JP3743293B2 - IC package manufacturing method and IC package mounting method - Google Patents

IC package manufacturing method and IC package mounting method Download PDF

Info

Publication number
JP3743293B2
JP3743293B2 JP2001024188A JP2001024188A JP3743293B2 JP 3743293 B2 JP3743293 B2 JP 3743293B2 JP 2001024188 A JP2001024188 A JP 2001024188A JP 2001024188 A JP2001024188 A JP 2001024188A JP 3743293 B2 JP3743293 B2 JP 3743293B2
Authority
JP
Japan
Prior art keywords
electrode
conductor pattern
chip
flexible substrate
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001024188A
Other languages
Japanese (ja)
Other versions
JP2002231760A (en
Inventor
敏広 三宅
宏司 近藤
成男 沼澤
克己 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001024188A priority Critical patent/JP3743293B2/en
Publication of JP2002231760A publication Critical patent/JP2002231760A/en
Application granted granted Critical
Publication of JP3743293B2 publication Critical patent/JP3743293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto

Landscapes

  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICチップをフレキシブル基板に一体化してなるICパッケージ製造方法、並びに、そのようなICパッケージのプリント配線基板への実装方法に関する。
【0002】
【従来の技術】
従来、この種のICパッケージとしては、ポリイミド樹脂を基材とするフレキシブル基板(FPC)にICチップを搭載して樹脂で封止してなるICパッケージ(TAB)がある。さらに、このICパッケージは、通常、プリント配線基板に実装されて用いられる。
【0003】
【発明が解決しようとする課題】
上記従来のICパッケージでは、ICチップの電極とフレキシブル基板の導体パターンとの接合部を保護するために、封止樹脂を用いている。しかし、フレキシブル基板の基材と封止材が別の材料である(ちなみに、基材と同一材料の封止樹脂は無い)ため、基材と封止材との界面が剥離(層間剥離)しやすく、そこから水分等が侵入してICチップの特性劣化を起こす等の問題がある。
【0004】
本発明は上記問題に鑑み、ICチップの電極とフレキシブル基板の導体パターンとの接合部の封止を高い信頼性にて実現できるようなICパッケージおよびその製造方法並びにその実装方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明は製造方法に係るものであり、一面(11)側に電極(12)を有するICチップ(10)と、熱可塑性樹脂よりなる基材(21)の一面(22)に導体パターン(23)が所定パターンに形成されたフレキシブル基板(20)とを用意し、ICチップの一面と基材の一面とを対向させ、且つ、電極と導体パターンとを位置合わせした状態でICチップをフレキシブル基板に載置し、電極と導体パターンとがICチップと基材とに挟まれた状態とする工程と、熱および圧力を加えて、電極と導体パターンとを接合するとともに、フレキシブル基板の構成材料である熱可塑性樹脂を軟化させて電極と導体パターンとの接合部を樹脂封止する工程とを備えることを特徴としている。
【0006】
本発明のICパッケージの製造方法によれば、フレキシブル基板を構成する樹脂材料自体を用いて封止が行われ、そもそも従来のような層間剥離を起こすことがないため、ICチップの電極とフレキシブル基板の導体パターンとの接合部の封止を高い信頼性にて実現できる。また、ICチップの電極とフレキシブル基板の導体パターンとの接合およびその接合部の樹脂封止を同時に達成できるため、工数削減にも寄与する。
【0007】
また、請求項に記載の発明では、電極(12)と導体パターン(23)とを金バンプ(30)を介して接合することを特徴としており、それによれば、ICチップの電極とフレキシブル基板の導体パターンとが、金バンプを介した金属拡散接合により接合されるため、十分な接合強度を得ることができ、好ましい。
【0008】
また、請求項に記載の発明では、電極(12)を有するICチップ(10)と、導体パターン(23)が形成された熱可塑性樹脂よりなるフレキシブル基板(20)とを用意し、電極と導体パターンとを位置合わせした状態でICチップをフレキシブル基板に載置する工程と、熱および圧力を加えて、電極と導体パターンとを接合するとともに、フレキシブル基板の構成材料である熱可塑性樹脂を軟化させて電極と導体パターンとの接合部を樹脂封止する工程とを備え、電極(12)と導体パターン(23)との間に、C−H結合解離エネルギーが950kJ/mol以下の炭化水素化合物を介在させた状態で、電極と導体パターンとの接合を行うことを特徴としている。
【0009】
このような、炭化水素化合物を電極と導体パターンとの間に介在させた状態で、熱および圧力を加えて両者の接合を行うようにすれば、電極と導体パターンとの接合強度をより十分なものにすることができ、好ましい。
【0010】
これは、炭化水素化合物を加熱することにより、炭化水素化合物を熱分解して炭化水素化合物から水素が分離されたラジカルな状態とし、このラジカルな状態とされた炭化水素化合物によって電極や導体パターンの表面に形成された酸化膜を還元しつつ、接合を行うことができるためである。
【0011】
また、請求項5に記載の発明は実装方法に係るものであり、電極(12)を有するICチップ(10)と、プリント配線基板(40)の電極(41)へ接続可能な端子(23a)を有する導体パターン(23)が形成された熱可塑性樹脂よりなるフレキシブル基板(20)とを用意し、上記請求項1の製造方法と同様に、ICチップをフレキシブル基板に載置しICチップの電極と導体パターンとの接合部を樹脂封止することにより、ICチップと前記フレキシブル基板とが一体化したパッケージ(100)を形成した後、用意されたプリント配線基板にパッケージを載置し、導体パターンの端子を含むフレキシブル基板の局部を、プリント配線基板に押しつけるように圧力を加えながら加熱することにより、導体パターンの端子とプリント配線基板の電極とを接合すると共に、熱可塑性樹脂を軟化させて導体パターンの端子とプリント配線基板の電極との接合部を樹脂封止することを特徴としている。
【0012】
本発明のICパッケージの実装方法によれば、請求項1の発明と同様の理由から、形成されたパッケージにおいて、ICチップの電極とフレキシブル基板の導体パターンとの接合部の封止を高い信頼性にて実現できる。そして、このようなICパッケージがプリント配線基板に実装された実装構造を得ることができる。
【0013】
また、フレキシブル基板の導体パターンの端子とプリント配線基板の電極との接合部も、フレキシブル基板を構成する樹脂材料自体を用いて樹脂封止されるため、この接合部においても層間剥離を防止した信頼性の高い封止構造を達成することができる。
【0014】
また、ICチップの電極とフレキシブル基板の導体パターンとの接合およびその接合部の樹脂封止の同時達成、フレキシブル基板の導体パターンの端子とプリント配線基板の電極との接合およびその接合部の樹脂封止の同時達成により、工数削減にも寄与する。
【0015】
また、請求項6に記載の発明では、導体パターン(23)の端子(23a)とプリント配線基板(40)の電極(41)との間に、C−H結合解離エネルギーが950kJ/mol以下の炭化水素化合物を介在させた状態で、導体パターンの端子とプリント配線基板の電極との接合を行うことを特徴としている。
【0016】
それによれば、請求項の発明と同様の理由から、導体パターンの端子とプリント配線基板の電極との接合強度をより十分なものにすることができ、好ましい
【0019】
また、請求項または請求項7に記載の発明のように、ICチップ(10)とフレキシブル基板(20)との間、フレキシブル基板とプリント配線基板(40)との間で、両者の重ね合わせ面全体にアルカン類を介在させた状態で樹脂封止を行うことが好ましい。
【0020】
これは、アルカン類を介在させた状態で熱可塑性樹脂を軟化させて樹脂封止するので、熱可塑性樹脂フィルム界面で、アルカン類が熱可塑性樹脂に浸透して弾性率が下がることにより、接着力が向上し、高い信頼性が得られるためである。
【0021】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0022】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。図1(a)〜(c)は、本発明の実施形態に係るICパッケージの製造方法および実装方法を工程順に示す概略断面図である。また、図2において(a)、(b)は、それぞれ図1(a)、図1(b)の上視概略平面図である。
【0023】
また、図1(b)は本実施形態に係るICパッケージ100を示し、図1(c)は、このICパッケージ100の実装構造を示す。以下、本実施形態に係るICパッケージの製造方法および実装方法について、製造工程順に説明していく。
【0024】
まず、図1(a)、図2(a)に示す様なICチップ10およびフレキシブル基板(FPC)20を用意する。ICチップ10は、半導体基板等よりなり、一面11側に金またはアルミ等よりなる電極(以下、チップ電極という)12が形成されている。
【0025】
フレキシブル基板20は熱可塑性樹脂よりなる基材21を有し、この基材21の一面22には、銅等よりなる導体パターン(配線パターン)23が、メッキ法や箔を貼り付ける方法等によって所定パターンに形成されている。
【0026】
また、導体パターン23の表面において、ICチップ10のチップ電極12に対応した位置、及び、後述するプリント配線基板(PWB)40の電極(以下、PWB電極という)基板41に対応した位置には、金バンプ30がメッキ法や蒸着法等を用いて形成されている。ここで、導体パターン23のうちPWB電極41に対応した部位は、PWB電極41へ接続可能な端子23aとして構成されている。
【0027】
このフレキシブル基板20の基材21を構成する熱可塑性樹脂として、本例では、ポリエーテリケトン(PEEK)樹脂を65〜35重量%とポリエーテルイミド(PEI)樹脂を35〜65重量%含む混合物(以下、PEEK−PEIという)が使用されている。このPEEK−PEIは、そのガラス転移温度(150℃〜230℃)以上の温度において軟化する。
【0028】
そして、図1(a)、図2(a)に示す様に、上記両部材10、20の互いの一面11、22を対向させ、且つ、チップ電極12と導体パターン23における金バンプ30の形成部とを位置合わせした状態で、ICチップ10をフレキシブル基板20に載置する(チップ載置工程)。
【0029】
次に、図1(b)、図2(b)に示す様に、熱および圧力を加えて、チップ電極12と導体パターン23とを接合するとともに、フレキシブル基板20の基材構成材料である熱可塑性樹脂を軟化させてチップ電極12と導体パターン23との接合部を樹脂封止する(ICパッケージ形成工程)。
【0030】
具体的には、図示しないパルスヒート方式の熱圧着ツールを用いて、ICチップ10をフレキシブル基板20に押し付ける。本例では、熱圧着の条件として、PEEK−PEIのガラス転移温度(150℃〜230℃)以上の温度となるように、圧力を加える。例えば、加熱温度は240℃〜340℃であり、5秒〜15秒間加熱および加圧を継続する。
【0031】
この加熱・加圧により、チップ電極12と金バンプ30との界面および金バンプ30と導体パターン23との界面にて、各界面を超えて相対する両者の金属原子が熱拡散する。つまり、チップ電極12と導体パターン23とが、金バンプ30を介して金属拡散接合により電気的に接合される。
【0032】
それとともに、フレキシブル基板20の熱可塑性樹脂(本例ではPEEK−PEI)が溶融して軟化し、ICチップ10の押し付け圧力によって、導体パターン23の間からICチップ10の周囲にてICチップ10側へ盛り上がるように移動する。この盛り上がった熱可塑性樹脂24により、チップ電極12と導体パターン23との接合部が封止される。
【0033】
これらチップ載置工程とICパッケージ形成工程を行うことにより、チップ電極12とフレキシブル基板20の導体パターン23との接合およびその接合部の樹脂封止が同時に達成され、図1(b)、図2(b)に示すICパッケージ100が完成する。ここまでの工程が本実施形態に係るICパッケージの製造方法である。なお、本製造方法はフレキシブル基板20をリール状で送りながら連続して行うことも可能である。
【0034】
次に、図1(c)に示すパッケージ実装工程を行う。すなわち、用意された上記プリント配線基板40にICパッケージ100を載置し、上記端子23aを含むフレキシブル基板20の周辺部を、プリント配線基板40に押しつけるように圧力を加えながら加熱する。
【0035】
それにより、端子23aの金バンプ30とPWB電極41とが接合されると共に、フレキシブル基板20の熱可塑性樹脂を軟化させて金バンプ30とPWB電極41との接合部を樹脂封止する。
【0036】
本工程においても、具体的には、図示しないパルスヒート方式の熱圧着ツールを用いて、上記フレキシブル基板20の周辺部をプリント配線基板40に押し付けるようにする。本例における熱圧着の条件は、上記パッケージ形成工程と同様にすることができる。
【0037】
そして、本工程においても、加熱・加圧により、PWB電極41と導体パターン23の端子23aとが、金バンプ30を介して金属拡散接合により電気的に接合される。それとともに、フレキシブル基板20の周辺部の熱可塑性樹脂(本例ではPEEK−PEI)が溶融して軟化し、押し付け圧力によってプリント配線基板40へ移動し、移動した熱可塑性樹脂25により、PWB電極41と導体パターン23との接合部が封止される。
【0038】
このパッケージ実装工程を行うことにより、プリント配線基板40のPWB電極41とフレキシブル基板20の導体パターン23との接合およびその接合部の樹脂封止が同時に達成され、図1(c)に示すICパッケージ100が完成する。これらチップ載置、パッケージ形成及びパッケージ実装工程により、本実施形態に係るICパッケージの実装方法が構成される。
【0039】
ところで、本実施形態のICパッケージの製造方法によれば、フレキシブル基板20を構成する樹脂材料自体を用いて封止が行われ、そもそも従来のような層間剥離を起こすことがないため、チップ電極12とフレキシブル基板20の導体パターン23との接合部の封止を高い信頼性にて実現できる。また、チップ電極12と導体パターン23との接合およびその接合部の樹脂封止を同時に達成できるため、工数削減にも寄与する。
【0040】
また、本実施形態のICパッケージの製造方法及び実装方法では、チップ電極12と導体パターン23、及びPWB電極41と導体パターン23を金バンプ30を介して接合しており、それによれば、両電極12、41と導体パターン23とが、金バンプ30を介した金属拡散接合により接合されるため、十分な接合強度を得ることができ、好ましい。
【0041】
本実施形態のICパッケージの実装方法によれば、チップ電極12とフレキシブル基板20の導体パターン23との接合部の封止を高い信頼性にて実現したICパッケージ100が、プリント配線基板40に実装された実装構造を得ることができる。
【0042】
また、フレキシブル基板20の導体パターン23の端子23aとプリント配線基板40のPWB電極41との接合部も、フレキシブル基板20を構成する樹脂材料自体を用いて樹脂封止されるため、この接合部においても層間剥離を防止した信頼性の高い封止構造を達成することができる。
【0043】
また、フレキシブル基板20の導体パターン23の端子23aとプリント配線基板40のPWB電極41との接合およびその接合部の樹脂封止の同時達成により、工数削減にも寄与する。
【0044】
さらに、本実施形態のICパッケージの製造方法によれば、導体パターン23が形成された熱可塑性樹脂よりなるフレキシブル基板20と、このフレキシブル基板20と対向して配置され、チップ電極12を有するICチップ10とを備え、チップ電極12と導体パターン23とが電気的に接合され、当該熱可塑性樹脂の一部がICチップ10の周囲にてICチップ10側へ盛り上がり、チップ電極12と導体パターン23との接合部が樹脂封止されているICパッケージ100を得ることができる。
【0045】
このICパッケージ100によれば、上述したように、フレキシブル基板20を構成する樹脂材料自体によりチップ電極12とフレキシブル基板20の導体パターン23との接合部が封止されているため、層間剥離を防止でき、当該接合部の封止を高い信頼性にて実現できる。
【0046】
また、上記製造方法及び上記実装方法においては、電極12、41と導体パターン23との間に、C−H結合解離エネルギーが950kJ/mol以下の炭化水素化合物を介在させた状態で、電極12、41と導体パターン23との接合を行うことが好ましい。
【0047】
具体的には、ICチップ10をフレキシブル基板20に載置する前に、及び、ICパッケージ100をプリント配線基板40に載置する前に、それぞれ、電極12、41の表面及びフレキシブル基板20の導体パターン23の金バンプ30の表面の少なくとも一方に、上記炭化水素化合物を塗布する。
【0048】
このような、炭化水素化合物を電極12、41と導体パターン23との間に介在させた状態で、熱および圧力を加えて両者の接合を行うようにすれば、電極12、41と導体パターン23との接合強度をより十分なものにすることができ、好ましい。
【0049】
これは、以下の理由による。銅等よりなる各電極12、41や導体パターン23の表面には空気酸化により酸化膜(酸化銅の膜等)が形成されやすい。この酸化膜が存在すると電極12、41と導体パターン23との接合強度が低下する。
【0050】
このとき、上記炭化水素化合物を介在させることで、接合時の加熱により、炭化水素化合物を熱分解して炭化水素化合物から水素が分離されたラジカルな状態とし、このラジカルな状態とされた炭化水素化合物によって電極12、41や導体パターン23の表面に形成された酸化膜を還元しつつ、接合を行うことができる。そのため、電極12、41と導体パターン23との接合強度をより十分なものにすることができる。
【0051】
ここで、C−H結合解離エネルギーとは、炭化水素化合物がそれぞれ電子を保有しつつアルキル基と水素とに解離するために必要なエネルギーであり、それぞれの物質の分子軌道計算から算出されるものである。換言すれば、それぞれの物質のC−H結合解離エネルギーは、炭化水素化合物のアルキル基と水素とへの解離のしやすさを示しており、このエネルギーの小さい物質ほど、アルキル基と水素とに解離しやすい。
【0052】
そして、炭化水素化合物がそれぞれ電子を保有しつつアルキル基と水素とに解離すると、そのアルキル基がラジカルな状態となり、酸化銅等から酸素を奪って、すなわち酸化銅を還元して、自身はアルカン酸化物となって安定する。
【0053】
このようなC−H結合解離エネルギーが950kJ/mol以下の炭化水素化合物としては、例えば、シクロオクタン、テトラメチルペンタデカン、トリフェニルメタン、ジジクロペンタジエン、及びジヒドロアントラセンの少なくとも1つを有するものを挙げることができる。
【0054】
また、C−H結合解離エネルギーが950kJ/molよりも大きい炭化水素化合物を用いた場合でも、加熱・加圧により、この炭化水素化合物がPEEK−PEIの表層部に浸透し、この表層部の弾性率をPEEK−PEIの本来の弾性率よりも低下し得るとの利点がある。
【0055】
このため、上記のように、C−H結合解離エネルギーが950kJ/molよりも大きい炭化水素化合物をフレキシブル基板20とICチップ10およぶプリント配線基板40との重ね合わせ面全体に塗布しても良い。このような炭化水素化合物の例としては、エイコサン、テトラデカン等のアルカン類がある。
【0056】
(他の実施形態)
なお、金バンプ30の代わりに、ハンダバンプ等を用いても良い。つまり、バンプとして採用可能な導電性材料であれば、特に限定されるものではない。
【0057】
また、可能であるならば、金バンプ30を介在させず、チップ電極12と導体パターン23、および、導体パターン23の端子23aとPWB電極41を、互いに直接、固相接合するようにしても良い。この場合にも、もちろん上記炭化水素化合物を介在させても良い。
【図面の簡単な説明】
【図1】本発明の実施形態に係るICパッケージの製造方法および実装方法を示す工程図である。
【図2】(a)は図1(a)の上視概略平面図、(b)は図1(b)の上視概略平面図である。
【符号の説明】
10…ICチップ、12…ICチップの電極、20…フレキシブル基板、
23…フレキシブル基板の導体パターン、23a…導体パターンの端子、
30…金バンプ、40…プリント配線基板、41…プリント配線基板の電極、
100…ICパッケージ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an IC package in which an IC chip is integrated with a flexible substrate, and a method for mounting such an IC package on a printed wiring board.
[0002]
[Prior art]
Conventionally, as this type of IC package, there is an IC package (TAB) in which an IC chip is mounted on a flexible substrate (FPC) based on a polyimide resin and sealed with resin. Further, this IC package is usually used by being mounted on a printed wiring board.
[0003]
[Problems to be solved by the invention]
In the conventional IC package, a sealing resin is used to protect the joint between the electrode of the IC chip and the conductor pattern of the flexible substrate. However, since the base material of the flexible substrate and the sealing material are different materials (by the way, there is no sealing resin of the same material as the base material), the interface between the base material and the sealing material is peeled off (interlaminar peeling). There is a problem that moisture easily penetrates from there and causes the characteristics of the IC chip to deteriorate.
[0004]
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides an IC package, a manufacturing method thereof, and a mounting method thereof that can realize high-reliability sealing of a joint between an electrode of an IC chip and a conductor pattern of a flexible substrate. Objective.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 relates to a manufacturing method, an IC chip (10) having an electrode (12) on one side (11) side, and one side (22) of a base material (21) made of a thermoplastic resin. A flexible substrate (20) having a conductor pattern (23) formed in a predetermined pattern is prepared, with one surface of the IC chip and one surface of the base material facing each other, and the electrode and the conductor pattern being aligned. The process of placing the IC chip on a flexible substrate , the electrode and the conductor pattern being sandwiched between the IC chip and the base material, applying heat and pressure, joining the electrode and the conductor pattern, and flexible And a step of softening a thermoplastic resin, which is a constituent material of the substrate, and resin-sealing the joint between the electrode and the conductor pattern.
[0006]
According to the IC package manufacturing method of the present invention, sealing is performed using the resin material itself constituting the flexible substrate, and no delamination is caused in the first place. It is possible to realize the sealing of the joint portion with the conductor pattern with high reliability. Further, since the bonding of the electrode of the IC chip and the conductor pattern of the flexible substrate and the resin sealing of the bonding portion can be achieved at the same time, it contributes to the reduction of man-hours.
[0007]
According to a fourth aspect of the present invention, the electrode (12) and the conductor pattern (23) are joined via the gold bump (30). According to this, the electrode of the IC chip and the flexible substrate Since the conductive pattern is bonded by metal diffusion bonding via a gold bump, a sufficient bonding strength can be obtained, which is preferable.
[0008]
According to a second aspect of the present invention, an IC chip (10) having an electrode (12) and a flexible substrate (20) made of a thermoplastic resin on which a conductor pattern (23) is formed are prepared. The process of placing the IC chip on the flexible substrate with the conductor pattern aligned, and applying heat and pressure to join the electrode and the conductor pattern, and soften the thermoplastic resin that is the constituent material of the flexible substrate And a step of resin-sealing the joint between the electrode and the conductor pattern, and a hydrocarbon compound having a C—H bond dissociation energy of 950 kJ / mol or less between the electrode (12) and the conductor pattern (23). In this state, the electrode and the conductor pattern are joined together.
[0009]
In such a state that the hydrocarbon compound is interposed between the electrode and the conductor pattern, it is possible to increase the bonding strength between the electrode and the conductor pattern by applying heat and pressure to join the both. Can be preferred.
[0010]
This is because, by heating the hydrocarbon compound, the hydrocarbon compound is thermally decomposed to form a radical state in which hydrogen is separated from the hydrocarbon compound, and the electrode and conductor pattern of the electrode or conductor pattern are formed by the hydrocarbon compound in the radical state. This is because bonding can be performed while reducing the oxide film formed on the surface.
[0011]
The invention according to claim 5 relates to a mounting method, and an IC chip (10) having an electrode (12) and a terminal (23a) connectable to an electrode (41) of a printed wiring board (40). And a flexible substrate (20) made of a thermoplastic resin on which a conductor pattern (23) having s is formed is prepared, and an IC chip is placed on the flexible substrate in the same manner as in the manufacturing method of claim 1 and an electrode of the IC chip. The resin chip is used to seal the joint portion between the IC chip and the conductor pattern to form a package (100) in which the IC chip and the flexible substrate are integrated, and then the package is placed on the prepared printed circuit board. By heating the local part of the flexible board including the terminals of the flexible printed circuit board while applying pressure to the printed circuit board, the printed circuit board and the printed circuit board are printed. With joining the line substrate electrode, to soften the thermoplastic resin and the bonding portion between the terminal and the printed circuit board electrodes of the conductor pattern is characterized in that resin sealing.
[0012]
According to the IC package mounting method of the present invention, for the same reason as in the first aspect of the invention, in the formed package, the sealing of the joint between the electrode of the IC chip and the conductor pattern of the flexible substrate is highly reliable. Can be realized. A mounting structure in which such an IC package is mounted on a printed wiring board can be obtained.
[0013]
In addition, since the joint portion between the terminal of the conductor pattern of the flexible board and the electrode of the printed wiring board is also resin-sealed by using the resin material itself constituting the flexible board, the reliability that prevents delamination also at this joint portion A highly sealing structure can be achieved.
[0014]
In addition, simultaneous bonding of the IC chip electrode and the conductive pattern of the flexible substrate and resin sealing of the bonded portion, simultaneous bonding of the terminal of the flexible substrate conductive pattern and the electrode of the printed wiring board, and resin sealing of the bonded portion are also possible. Contributing to the reduction of man-hours by achieving simultaneous stoppage.
[0015]
Moreover, in invention of Claim 6, between the terminal (23a) of a conductor pattern (23), and the electrode (41) of a printed wiring board (40), C—H bond dissociation energy is 950 kJ / mol or less. It is characterized in that a conductor pattern terminal and an electrode of a printed wiring board are joined with a hydrocarbon compound interposed.
[0016]
Accordingly, for the same reason as that of the invention of claim 2 , it is possible to make the bonding strength between the terminal of the conductor pattern and the electrode of the printed wiring board more satisfactory, which is preferable .
[0019]
Further, as in the invention described in claim 3 or claim 7, the IC chip (10) and the flexible substrate (20) are overlapped with each other between the flexible substrate and the printed wiring board (40). It is preferable to perform resin sealing in a state where alkanes are interposed on the entire surface.
[0020]
This is because the thermoplastic resin is softened and encapsulated with alkanes intervened, so that the alkanes penetrate into the thermoplastic resin at the interface of the thermoplastic resin film, resulting in a decrease in elastic modulus. This is because the reliability is improved and high reliability is obtained.
[0021]
In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below. 1A to 1C are schematic cross-sectional views showing an IC package manufacturing method and mounting method according to an embodiment of the present invention in the order of steps. 2 (a) and 2 (b) are top plan views schematically showing FIGS. 1 (a) and 1 (b), respectively.
[0023]
FIG. 1B shows an IC package 100 according to this embodiment, and FIG. 1C shows a mounting structure of the IC package 100. The IC package manufacturing method and mounting method according to this embodiment will be described below in the order of the manufacturing steps.
[0024]
First, an IC chip 10 and a flexible substrate (FPC) 20 as shown in FIGS. 1A and 2A are prepared. The IC chip 10 is made of a semiconductor substrate or the like, and an electrode (hereinafter referred to as a chip electrode) 12 made of gold or aluminum is formed on one surface 11 side.
[0025]
The flexible substrate 20 has a base material 21 made of a thermoplastic resin. A conductive pattern (wiring pattern) 23 made of copper or the like is formed on one surface 22 of the base material 21 by a plating method, a method of attaching a foil, or the like. It is formed in a pattern.
[0026]
Further, on the surface of the conductor pattern 23, a position corresponding to the chip electrode 12 of the IC chip 10 and a position corresponding to an electrode (hereinafter referred to as a PWB electrode) substrate 41 of a printed wiring board (PWB) 40 described later are Gold bumps 30 are formed using a plating method, a vapor deposition method, or the like. Here, a portion of the conductor pattern 23 corresponding to the PWB electrode 41 is configured as a terminal 23 a that can be connected to the PWB electrode 41.
[0027]
In this example, the thermoplastic resin constituting the base material 21 of the flexible substrate 20 is a mixture containing 65 to 35% by weight of polyetherketone (PEEK) resin and 35 to 65% by weight of polyetherimide (PEI) resin. (Hereinafter referred to as PEEK-PEI) is used. This PEEK-PEI softens at a temperature equal to or higher than its glass transition temperature (150 ° C. to 230 ° C.).
[0028]
Then, as shown in FIGS. 1 (a) and 2 (a), the surfaces 11 and 22 of the members 10 and 20 are opposed to each other, and the gold bumps 30 are formed on the chip electrode 12 and the conductor pattern 23. The IC chip 10 is placed on the flexible substrate 20 in a state where the parts are aligned (chip placement step).
[0029]
Next, as shown in FIGS. 1B and 2B, heat and pressure are applied to join the chip electrode 12 and the conductor pattern 23, and heat that is a base material constituting the flexible substrate 20. The joint portion between the chip electrode 12 and the conductor pattern 23 is resin-sealed by softening the plastic resin (IC package forming step).
[0030]
Specifically, the IC chip 10 is pressed against the flexible substrate 20 using a pulse heat type thermocompression bonding tool (not shown). In this example, pressure is applied so as to be a temperature equal to or higher than the glass transition temperature of PEEK-PEI (150 ° C. to 230 ° C.) as the thermocompression bonding condition. For example, the heating temperature is 240 ° C. to 340 ° C., and heating and pressurization are continued for 5 to 15 seconds.
[0031]
By this heating and pressurization, both metal atoms facing each other beyond the interfaces are thermally diffused at the interface between the chip electrode 12 and the gold bump 30 and the interface between the gold bump 30 and the conductor pattern 23. That is, the chip electrode 12 and the conductor pattern 23 are electrically bonded by metal diffusion bonding via the gold bump 30.
[0032]
At the same time, the thermoplastic resin (PEEK-PEI in this example) of the flexible substrate 20 is melted and softened, and the IC chip 10 side is formed between the conductor patterns 23 and around the IC chip 10 by the pressing pressure of the IC chip 10. Move to the top. The raised thermoplastic resin 24 seals the joint between the chip electrode 12 and the conductor pattern 23.
[0033]
By performing the chip mounting process and the IC package forming process, the bonding of the chip electrode 12 and the conductor pattern 23 of the flexible substrate 20 and the resin sealing of the bonded portion are simultaneously achieved. FIG. The IC package 100 shown in (b) is completed. The steps so far are the manufacturing method of the IC package according to the present embodiment. In addition, this manufacturing method can also be performed continuously while feeding the flexible substrate 20 in a reel shape.
[0034]
Next, the package mounting process shown in FIG. That is, the IC package 100 is placed on the prepared printed wiring board 40, and the peripheral portion of the flexible board 20 including the terminals 23a is heated while applying pressure so as to press the printed wiring board 40.
[0035]
As a result, the gold bump 30 of the terminal 23a and the PWB electrode 41 are joined, and the thermoplastic resin of the flexible substrate 20 is softened to seal the joint of the gold bump 30 and the PWB electrode 41 with resin.
[0036]
Also in this step, specifically, the peripheral portion of the flexible substrate 20 is pressed against the printed wiring board 40 by using a pulse heat type thermocompression bonding tool (not shown). The thermocompression bonding conditions in this example can be the same as those in the package forming step.
[0037]
Also in this step, the PWB electrode 41 and the terminal 23a of the conductor pattern 23 are electrically joined by metal diffusion bonding via the gold bumps 30 by heating and pressing. At the same time, the thermoplastic resin (PEEK-PEI in this example) around the flexible substrate 20 is melted and softened, moved to the printed wiring board 40 by the pressing pressure, and moved to the PWB electrode 41 by the moved thermoplastic resin 25. And the conductive pattern 23 are sealed.
[0038]
By performing this package mounting process, the bonding of the PWB electrode 41 of the printed wiring board 40 and the conductor pattern 23 of the flexible substrate 20 and the resin sealing of the bonding portion are simultaneously achieved, and the IC package shown in FIG. 100 is completed. These chip placement, package formation, and package mounting processes constitute the IC package mounting method according to the present embodiment.
[0039]
By the way, according to the manufacturing method of the IC package of the present embodiment, sealing is performed using the resin material itself constituting the flexible substrate 20, and delamination is not caused in the first place. The sealing of the joint between the flexible substrate 20 and the conductor pattern 23 can be realized with high reliability. Further, since the bonding of the chip electrode 12 and the conductor pattern 23 and the resin sealing of the bonded portion can be achieved at the same time, it contributes to a reduction in the number of processes.
[0040]
Further, in the IC package manufacturing method and mounting method of the present embodiment, the chip electrode 12 and the conductor pattern 23 and the PWB electrode 41 and the conductor pattern 23 are joined via the gold bumps 30. 12 and 41 and the conductor pattern 23 are bonded by metal diffusion bonding via the gold bumps 30, so that sufficient bonding strength can be obtained, which is preferable.
[0041]
According to the mounting method of the IC package of the present embodiment, the IC package 100 that realizes sealing of the joint portion between the chip electrode 12 and the conductor pattern 23 of the flexible substrate 20 with high reliability is mounted on the printed wiring board 40. A mounted structure can be obtained.
[0042]
In addition, since the joint between the terminal 23a of the conductor pattern 23 of the flexible substrate 20 and the PWB electrode 41 of the printed wiring board 40 is also resin-sealed using the resin material itself constituting the flexible substrate 20, In addition, a highly reliable sealing structure in which delamination is prevented can be achieved.
[0043]
Further, by simultaneously joining the terminal 23a of the conductor pattern 23 of the flexible substrate 20 and the PWB electrode 41 of the printed wiring board 40 and resin sealing of the joined portion, it contributes to man-hour reduction.
[0044]
Furthermore, according to the IC package manufacturing method of the present embodiment, the flexible substrate 20 made of a thermoplastic resin on which the conductor pattern 23 is formed, and the IC chip that is disposed to face the flexible substrate 20 and has the chip electrode 12. 10, the chip electrode 12 and the conductor pattern 23 are electrically joined, and a part of the thermoplastic resin rises to the IC chip 10 side around the IC chip 10, and the chip electrode 12 and the conductor pattern 23 are Thus, the IC package 100 can be obtained in which the joint portion is resin-sealed.
[0045]
According to the IC package 100, as described above, the joint between the chip electrode 12 and the conductor pattern 23 of the flexible substrate 20 is sealed by the resin material itself that constitutes the flexible substrate 20, thereby preventing delamination. In addition, sealing of the joint can be realized with high reliability.
[0046]
Further, in the manufacturing method and the mounting method described above, in the state where a hydrocarbon compound having a C—H bond dissociation energy of 950 kJ / mol or less is interposed between the electrodes 12, 41 and the conductor pattern 23, 41 and the conductor pattern 23 are preferably joined.
[0047]
Specifically, before the IC chip 10 is placed on the flexible substrate 20 and before the IC package 100 is placed on the printed wiring board 40, the surfaces of the electrodes 12 and 41 and the conductors of the flexible substrate 20, respectively. The hydrocarbon compound is applied to at least one of the surfaces of the gold bump 30 of the pattern 23.
[0048]
If such a hydrocarbon compound is interposed between the electrodes 12 and 41 and the conductor pattern 23 and heat and pressure are applied to join them, the electrodes 12 and 41 and the conductor pattern 23 are joined. This is preferable because the bonding strength can be made more sufficient.
[0049]
This is due to the following reason. An oxide film (such as a copper oxide film) is easily formed by air oxidation on the surfaces of the electrodes 12 and 41 and the conductor pattern 23 made of copper or the like. When this oxide film is present, the bonding strength between the electrodes 12 and 41 and the conductor pattern 23 decreases.
[0050]
At this time, by interposing the hydrocarbon compound, by heating at the time of joining, the hydrocarbon compound is thermally decomposed into a radical state in which hydrogen is separated from the hydrocarbon compound, and the hydrocarbon in the radical state Bonding can be performed while reducing the oxide film formed on the surfaces of the electrodes 12 and 41 and the conductor pattern 23 by the compound. Therefore, the bonding strength between the electrodes 12 and 41 and the conductor pattern 23 can be made more sufficient.
[0051]
Here, the C—H bond dissociation energy is energy required for a hydrocarbon compound to dissociate into an alkyl group and hydrogen while retaining an electron, and is calculated from the molecular orbital calculation of each substance. It is. In other words, the C—H bond dissociation energy of each substance indicates the ease of dissociation of the hydrocarbon compound into an alkyl group and hydrogen. Easy to dissociate.
[0052]
When each hydrocarbon compound retains electrons and dissociates into an alkyl group and hydrogen, the alkyl group becomes a radical state, deprives oxygen from copper oxide or the like, that is, reduces the copper oxide, and itself becomes an alkane. Stable as an oxide.
[0053]
Examples of the hydrocarbon compound having a C—H bond dissociation energy of 950 kJ / mol or less include those having at least one of cyclooctane, tetramethylpentadecane, triphenylmethane, didichloropentadiene, and dihydroanthracene. be able to.
[0054]
In addition, even when a hydrocarbon compound having a C—H bond dissociation energy greater than 950 kJ / mol is used, the hydrocarbon compound penetrates into the surface layer portion of PEEK-PEI by heating and pressurization, and the elasticity of the surface layer portion. There is an advantage that the modulus can be lower than the original elastic modulus of PEEK-PEI.
[0055]
For this reason, as described above, a hydrocarbon compound having a C—H bond dissociation energy greater than 950 kJ / mol may be applied to the entire overlapping surface of the flexible substrate 20, the IC chip 10, and the printed wiring substrate 40. Examples of such hydrocarbon compounds include alkanes such as eicosane and tetradecane.
[0056]
(Other embodiments)
A solder bump or the like may be used instead of the gold bump 30. That is, there is no particular limitation as long as it is a conductive material that can be used as a bump.
[0057]
Further, if possible, the chip electrode 12 and the conductor pattern 23, and the terminal 23a of the conductor pattern 23 and the PWB electrode 41 may be directly solid-phase bonded to each other without the gold bump 30 interposed. . Also in this case, of course, the above hydrocarbon compound may be interposed.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an IC package manufacturing method and mounting method according to an embodiment of the present invention.
2A is a top schematic plan view of FIG. 1A, and FIG. 2B is a schematic top plan view of FIG. 1B.
[Explanation of symbols]
10 ... IC chip, 12 ... IC chip electrode, 20 ... flexible substrate,
23: Conductive pattern of flexible substrate, 23a: Terminal of conductive pattern,
30 ... Gold bumps, 40 ... Printed circuit board, 41 ... Electrodes of printed circuit board,
100 ... IC package.

Claims (7)

一面(11)側に電極(12)を有するICチップ(10)と、熱可塑性樹脂よりなる基材(21)の一面(22)に導体パターン(23)が所定パターンに形成されたフレキシブル基板(20)とを用意し、
前記ICチップの一面と前記基材の一面とを対向させ、且つ、前記電極と前記導体パターンとを位置合わせした状態で前記ICチップを前記フレキシブル基板に載置し、前記電極と前記導体パターンとが前記ICチップと前記基材とに挟まれた状態とする工程と、
熱および圧力を加えて、前記電極と前記導体パターンとを接合するとともに、前記フレキシブル基板の構成材料である前記熱可塑性樹脂を軟化させて前記電極と前記導体パターンとの接合部を樹脂封止する工程とを備えることを特徴とするICパッケージの製造方法。
An IC chip (10) having an electrode (12 ) on one surface (11) side, and a flexible substrate in which a conductor pattern (23) is formed in a predetermined pattern on one surface (22) of a base material (21) made of a thermoplastic resin. 20) and
The IC chip is placed on the flexible substrate in a state where one surface of the IC chip and one surface of the base material are opposed to each other, and the electrode and the conductor pattern are aligned, and the electrode and the conductor pattern Is a state of being sandwiched between the IC chip and the base material ,
Heat and pressure are applied to join the electrode and the conductor pattern, and the thermoplastic resin that is a constituent material of the flexible substrate is softened to seal the joint between the electrode and the conductor pattern with resin. A method of manufacturing an IC package.
電極(12)を有するICチップ(10)と、導体パターン(23)が形成された熱可塑性樹脂よりなるフレキシブル基板(20)とを用意し、
前記電極と前記導体パターンとを位置合わせした状態で前記ICチップを前記フレキシブル基板に載置する工程と、
熱および圧力を加えて、前記電極と前記導体パターンとを接合するとともに、前記フレキシブル基板の構成材料である前記熱可塑性樹脂を軟化させて前記電極と前記導体パターンとの接合部を樹脂封止する工程とを備え
前記電極(12)と前記導体パターン(23)との間に、C−H結合解離エネルギーが950kJ/mol以下の炭化水素化合物を介在させた状態で、前記電極と前記導体パターンとの接合を行うことを特徴とするICパッケージの製造方法。
An IC chip (10) having an electrode (12) and a flexible substrate (20) made of a thermoplastic resin on which a conductor pattern (23) is formed are prepared,
Placing the IC chip on the flexible substrate in a state where the electrode and the conductor pattern are aligned;
Heat and pressure are applied to join the electrode and the conductor pattern, and the thermoplastic resin that is a constituent material of the flexible substrate is softened to seal the joint between the electrode and the conductor pattern with resin. A process ,
The electrode and the conductor pattern are joined with a hydrocarbon compound having a C—H bond dissociation energy of 950 kJ / mol or less interposed between the electrode (12) and the conductor pattern (23). An IC package manufacturing method characterized by the above.
電極(12)を有するICチップ(10)と、導体パターン(23)が形成された熱可塑性樹脂よりなるフレキシブル基板(20)とを用意し、
前記電極と前記導体パターンとを位置合わせした状態で前記ICチップを前記フレキシブル基板に載置する工程と、
熱および圧力を加えて、前記電極と前記導体パターンとを接合するとともに、前記フレキシブル基板の構成材料である前記熱可塑性樹脂を軟化させて前記電極と前記導体パターンとの接合部を樹脂封止する工程とを備え
前記ICチップ(10)と前記フレキシブル基板(20)との間で、両者の重ね合わせ面全体にアルカン類を介在させた状態で前記樹脂封止を行うことを特徴とするICパッケージの製造方法。
An IC chip (10) having an electrode (12) and a flexible substrate (20) made of a thermoplastic resin on which a conductor pattern (23) is formed are prepared,
Placing the IC chip on the flexible substrate in a state where the electrode and the conductor pattern are aligned;
Heat and pressure are applied to join the electrode and the conductor pattern, and the thermoplastic resin that is a constituent material of the flexible substrate is softened to seal the joint between the electrode and the conductor pattern with resin. A process ,
A method of manufacturing an IC package , wherein the resin sealing is performed between the IC chip (10) and the flexible substrate (20) in a state where alkanes are interposed on the entire overlapping surface of both .
前記電極(12)と前記導体パターン(23)とを金バンプ(30)を介して接合することを特徴とする請求項1ないし3のいずれか1つに記載のICパッケージの製造方法。The method of manufacturing an IC package according to any one of claims 1 to 3, wherein the electrode (12) and the conductor pattern (23) are joined via a gold bump (30). 電極(12)を有するICチップ(10)と、プリント配線基板(40)の電極(41)へ接続可能な端子(23a)を有する導体パターン(23)が形成された熱可塑性樹脂よりなるフレキシブル基板(20)とを用意し、
前記ICチップの電極と前記導体パターンとを位置合わせした状態で前記ICチップを前記フレキシブル基板に載置する工程と、
熱および圧力を加えて、前記ICチップの電極と前記導体パターンとを接合するとともに、前記熱可塑性樹脂を軟化させて前記ICチップの電極と前記導体パターンとの接合部を樹脂封止することにより、前記ICチップと前記フレキシブル基板とが一体化したパッケージ(100)を形成する工程と、
しかる後、用意された前記プリント配線基板に前記パッケージを載置し、前記導体パターンの端子を含む前記フレキシブル基板の局部を、前記プリント配線基板に押しつけるように圧力を加えながら加熱することにより、前記導体パターンの端子と前記プリント配線基板の電極とを接合すると共に、前記熱可塑性樹脂を軟化させて前記導体パターンの端子と前記プリント配線基板の電極との接合部を樹脂封止する工程とを備えることを特徴とするICパッケージの実装方法。
A flexible substrate made of a thermoplastic resin on which an IC chip (10) having an electrode (12) and a conductor pattern (23) having terminals (23a) connectable to the electrode (41) of the printed wiring board (40) are formed. (20)
Placing the IC chip on the flexible substrate in a state where the electrodes of the IC chip and the conductor pattern are aligned; and
Applying heat and pressure to bond the electrode of the IC chip and the conductor pattern, and soften the thermoplastic resin to seal the bonding portion of the electrode of the IC chip and the conductor pattern with resin Forming a package (100) in which the IC chip and the flexible substrate are integrated;
Thereafter, the package is placed on the prepared printed wiring board, and the local part of the flexible board including the terminals of the conductor pattern is heated while applying pressure so as to press the printed wiring board. Bonding the terminal of the conductor pattern and the electrode of the printed wiring board, and softening the thermoplastic resin to resin-sealing the bonding portion between the terminal of the conductor pattern and the electrode of the printed wiring board. An IC package mounting method characterized by the above.
前記導体パターン(23)の端子(23a)と前記プリント配線基板(40)の電極(41)との間に、C−H結合解離エネルギーが950kJ/mol以下の炭化水素化合物を介在させた状態で、前記導体パターンの端子と前記プリント配線基板の電極との接合を行うことを特徴とする請求項に記載のICパッケージの実装方法。A hydrocarbon compound having a C—H bond dissociation energy of 950 kJ / mol or less is interposed between the terminal (23a) of the conductor pattern (23) and the electrode (41) of the printed wiring board (40). 6. The method of mounting an IC package according to claim 5 , wherein the terminal of the conductor pattern and the electrode of the printed wiring board are joined. 前記ICチップ(10)と前記フレキシブル基板(20)との間、および、前記フレキシブル基板と前記プリント配線基板(40)との間で、両者の重ね合わせ面全体にアルカン類を介在させた状態で前記樹脂封止を行うことを特徴とする請求項5に記載のICパッケージの実装方法。Between the IC chip (10) and the flexible substrate (20), and between the flexible substrate and the printed wiring board (40), with alkanes interposed on the entire overlapping surface of both. 6. The IC package mounting method according to claim 5, wherein the resin sealing is performed.
JP2001024188A 2001-01-31 2001-01-31 IC package manufacturing method and IC package mounting method Expired - Fee Related JP3743293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001024188A JP3743293B2 (en) 2001-01-31 2001-01-31 IC package manufacturing method and IC package mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024188A JP3743293B2 (en) 2001-01-31 2001-01-31 IC package manufacturing method and IC package mounting method

Publications (2)

Publication Number Publication Date
JP2002231760A JP2002231760A (en) 2002-08-16
JP3743293B2 true JP3743293B2 (en) 2006-02-08

Family

ID=18889363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024188A Expired - Fee Related JP3743293B2 (en) 2001-01-31 2001-01-31 IC package manufacturing method and IC package mounting method

Country Status (1)

Country Link
JP (1) JP3743293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443220B1 (en) 2008-01-04 2014-09-22 삼성전자주식회사 Contact force sensor package, blood pressure measuring device with the same, and method for fabricating the contact force sensor package

Also Published As

Publication number Publication date
JP2002231760A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
EP0645805B1 (en) Method for mounting a semiconductor device on a circuit board, and a circuit board with a semiconductor device mounted thereon
US6118183A (en) Semiconductor device, manufacturing method thereof, and insulating substrate for same
WO1998018162A1 (en) Film carrier tape and semiconductor device, method for manufacturing them, and circuit board
CN103579154B (en) Electric device package comprising a laminate and method of making an electric device package comprising a laminate
JPH08306738A (en) Semiconductor device and its production
JP3252745B2 (en) Semiconductor device and manufacturing method thereof
JP3705159B2 (en) Manufacturing method of semiconductor device
JP2002290028A (en) Connection structure and method for printed wiring board
JP3743293B2 (en) IC package manufacturing method and IC package mounting method
TW201025462A (en) Semiconductor device and method for fabricating the same
JP4441090B2 (en) Method of mounting a semiconductor chip on a printed wiring board
JP3741553B2 (en) Semiconductor device connection structure and connection method, and semiconductor device package using the same
JP4035949B2 (en) Wiring board, semiconductor device using the same, and manufacturing method thereof
JP2001111209A (en) Printed wiring board connecting method and connection structure
JPH0551179B2 (en)
JPH1116941A (en) Manufacture of semiconductor package using carrier film
JPH0831871A (en) Interface sealing film used for surface mount electronic device and surface mount structure
JP3680812B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP2000021935A (en) Electronic component mounting body and manufacture thereof
JP3547270B2 (en) Mounting structure and method of manufacturing the same
JPS62126645A (en) Lsi-chip mounting method
JP3362007B2 (en) Semiconductor device, method of manufacturing the same, and tape carrier
JP3472342B2 (en) Method of manufacturing semiconductor device package
JP2669286B2 (en) Composite lead frame
JP3915325B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees