these are reused, moisture does not accumulate in the pores of the adhesive, so that the moisture does not expand and the joints are not damaged. In addition, the heat treatment environment and the semiconductor wafer are not contaminated by moisture.
[0055]
In addition, since the viscosity of the adhesive is 0 to 1 (N · s / m 2 ), within this range, both the workability and the wraparound of the adhesive are satisfied, and the productivity is improved. It is possible to prevent water from accumulating in the pores of the material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a horizontal furnace core tube which is a first embodiment of a joined body of silicon carbide members according to the present invention.
FIG. 2 is a side view of a horizontal furnace core tube which is a first embodiment of a joined body of silicon carbide members according to the present invention.
FIG. 3 is a cross-sectional view showing a state where a gas introduction pipe is joined to a tubular body of a horizontal furnace core pipe which is a first embodiment of a joined body of silicon carbide members according to the present invention.
FIG. 4 is a process flow diagram of a method for manufacturing a joined body of silicon carbide members according to the present invention.
FIG. 5 is a cross-sectional view of a process of bonding a gas introduction pipe to a tubular body of a horizontal furnace core pipe by a method for manufacturing a joined body of silicon carbide members according to the present invention.
FIG. 6 is a perspective view of a wafer boat which is a second embodiment of the joined body of silicon carbide members according to the present invention.
FIG. 7 is a cross-sectional view showing a state in which a support body and a top plate of a wafer boat which is a second embodiment of a bonded body of silicon carbide members according to the present invention are bonded together.
FIG. 8 is an explanatory view showing an assembling process of a support and a plate used in an embodiment of a bonded body of silicon carbide members according to the present invention.
FIG. 9 is a cross-sectional view showing an assembled state of a support and a plate used in an embodiment of a bonded body of silicon carbide members according to the present invention.
FIG. 10 is a cross-sectional view showing a state in which a gas introduction pipe is bonded to a tubular body of a conventional horizontal furnace core pipe.
FIG. 11 is a cross-sectional view showing a state in which a conventional wafer boat support and a top plate are bonded together.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Horizontal furnace core pipe 2 Tubing 2a Heat equalization part 3 Gas introduction part 4 Gas exhaust part 5 Flange 6 Gas introduction pipe 7 Thermocouple insertion pipe 8 Thermocouple 9 Protective pipe 10 Adhesive structure 11 Tube opening part 11h Opening horizontal part 11t Opening taper part 12 Joint part 12h Horizontal joint part 12v Vertical joint part 13 Inlet 14 Narrow part 15 Outlet 16 Gas inlet 17 Upright part 17h Rising horizontal part 17t Rising taper part 18 Groove 21 Silicon-impregnated silicon carbide semiconductor wafer Boat 22 Bottom plate 23 Support groove 24 Support member 24e End surface 25 Top plate 26 Joint convex part 26t Convex taper part 27 Joint hole 27t Hole taper part 28 Joint part 28v Vertical joint part 28h Horizontal joint part 29 Groove 30 Narrow part B Adhesive θ Groove angle w Minimum interval

Claims (4)

一の炭化珪素製部材と、この一の炭化珪素製部材に接合され他の接合部材と、前記両部材間に形成された接合部と、この接合部に充填され前記両部材を接合させた接着材とを有し、前記接合部には、一側開口から断面積が漸次減少して狭小部が設けられかつ、この狭小部から折曲して連通する他側開口が設けられたことを特徴とする炭化珪素部材の接合体。And one silicon carbide member, and the other joint member joined to the first silicon carbide member, wherein a junction formed between the two members, was joining the two members is filled in the joint The joint portion is provided with a narrow portion having a cross-sectional area that gradually decreases from one side opening, and a second side opening that is bent from the narrow portion and communicates with the joint portion. A bonded silicon carbide member. 上記接合部の断面積が漸次減少する開先を形成し、この開先角度は20〜45°、狭小部の間隔は1〜3mmであることを特徴とする請求項1に記載の炭化珪素部材の接合体。2. The silicon carbide member according to claim 1, wherein a groove having a gradually decreasing cross-sectional area is formed, the groove angle is 20 to 45 °, and the interval between the narrow portions is 1 to 3 mm. 3. The joined body. 接合する両炭化珪素焼結体間に接合部を形成し、この接合部にスリップ状の接着材を流し込む開先を形成するように離間して配置し、しかる後、開先から接着材を接合部に流し込み、その一部が流出口から流出するように充填し、乾燥し、シリコンを含浸させることを特徴とする炭化珪素部材の接合方法。  A joining part is formed between both silicon carbide sintered bodies to be joined, and they are arranged apart from each other so as to form a groove into which slip-like adhesive is poured, and then the adhesive is joined from the groove. A silicon carbide member joining method, wherein the silicon carbide member is poured into a portion, filled so that a part thereof flows out from the outlet, dried, and impregnated with silicon. 上記接着材の粘度は0〜1(N・s/m)であることを特徴とする請求項3に記載の炭化珪素部材の接合方法。The method for bonding silicon carbide members according to claim 3, wherein the adhesive has a viscosity of 0 to 1 (N · s / m 2 ).
JP2000292538A 2000-09-26 2000-09-26 Bonded body of silicon carbide member and bonding method thereof Expired - Fee Related JP3745212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292538A JP3745212B2 (en) 2000-09-26 2000-09-26 Bonded body of silicon carbide member and bonding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000292538A JP3745212B2 (en) 2000-09-26 2000-09-26 Bonded body of silicon carbide member and bonding method thereof

Publications (2)

Publication Number Publication Date
JP2002104885A JP2002104885A (en) 2002-04-10
JP3745212B2 true JP3745212B2 (en) 2006-02-15

Family

ID=18775461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292538A Expired - Fee Related JP3745212B2 (en) 2000-09-26 2000-09-26 Bonded body of silicon carbide member and bonding method thereof

Country Status (1)

Country Link
JP (1) JP3745212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953215B1 (en) * 2009-12-02 2012-01-06 Areva Nc METHOD FOR FLUID-SECURING ASSEMBLY OF TWO SILICON NITRIDE PIECES
JP2016030705A (en) * 2014-07-28 2016-03-07 イビデン株式会社 Ceramic structure and method for manufacturing ceramic structure

Also Published As

Publication number Publication date
JP2002104885A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP5412421B2 (en) Ceramic kiln tool plate
JP5042176B2 (en) Honeycomb filter for exhaust gas purification
JP4008401B2 (en) Manufacturing method of substrate mounting table
CN1723070A (en) Honeycomb structure body
JP3745212B2 (en) Bonded body of silicon carbide member and bonding method thereof
WO2006095522A1 (en) Method for airtightly joining reinforced platinum hollow tube with platinum flange
JP4987559B2 (en) Gripping device and method for manufacturing honeycomb structure
KR101949072B1 (en) Porous body, porous bonded body, filtration filter for metal melt, firing jig and manufacturing method of porous body
CN104667762A (en) Manufacturing method for seamless metal pipe
JP2010222150A (en) Honeycomb structure
JP4405887B2 (en) Vacuum adsorption device
CN104395682B (en) Ceramic wafer for shelf system
JP2010001204A (en) Honeycomb structure
JP2010281306A (en) Gas purification filter
JPH09293685A (en) Vertical wafer boat
JP3683100B2 (en) Method for producing silicon-impregnated silicon carbide member
JP2004059402A (en) Low thermal expansion ceramic junction body
JP2011190740A (en) Honeycomb structure
JP2016225337A (en) Vacuum chuck member and manufacturing method of vacuum chuck member
JP6329462B2 (en) Manufacturing method of ceramic structure
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
US20240190779A1 (en) Method for manufacturing metal-impregnated ceramic fired body
JP2004025276A (en) Ceramic filter for high temperature use and method of filtering molten metal using the same
JP2009147384A (en) Vacuum suction device and method of manufacturing the same
KR101064207B1 (en) High purity silicon carbide wafer carrier and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees