JP3743945B2 - Vapor growth method - Google Patents

Vapor growth method Download PDF

Info

Publication number
JP3743945B2
JP3743945B2 JP17830398A JP17830398A JP3743945B2 JP 3743945 B2 JP3743945 B2 JP 3743945B2 JP 17830398 A JP17830398 A JP 17830398A JP 17830398 A JP17830398 A JP 17830398A JP 3743945 B2 JP3743945 B2 JP 3743945B2
Authority
JP
Japan
Prior art keywords
substrate
vapor phase
phase growth
film thickness
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17830398A
Other languages
Japanese (ja)
Other versions
JP2000007493A (en
Inventor
聡 荒巻
誠 小宅
亙 金田
英幸 鬼山
正志 中村
光宏 鹿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP17830398A priority Critical patent/JP3743945B2/en
Publication of JP2000007493A publication Critical patent/JP2000007493A/en
Application granted granted Critical
Publication of JP3743945B2 publication Critical patent/JP3743945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、反応炉内に設けられた回転式サセプタ上に載置した基板に対して公転運動および自転運動を与えながら薄膜を成長させる気相成長方法に関するものである。
【0002】
【従来の技術】
近年、半導体の分野では生産性向上のためウェハサイズの大口径化が推進されている。
【0003】
これに伴い、大口径化された基板上に薄膜を気相成長させる装置における膜厚の均一性の向上が大きな技術的課題となっている。
【0004】
即ち、基板が大口径になると、反応炉内へ原料ガスを供給する場合に、原料ガスが上流側から下流側へ移行するにしたがって徐々に原料成分が消費されていく。そのため、膜厚が原料ガスの上流側で厚く、下流側で薄くなってしまうという問題があった。
【0005】
また、反応炉の中心部から原料ガスを導入するタイプの放射状縦型気相成長装置では、ガスの拡散により大口径基板上の膜厚分布の変化は更に大きくなってしまうという難点があった。
【0006】
そこで、基板を回転式のサセプタ上に載置し、基板に公転運動や自転運動を与えながら薄膜を成長させることにより、形成する薄膜の膜厚分布の均一性を向上させる方法が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、その後の研究により、上述のように基板に公転運動や自転運動を与えながら薄膜を成長させる方法によっても、大口径の基板について十分に均一化した膜厚分布を得ることはできないことが明らかとなってきた。
【0008】
例えば、半径50mmの基板上に薄膜を気相成長する場合を考える。
基板中心が公転中心から1150mmのところにあり、自公転比が24:11の場合、基板中心から距離rの点は、公転面内で図3に示すようなトロコイド曲線を描く。
ここで、基板面内での膜厚分布は、各距離rの軌跡と公転時の膜厚分布から決定される。
【0009】
図4および〔表1〕に示すように公転のみの場合の膜厚分布が±20%の点対称であるものを自公転させたとき、基板の外周部は中心部に比べて平均の滞留時間が短いため、中心部に対して相対膜厚は0.95と薄くなってしまう。
【0010】
【表1】

Figure 0003743945
本発明は、上述のような従来技術の問題点を解決すべく案出されたものであり、基板に公転運動および自転運動を与えて薄膜を形成する場合に膜厚分布の均一性を高めることのできる気相成長方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は、反応炉内に設けられた回転式サセプタ上に載置した基板に対して公転運動および自転運動を与えながら薄膜を成長させる気相成長方法であって、上記基板について公転運動を与え、自転運動を与えない状態における膜厚分布の2次微分係数が正となる条件を見つけ、上記膜厚分布の2次微分係数が正となる条件の下で、上記基板に対して公転運動および自転運動を与えながら薄膜を成長させるようにしたものである。
【0012】
これにより、上記基板に自転運動を与えて薄膜を成長させる場合に、従来であれば中央部が厚くなっていた膜厚分布が、膜厚分布の2次微分係数が正となる条件下によって相殺され、基板全体の膜厚分布の均一性を向上させることができる。
【0013】
なお、上記基板上の膜厚分布の2次微分係数が正となる条件を、上記反応炉内に供給する原料ガスの供給速度を制御して得るようにしてもよい。
【0014】
即ち、例えば、原料ガスの供給速度を制御すると共に基板付近を加熱して、基板上流で原料ガスの十分な分解時間を稼ぐことにより、基板中央部では原料ガスの成分が希薄な状態となり、膜厚分布のグラフ曲線が下凸型つまり膜厚分布の2次微分係数が正となる条件を得ることができ、この条件下で基板に公転運動と自転運動を与えながら薄膜を形成することにより基板全体の膜厚分布の均一性を高めることができるようになる。
【0015】
また、上記基板上の膜厚分布の2次微分係数が正となる条件を、上記反応炉内に上記基板上に成長させる薄膜の構成元素の少なくとも一つと同一の元素を含む2種類以上の原料ガスを所定の混合比で供給するようにして得ることもできる。
【0016】
さらに、上記同一の元素を含む2種類以上の原料ガスは、同じ温度における分解効率の異なる原料から構成されるようにしてもよい。
【0017】
この場合に、例えば、分解効率の速い原料ガスと分解効率の遅い原料ガスとを所定の混合比で供給して、分解効率の速い原料が基板付近で殆ど無くなるように設定することにより膜厚分布のグラフ曲線が下凸型つまり膜厚分布の2次微分係数が正となる条件を得ることが可能となり、基板全体の膜厚分布の均一性を向上させることができるようになる。
【0018】
なお、上記同一の元素はGaであり、該Gaを含む2種類以上の原料ガスはTMGa(トリメチルガリウム)とTEGa(トリエチルガリウム)であるようにしてもよい。
【0019】
さらにまた、上記基板上の膜厚分布の2次微分係数が正となる条件を、上記反応炉内に供給される原料ガスの上流側の熱分解を促進する触媒を用いて得ることもできる。
【0020】
即ち、例えば、反応炉内の原料ガスの上流側に、触媒を設置することにより、原料ガスの上流側における熱分解が促進され、基板付近での原料ガスの成分を低減することができ、膜厚分布のグラフ曲線が下凸型つまり膜厚分布の2次微分係数が正とすることが可能となり、基板全体の膜厚分布の均一性を向上させることができる。
【0021】
【発明の実施の形態】
ここで、本発明の実施形態の一例を図面を参照して説明する。
【0022】
図1は、MOCVD法によるGaAsエピタキシャル成長において基板を自転させないときの気相成長装置内でのGaAs膜厚分布を示すグラフであり、図2は、基板を自転させたときのGaAs膜厚分布を示すグラフである。
【0023】
図1において、横軸は気相成長装置内において原料ガス供給口からの距離を示し、65mmから165mmの領域が直径4インチのGaAs基板2に相当している。また、縦軸は膜厚を示している。
【0024】
本実施形態では、例えば前出の図4の(b)のように、反応炉内に設けられる回転式サセプタ1に上記基板2を三枚載置し、公転運動および自転運動を与えながら、原料ガスを中央から外側に向かって放射状に供給して薄膜を形成するようにした。
【0025】
また、本実施形態では、原料ガスとしてGaを含むTMGa(トリメチルガリウム)とTEGa(トリエチルガリウム)およびAsH3(アルシン)等のV族水素化物などを用いて、基板2上にGaAsの薄膜を形成した。
【0026】
そして、反応炉において、まず基板2が自転しないようして(即ち公転運動のみを与えるようにして)、所定混合比の数種類の原料ガス((1)=TMGa100%,(2)=TEGa10%/TMGa90%,(3)=TEGa20%/TMGa80%,(4)=TEGa50%/TMGa50%,(5)=TEGa100%)を供給して、それぞれGaAs薄膜を形成する実験を行った。
【0027】
なお、この場合に、AsH3は、TEGaおよびTMGaの総量に対して例えば200の割合で供給した。
【0028】
その結果、図1に示すように、原料ガス(1)〜(5)の何れにおいても上記4インチ基板領域において原料供給口からの距離が離れるほど膜厚が薄くなる分布となった。
【0029】
4インチ基板領域における各膜厚の分布は、原料ガス(1)では最大で約9.0,最小で約7.8、原料ガス(2)では最大で約8.0,最小で約6.0、原料ガス(3)では最大で約7.2,最小で約5.5、原料ガス(4)では最大で約5.5,最小で約4.0、原料ガス(5)では最大で約2.8,最小で約1.0という結果を得た。
【0030】
また、各原料ガス(1)〜(5)について、4インチ基板領域における各膜厚分布曲線の傾向を見ると、少なくとも原料ガス(4)(TEGa50%/TMGa50%)では若干下凸型、原料ガス(5)(TEGa100%)では明確な下凸型を示し、双方とも膜厚分布の2次微分係数が正となっていることが判る。
【0031】
一方、原料ガス(1)(TMGa100%)の膜厚分布曲線は略直線的であり、TEGaの割合を増やすにつれて徐々に分布曲線の形状が下凸型となり、膜厚分布の2次微分係数が正の傾向を示すことが判る(原料ガス(2),(3))。
【0032】
したがって、例えば原料ガス(4)と原料ガス(5)の中間帯の混合比、即ち、TEGaを50〜100%の範囲でTMGaと混合した原料ガスを用いるならば、上記のように膜厚分布の2次微分係数が正となる効果から、基板2に自転運動を与えた際に中央部の膜厚が厚くなる傾向を相殺して、GaAs膜の膜厚分布を均一化するように作用すると推論することができる。
【0033】
図2は、上記推論の実証と、他の混合比の原料ガスを用いた場合の比較を目的として、基板2に公転運動および自転運動を与えながら、反応炉内に上記原料ガス(1)〜(5)を供給してGaAsの薄膜を形成した。
【0034】
その結果、図2のような膜厚分布を示すグラフを得た。図2のグラフにおいて、横軸は基板中心からの距離、縦軸は相対膜厚を示している。
【0035】
これによれば、4インチ基板上のGaAs膜の膜厚分布は、原料ガス(4)(TEGa50%/TMGa50%)を用いた場合に最も均一性が高かった。即ち、最も膜厚の厚い基板中央部を約1.000とした場合に、最も薄い周縁部でも0.9900以上であり、膜厚分布のバラツキは±0.5%と極めて均一なGaAs薄膜が形成されていることが確認できた。
【0036】
これは、先の推論のように、原料ガス(4)における膜厚分布の2次微分係数が正となる効果から、中央部の膜厚が厚くなる傾向が相殺されたためであると考えられる。
【0037】
また、原料ガス(2),(3)については、TEGaをそれぞれ10%,20%混合した効果で、TMGa100%の原料ガス(1)よりも若干膜厚分布の均一性が向上しているが、前記原料ガス(4)の効果には及ばなかった。
【0038】
一方、原料ガス(5)は、膜厚分布の2次微分係数が正となる傾向が強すぎるため、逆に基板の周縁部の膜厚が厚く中央部が薄いという膜厚分布となってしまい、膜厚の均一化の向上を図ることができなかった。
【0039】
以上のように、本実施形態によれば、TEGa50%/TMGa50%で混合した原料ガスを用いることにより、GaAs基板2上に形成するGaAs薄膜の膜厚分布の均一性を向上させることができ、特に基板が大口径化した場合に均一な膜厚の薄膜を形成するのに有効である。
【0040】
なお、さらに実験を重ね、TEGaとTMGaのより最適な混合比を割り出すことにより基板の中央部と周縁部との膜厚差をより小さくして、膜厚分布の一層の均一化を達成することが期待できる。
【0041】
また、本実施形態では、基板に自転運動を与えない状態において、原料ガスとしてのTEGaとTMGaの混合比を変えることにより、膜厚分布の2次微分係数が正となるようにする場合について説明したが、これに限られるものではなく、その他、同じ温度における分解効率の異なる原料を適当な割合で混合して供給するようにしてもよい。
【0042】
また、例えば一種類の原料ガスを用いる場合であっても反応炉内への供給速度を適当に制御することにより、膜厚分布の2次微分係数が正となるようにすることも可能である。
【0043】
さらに、反応炉内に一方向に供給される原料ガスの上流側の熱分解を促進する触媒を用いることにより、膜厚分布の2次微分係数を正とすることも考えられる。
【0044】
以上、基板上にGaAs薄膜を成長させる場合について説明したが、これに限られるものではなく、AlGaAsやInGaAsPなどの3元系,4元系はもちろん、一般的な気相成長法による薄膜の形成にも適用することができる。
【0045】
【発明の効果】
本発明によれば、反応炉内に設けられた回転式サセプタ上に載置した基板に対して公転運動および自転運動を与えながら薄膜を成長させる気相成長方法であって、上記基板について公転運動を与え、自転運動を与えない状態における膜厚分布の2次微分係数が正となる条件を見つけ、上記膜厚分布の2次微分係数が正となる条件の下で、上記基板に対して公転運動および自転運動を与えながら薄膜を成長させるようにしたので、上記基板に公転運動と自転運動を与えて薄膜を成長させる場合に、従来であれば中央部が厚くなっていた膜厚分布が、膜厚分布の2次微分係数を正としたことで相殺され、基板全体の膜厚分布の均一性を向上させることができるという優れた効果がある。
【図面の簡単な説明】
【図1】本実施形態に係るMOCVD法によるGaAsエピタキシャル成長において基板を自転させないときの気相成長装置内でのGaAs膜厚分布を示すグラフである。
【図2】本実施形態に係るMOCVD法によるGaAsエピタキシャル成長において基板を自転させたときのGaAs膜厚分布を示すグラフである。
【図3】基板に公転運動と自転運動を与えた際の軌跡のパターンを示す参考図である。
【図4】従来において基板に公転運動および自転運動を与えた際の膜厚分布を示すグラフおよび基板を載置した回転式サセプタを示す概略図である。
【符号の説明】
1 回転式サセプタ
2 基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor phase growth method for growing a thin film while applying a revolving motion and a rotation motion to a substrate placed on a rotary susceptor provided in a reaction furnace.
[0002]
[Prior art]
In recent years, an increase in wafer size has been promoted in the semiconductor field in order to improve productivity.
[0003]
Along with this, improvement in film thickness uniformity in an apparatus for vapor-phase growth of a thin film on a large-diameter substrate has become a major technical problem.
[0004]
That is, when the substrate has a large diameter, when the raw material gas is supplied into the reaction furnace, the raw material components are gradually consumed as the raw material gas moves from the upstream side to the downstream side. Therefore, there has been a problem that the film thickness is thick on the upstream side of the source gas and thin on the downstream side.
[0005]
In addition, the radial vertical vapor phase growth apparatus of the type in which the source gas is introduced from the center of the reaction furnace has a problem that the change in the film thickness distribution on the large-diameter substrate is further increased due to gas diffusion.
[0006]
Therefore, a method for improving the uniformity of the film thickness distribution of the thin film to be formed by placing the substrate on a rotary susceptor and growing the thin film while subjecting the substrate to revolving motion and rotational motion has been proposed. .
[0007]
[Problems to be solved by the invention]
However, it is clear from subsequent research that it is not possible to obtain a sufficiently uniform film thickness distribution for a large-diameter substrate even by the method of growing a thin film while imparting revolution or rotation to the substrate as described above. It has become.
[0008]
For example, consider a case where a thin film is vapor-phase grown on a substrate having a radius of 50 mm.
When the substrate center is 1150 mm from the revolution center and the revolution ratio is 24:11, a point at a distance r from the substrate center draws a trochoid curve as shown in FIG. 3 in the revolution plane.
Here, the film thickness distribution in the substrate plane is determined from the trajectory of each distance r and the film thickness distribution at the time of revolution.
[0009]
As shown in FIG. 4 and [Table 1], when the film thickness distribution in the case of revolving only is point-symmetrical with ± 20%, the outer peripheral portion of the substrate has an average residence time compared to the central portion. Therefore, the relative film thickness becomes as thin as 0.95 with respect to the central portion.
[0010]
[Table 1]
Figure 0003743945
The present invention has been devised to solve the above-mentioned problems of the prior art, and improves the uniformity of the film thickness distribution when a thin film is formed by applying revolving motion and rotation motion to a substrate. An object of the present invention is to provide a vapor phase growth method that can be used.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a vapor phase growth method for growing a thin film while applying a revolving motion and a rotational motion to a substrate placed on a rotary susceptor provided in a reaction furnace. , Find a condition in which the second derivative of the film thickness distribution is positive in a state in which the revolution motion is given to the substrate and no rotation motion is given, and under the condition that the second derivative of the film thickness distribution is positive, A thin film is grown while applying revolving motion and rotational motion to the substrate.
[0012]
As a result, when a thin film is grown by applying a rotational motion to the substrate, the film thickness distribution, which has been thick at the center in the prior art, is canceled depending on the condition that the second derivative of the film thickness distribution is positive. Thus, the uniformity of the film thickness distribution of the entire substrate can be improved.
[0013]
In addition, you may make it obtain the conditions from which the secondary differential coefficient of the film thickness distribution on the said substrate becomes positive by controlling the supply speed | rate of the source gas supplied in the said reaction furnace.
[0014]
That is, for example, by controlling the supply speed of the source gas and heating the vicinity of the substrate to obtain a sufficient decomposition time of the source gas upstream of the substrate, the component of the source gas becomes dilute at the center of the substrate, and the film It is possible to obtain a condition in which the graph curve of the thickness distribution is downwardly convex, that is, the condition that the second derivative of the film thickness distribution is positive. The uniformity of the overall film thickness distribution can be improved.
[0015]
Further, two or more kinds of raw materials containing the same element as at least one of the constituent elements of the thin film grown on the substrate in the reactor under the condition that the second-order differential coefficient of the film thickness distribution on the substrate is positive It can also be obtained by supplying the gas at a predetermined mixing ratio.
[0016]
Further, the two or more kinds of source gases containing the same element may be composed of sources having different decomposition efficiencies at the same temperature.
[0017]
In this case, for example, by supplying a raw material gas having a high decomposition efficiency and a raw material gas having a low decomposition efficiency at a predetermined mixing ratio, and setting so that the raw material having a high decomposition efficiency is almost eliminated near the substrate, the film thickness distribution It is possible to obtain a condition in which the graph curve is convex downward, that is, the condition that the second-order differential coefficient of the film thickness distribution is positive, and the uniformity of the film thickness distribution of the entire substrate can be improved.
[0018]
The same element may be Ga, and two or more kinds of source gases containing Ga may be TMGa (trimethyl gallium) and TEGa (triethyl gallium).
[0019]
Furthermore, the condition that the second-order differential coefficient of the film thickness distribution on the substrate is positive can be obtained by using a catalyst that promotes thermal decomposition on the upstream side of the raw material gas supplied into the reaction furnace.
[0020]
That is, for example, by installing a catalyst on the upstream side of the source gas in the reaction furnace, thermal decomposition on the upstream side of the source gas is promoted, and the components of the source gas in the vicinity of the substrate can be reduced. The graph curve of the thickness distribution has a downward convex shape, that is, the secondary differential coefficient of the film thickness distribution can be positive, and the uniformity of the film thickness distribution of the entire substrate can be improved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Here, an example of an embodiment of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a graph showing the GaAs film thickness distribution in the vapor phase growth apparatus when the substrate is not rotated in the GaAs epitaxial growth by MOCVD, and FIG. 2 shows the GaAs film thickness distribution when the substrate is rotated. It is a graph.
[0023]
In FIG. 1, the horizontal axis indicates the distance from the source gas supply port in the vapor phase growth apparatus, and the region of 65 mm to 165 mm corresponds to the GaAs substrate 2 having a diameter of 4 inches. The vertical axis represents the film thickness.
[0024]
In this embodiment, for example, as shown in FIG. 4 (b), three substrates 2 are placed on a rotary susceptor 1 provided in the reaction furnace, and a revolving motion and a rotational motion are applied to the raw material. A thin film was formed by supplying gas radially from the center to the outside.
[0025]
In this embodiment, a GaAs thin film is formed on the substrate 2 using TMGa (trimethyl gallium) containing Ga as a source gas, a group V hydride such as TEGa (triethyl gallium) and AsH 3 (arsine). did.
[0026]
Then, in the reaction furnace, first, the substrate 2 is not rotated (that is, given only a revolving motion), and several kinds of source gases with a predetermined mixing ratio ((1) = TMGa100%, (2) = TEGa10% / TMGa90%, (3) = TEGa20% / TMGa80%, (4) = TEGa50% / TMGa50%, (5) = TEGa100%) were supplied to conduct experiments for forming GaAs thin films, respectively.
[0027]
In this case, AsH3 was supplied at a ratio of, for example, 200 with respect to the total amount of TEGa and TMGa.
[0028]
As a result, as shown in FIG. 1, in any of the source gases (1) to (5), the film thickness was reduced as the distance from the source supply port increased in the 4-inch substrate region.
[0029]
The distribution of each film thickness in the 4-inch substrate region is about 9.0 for the source gas (1), about 7.8 for the minimum, about 8.0 for the source gas (2), and about 6. for the minimum. 0, maximum of about 7.2 for source gas (3), about 5.5 for minimum, maximum of about 5.5 for source gas (4), maximum of about 4.0 for source gas (5) The result was about 2.8, and a minimum of about 1.0.
[0030]
Further, regarding the respective source gases (1) to (5), when the tendency of each film thickness distribution curve in the 4-inch substrate region is seen, at least the source gas (4) (TEGa50% / TMGa50%) is slightly downward convex, The gas (5) (TEGa 100%) shows a clear downward convex shape, and it can be seen that the second derivative of the film thickness distribution is positive in both cases.
[0031]
On the other hand, the film thickness distribution curve of the source gas (1) (TMGa100%) is substantially linear, and as the ratio of TEGa is increased, the shape of the distribution curve gradually becomes downward convex, and the second derivative of the film thickness distribution is It turns out that it shows a positive tendency (source gas (2), (3)).
[0032]
Therefore, for example, if a raw material gas in which TMGa is mixed with TMGa in the range of 50 to 100% of the mixing ratio of the intermediate zone of the raw material gas (4) and the raw material gas (5), that is, TEGa, is used as described above. From the effect that the second-order differential coefficient is positive, when the substrate 2 is subjected to a rotational motion, the tendency to increase the thickness of the central portion is offset, and the thickness distribution of the GaAs film is made uniform. Can be inferred.
[0033]
FIG. 2 shows the above source gas (1) to (2) in the reactor while giving the revolution motion and the rotation motion to the substrate 2 for the purpose of demonstrating the above inference and comparison with the case of using the raw material gas of other mixing ratio. (5) was supplied to form a GaAs thin film.
[0034]
As a result, a graph showing the film thickness distribution as shown in FIG. 2 was obtained. In the graph of FIG. 2, the horizontal axis indicates the distance from the center of the substrate, and the vertical axis indicates the relative film thickness.
[0035]
According to this, the film thickness distribution of the GaAs film on the 4-inch substrate was most uniform when the source gas (4) (TEGa50% / TMGa50%) was used. That is, when the center of the thickest substrate is about 1.000, the thinnest peripheral edge is 0.9900 or more, and the dispersion of the film thickness distribution is ± 0.5%, which is an extremely uniform GaAs thin film. It was confirmed that it was formed.
[0036]
This is considered to be because the tendency that the thickness of the central portion becomes thick is offset by the effect that the second derivative of the thickness distribution in the raw material gas (4) becomes positive as in the previous inference.
[0037]
In addition, as for the source gases (2) and (3), the uniformity of the film thickness distribution is slightly improved as compared with the TMGa 100% source gas (1) due to the effect of mixing 10% and 20% TEGa, respectively. The effect of the source gas (4) was not achieved.
[0038]
On the other hand, since the source gas (5) has a tendency that the second derivative of the film thickness distribution is positive, the film thickness distribution is such that the film thickness at the periphery of the substrate is thick and the center is thin. The film thickness could not be improved.
[0039]
As described above, according to the present embodiment, the uniformity of the film thickness distribution of the GaAs thin film formed on the GaAs substrate 2 can be improved by using the source gas mixed at 50% TEGa / TMGa. In particular, it is effective to form a thin film having a uniform thickness when the substrate has a large diameter.
[0040]
In addition, by further experimenting, by finding a more optimal mixing ratio of TEGa and TMGa, the film thickness difference between the central part and the peripheral part of the substrate is made smaller, and the film thickness distribution is made more uniform. Can be expected.
[0041]
Further, in the present embodiment, the case where the secondary differential coefficient of the film thickness distribution is made positive by changing the mixing ratio of TEGa and TMGa as the source gas in a state where no rotation motion is given to the substrate will be described. However, the present invention is not limited to this, and other raw materials having different decomposition efficiencies at the same temperature may be mixed and supplied at an appropriate ratio.
[0042]
Further, for example, even when one kind of source gas is used, it is possible to make the second derivative of the film thickness distribution positive by appropriately controlling the supply rate into the reaction furnace. .
[0043]
Furthermore, it is conceivable that the secondary differential coefficient of the film thickness distribution is made positive by using a catalyst that promotes thermal decomposition of the upstream side of the raw material gas supplied in one direction into the reactor.
[0044]
The case where a GaAs thin film is grown on a substrate has been described above. However, the present invention is not limited to this, and the formation of a thin film by a general vapor deposition method as well as ternary and quaternary systems such as AlGaAs and InGaAsP. It can also be applied to.
[0045]
【The invention's effect】
According to the present invention, there is provided a vapor phase growth method for growing a thin film while applying a revolving motion and a rotational motion to a substrate placed on a rotary susceptor provided in a reaction furnace, wherein the revolving motion is performed on the substrate. , Find a condition that the second derivative of the film thickness distribution is positive in a state where no rotation motion is given, and revolve with respect to the substrate under the condition that the second derivative of the film thickness distribution is positive. Since the thin film was grown while applying the motion and rotation, when the film was grown by applying the revolving motion and rotation to the substrate, the film thickness distribution that had been thick at the center in the past was This is offset by setting the second-order differential coefficient of the film thickness distribution to be positive, and there is an excellent effect that the uniformity of the film thickness distribution of the entire substrate can be improved.
[Brief description of the drawings]
FIG. 1 is a graph showing a GaAs film thickness distribution in a vapor phase growth apparatus when a substrate is not rotated in GaAs epitaxial growth by MOCVD according to the present embodiment.
FIG. 2 is a graph showing a GaAs film thickness distribution when a substrate is rotated in GaAs epitaxial growth by MOCVD according to the present embodiment.
FIG. 3 is a reference diagram showing a trajectory pattern when a revolution motion and a rotation motion are given to a substrate.
FIG. 4 is a schematic view showing a graph showing a film thickness distribution when a revolving motion and a rotational motion are given to a substrate and a rotary susceptor on which the substrate is placed.
[Explanation of symbols]
1 Rotating susceptor 2 Substrate

Claims (6)

反応炉の中心部から原料ガスを導入し、反応炉内に設けられた円盤状の回転式サセプタの中央から外側に向かって前記原料ガスを放射状に供給する気相成長装置を用いて、上記回転式サセプタ上に載置した基板に対して公転運動及び自転運動を与えながら薄膜を成長させる気相成長方法であって、
上記基板に公転運動を与え、自転運動を与えない状態で薄膜を成長させたときに得られる上記回転式サセプタの中心と上記基板の中心を通る直線上での成長薄膜の膜厚のサセプタ中心での膜厚を10とした相対値を、上記直線上における上記回転式サセプタの中心からの距離を変数とする関数で表したとき、上記変数が上記基板の中心位置から±2インチの値となる範囲において、上記関数の2次微分係数が常に正の単調減少関数となり、かつ、上記関数の最小値が4以上で、最大値と最小値の差が2以下となるように成長条件を設定し、
該成長条件の下で上記基板に対して公転運動及び自転運動を与えながら薄膜を成長させることを特徴とする気相成長方法。
Using the vapor phase growth apparatus that introduces the source gas from the center of the reaction furnace and supplies the source gas radially from the center of the disk-shaped rotary susceptor provided in the reaction furnace, the above rotation A vapor phase growth method in which a thin film is grown while giving a revolving motion and a rotational motion to a substrate placed on a susceptor,
At the center of the susceptor with the thickness of the grown thin film on the straight line passing through the center of the rotary susceptor and the center of the substrate obtained when the thin film is grown in a state where the substrate is revolved and no rotation motion is given. When the relative value with the film thickness of 10 is expressed by a function having the distance from the center of the rotary susceptor on the straight line as a variable, the variable is a value of ± 2 inches from the center position of the substrate. In the range, the growth condition is set so that the second derivative of the function is always a positive monotonically decreasing function, the minimum value of the function is 4 or more, and the difference between the maximum value and the minimum value is 2 or less. ,
A vapor phase growth method characterized in that a thin film is grown while applying a revolving motion and a rotational motion to the substrate under the growth conditions.
上記2次微分係数が正となるように上記反応炉内に供給する原料ガスの供給速度を制御することを特徴とする請求項1に記載の気相成長方法。  2. The vapor phase growth method according to claim 1, wherein a supply rate of the source gas supplied into the reaction furnace is controlled so that the second-order differential coefficient is positive. 上記基板上に成長させる薄膜の構成元素の少なくとも一つと同一の元素を含む2種類以上の原料ガスを供給する場合、
上記2次微分係数が正となるように上記2種類以上の原料ガスを所定の比率で混合することを特徴とする請求項1または請求項2に記載の気相成長方法。
When supplying two or more source gases containing the same element as at least one of the constituent elements of the thin film grown on the substrate,
The vapor phase growth method according to claim 1 or 2, wherein the two or more kinds of source gases are mixed at a predetermined ratio so that the second-order differential coefficient is positive.
上記同一の元素を含む2種類以上の原料ガスは、同じ温度における分解効率の異なる原料から構成されることを特徴とする請求項3に記載の気相成長方法。  The vapor phase growth method according to claim 3, wherein the two or more kinds of source gases containing the same element are composed of sources having different decomposition efficiencies at the same temperature. MOCVD法において、上記同一の元素はGaであり、該Gaを含む2種類以上の原料ガスはTMGa(トリメチルガリウム)とTEGa(トリエチルガリウム)であることを特徴とする請求項3または請求項4に記載の気相成長方法。  In the MOCVD method, the same element is Ga, and two or more kinds of source gases containing Ga are TMGa (trimethyl gallium) and TEGa (triethyl gallium). The vapor phase growth method as described. 上記2次微分係数が正となるように上記原料ガスの上流側に熱分解を促進する触媒を配置することを特徴とする請求項1から請求項5の何れかに記載の気相成長方法。  6. The vapor phase growth method according to claim 1, wherein a catalyst that promotes thermal decomposition is disposed upstream of the source gas so that the second-order differential coefficient is positive.
JP17830398A 1998-06-25 1998-06-25 Vapor growth method Expired - Fee Related JP3743945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17830398A JP3743945B2 (en) 1998-06-25 1998-06-25 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17830398A JP3743945B2 (en) 1998-06-25 1998-06-25 Vapor growth method

Publications (2)

Publication Number Publication Date
JP2000007493A JP2000007493A (en) 2000-01-11
JP3743945B2 true JP3743945B2 (en) 2006-02-08

Family

ID=16046124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17830398A Expired - Fee Related JP3743945B2 (en) 1998-06-25 1998-06-25 Vapor growth method

Country Status (1)

Country Link
JP (1) JP3743945B2 (en)

Also Published As

Publication number Publication date
JP2000007493A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
KR0173013B1 (en) Vapor growth apparatus and vapor growth method capable of growing a compound semiconductor layer having an evenness and an interfacial sharpness in units of atomic layers with good productivity
JPH06232060A (en) Method and device for growing epitaxial silicon layer
JP2001351864A (en) Thin film vapor growth method and system
JP3743945B2 (en) Vapor growth method
JPS6090894A (en) Vapor phase growing apparatus
EP0203616B1 (en) Chemical vapor deposition method for the thin film of semiconductor
JPS63237517A (en) Selective formation of iii-v compound film
JPH06349748A (en) Vapor growth device for semiconductor
JPH11329980A (en) Organic metallic gaseous phase growing device and method therefor using the same
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JP3702403B2 (en) Vapor growth method
CN103668443B (en) Group III nitride semiconductor monocrystalline, its manufacture method, free-standing substrate and semiconductor device
JPH0722323A (en) Vapor deposition device
JPH07122496A (en) Semiconductor thin film vapor growth equipment
JP2004241460A (en) Apparatus for manufacturing semiconductor
JP3071591U (en) Vapor phase epitaxial growth equipment
JP2791444B2 (en) Vapor phase epitaxial growth method
JP2022159954A (en) Susceptor
JPH03137093A (en) Vapor growth method for organic metal
JP3257398B2 (en) Horizontal vapor phase growth method
JPH06291066A (en) Semiconductor vapor growth device
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPH0710689A (en) Device for growth of semiconductor in gaseous phase
JP2003257869A (en) Method for manufacturing silicon wafer and for silicon epitaxial wafer
JP2003234297A (en) Vapor phase thin film epitaxial growth device and vapor phase thin film epitaxial growth method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees