JP3743049B2 - Electromagnetic solenoid control device and toroidal continuously variable transmission using the same - Google Patents

Electromagnetic solenoid control device and toroidal continuously variable transmission using the same Download PDF

Info

Publication number
JP3743049B2
JP3743049B2 JP03311396A JP3311396A JP3743049B2 JP 3743049 B2 JP3743049 B2 JP 3743049B2 JP 03311396 A JP03311396 A JP 03311396A JP 3311396 A JP3311396 A JP 3311396A JP 3743049 B2 JP3743049 B2 JP 3743049B2
Authority
JP
Japan
Prior art keywords
electromagnetic solenoid
value
control
duty
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03311396A
Other languages
Japanese (ja)
Other versions
JPH09203450A (en
Inventor
英司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP03311396A priority Critical patent/JP3743049B2/en
Publication of JPH09203450A publication Critical patent/JPH09203450A/en
Application granted granted Critical
Publication of JP3743049B2 publication Critical patent/JP3743049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Friction Gearing (AREA)
  • Control Of Transmission Device (AREA)

Description

【0001】
発明の属する技術分野
この発明は、電磁ソレノイド制御装置及びそれを用いたトロイダル型無段変速機に関する。
【0002】
【従来の技術】
一般に、トロイダル型無段変速機は、図2に示すようなトロイダル変速部1を備えている。トロイダル型無段変速機のトロイダル変速部1は、対向して配置された入力ディスク2と出力ディスク3、両ディスク2,3に対する傾転角度の変化に応じて入力ディスク2の回転を無段階に変速して出力ディスク3に伝達する一対のパワーローラ4(一方のみ図示)、及びパワーローラ4をそれぞれ回転自在に支持し且つ傾転軸5の回りに傾転可能な一対のトラニオン6(一方のみ図示)から構成されている。
【0003】
通常、トラニオン6は、ある変速比において中立位置にある。即ち、トラニオン6は入力ディスク2及び出力ディスク3の回転中心線A−Aとパワーローラ4の回転中心線B−Bが交叉する位置(=中立位置)にある。変速はトラニオン6を中立位置から傾転軸5の軸方向に変位させることによって行われる。トラニオン6が傾転軸方向に変位すると、それに伴ってトラニオン6はその変位方向と変位量に応じた向きと速さで傾転軸5の回りに傾転し、入力ディスク2とパワーローラ4との接触点が描く半径と出力ディスク3とパワーローラ4との接触点が描く半径との比が変化することによって変速が行われる。
【0004】
トロイダル型無段変速機は、例えば、パワーローラ4の傾転駆動を制御弁10によって行われる。制御弁10は、電磁ソレノイド制御装置によって駆動され、従来から種々のものが知られているが、例えば、図2に示すように、弁ケース12に形成された孔内に摺動自在に配置されたスリーブ11、スリーブ11内に摺動自在に挿通されたスプール13、トラニオン6と一体に変位してスプール13を軸方向に変位させるプリセスカム18、スプール13とスリーブ11とが軸方向へ相対変位することにより油圧が供給又は排出されてトラニオン6を傾転軸5方向に変位せしめる油圧シリンダ8、スリーブ11を軸方向に変位させるため作動油を供給するため作動されるソレノイド弁21、ソレノイド弁21を作動するため、ソレノイド弁21を電磁駆動する電磁ソレノイド19、電磁ソレノイド19に目標変速比に応じた制御信号を送るコントローラ20を備えている。
【0005】
また、スプール13はスリーブ11内に摺動自在に配置され、リターンスプリング16がスリーブ11とスプール13との間に設けられている。スプール13の一端にはリターンスプリング16に当接し、スプール13がばね力で右方向に付勢され、スプール13の他端には枢着されたレバー17の一端が当接し、レバー17の他端は傾転軸5の先端に取り付けられたプリセスカム18に当接している。このため、スプール13は、トラニオン6が傾転軸5の軸方向に変位したり、或いは傾転軸5の回りに回動することによって軸方向に変位する。
【0006】
電磁ソレノイド19はソレノイド弁21を電磁駆動し、ソレノイド弁21の開閉駆動によってスリーブ11の端部に作用する油圧の大きさが制御される。ソレノイド弁21はコントローラ20からの出力信号に基づいてスリーブ11の左端へ作用する圧力Psの大きさを制御する。スプール13はプリセスカム18を介してパワーローラ4を支持するトラニオン6に連結され、トラニオン6の傾転角及び傾転軸5の方向の変位の合成値に対応した位置に保持される。ソレノイド弁21は、コントローラ20からの信号に基づいてスリーブ11の左端に作用する圧力Psを出力し、圧力Psの作用でスリーブ11は右方向へ押され、左方向にはリターンスプリング15によりスリーブ11は押され、スリーブ11に加わる力の釣り合う位置にスリーブ11は制御される。従って、電磁ソレノイド19で駆動されるソレノイド弁21を介して油圧がスリーブ11の左端に作用すると、スリーブ11は油圧Psとリターンスプリング15の力が釣り合う位置まで移動する。
【0007】
制御弁10における電磁ソレノイド制御装置において、コントローラ20はソレノイド弁21の電磁ソレノイド19へ目標変速比に応じた出力信号を送る。即ち、図3の処理フロー図に示すように、電磁ソレノイド制御がスタートし、メインルーチンで変速情報を基に目標変速比e0 が算出される(ステップ21)。目標変速比e0 が算出されると、コントローラ20は算出した目標変速比e0 に応じたduty(デューティ)を算出する(ステップ22)。dutyが算出されると、該算出したdutyをソレノイド弁19へ出力する(ステップ23)。次いで、電磁ソレノイド制御は、再びメインルーチンのスタートへ戻る(ステップ24)。
【0008】
次に、このトロイダル型無段変速機の変速時の作動について説明する。以下、減速側へ変速する場合について図2を参照しながら説明する。
(1)コントローラ20からの信号でソレノイド弁19が作動し、圧力Psが管路14を通じてスリーブ11の左端に作用し、スリーブ11は図2の状態よりも右側へ移動する。スリーブ11とスプール13との相対位置が変化し、Pd回路とPL回路との連通路が開いて油圧源から管路9bを通じて減速側シリンダ室8bへライン圧PLが供給され、一方、Pu回路とドレン回路との連通路が開いて増速側シリンダ室8aの油圧は管路9aを通じてタンクへドレンされ、その結果、(Pd回路の油圧)>(Pu回路の油圧)となり、トラニオン6は下向きにオフセットする。この時、パワーローラ4はサイドスリップ力によって傾転軸5を中心に矢印downの方向へ傾転を開始する。
(2)パワーローラ4が傾転するに従って、スプール13はパワーローラ4の傾転軸方向変位と傾転角の合成値分だけ図2において右側へシフトし、Pd回路とPL回路との連通路、及びPu回路とドレン回路との連通路が絞られ、スリーブ11とスプール13との相対位置が中立状態になったところで、PdとPuとは等しくなる。
(3)しかし、パワーローラ4は、上記状態では依然として、傾転軸方向にオフセットしたままであるから、サイドスリップ力により傾転を続ける。その結果、スプール13はスリーブ11との中立位置よりも右側へ移動し、逆にPd回路とドレンとの連通路、及びPu回路とPL回路との連通路が開き、(Pd回路の油圧)<(Pu回路の油圧)となり、トラニオン6は上向きに変位し、パワーローラ4の傾転軸方向変位が小さくなり、それに伴ってサイドスリップ力も弱まり、傾転速度が低下する。
(4)トラニオン6が中立位置を中心に上下に往復運動を繰り返すうちに、振幅が小さくなっていき、パワーローラ4の傾転軸方向変位が零でスプール13の位置がスリーブ11に対して中立となったところで変速が終了する。
【0009】
従来、分解能を増大させるリニアパルスモータとして、特開昭63−11058号公報に開示されたものがある。該リニアパルスモータは、そのスケール上に微動機構を2段に重ねて搭載することにより、スケールの動作分解能を増大するのである。また、特開平2−21063号公報に開示された自動変速機の油圧制御装置は、クラッチ機構の作動途中では、減圧手段で油圧を低い設定値まで減圧し、この油圧をデューティ制御してクラッチ圧を調整すると共に、作動終了後は高油圧に戻すことにより、変速ショックの低減を図るのである。更に、実開平2−131091号公報に開示された可変容量ポンプ/モータの容量制御装置は、可変容量ポンプの高速制御と高分解能とを同時に可能にするものである。
【0010】
【発明が解決しようとする課題】
しかしながら、上記トロイダル型無段変速機では、変速比の分解能はソレノイド弁21へ出力される信号の分解能に依存するが、この信号を出力する装置、即ち、ソレノイド弁駆動回路は、信頼性が高く、コストも安いこと等から、PWM制御回路を用いることが一般的である。ところが、一般的なPWM制御回路は、その分解能が1/100程度であるので、変速比の分解能は1/100以下に制限されてしまい、よりきめ細かい変速制御を行うことができない。また、分解能がより高いPWM(パルス幅変調)制御回路も知られているが、PWM制御回路が高価になり、PWM制御の利点が減じてしまう。
【0011】
【課題を解決するための手段】
この発明の目的は、上記の問題を解決することであり、従来ある目標変速比に対応するソレノイド弁駆動回路からの出力信号が時間に対して変化しないのに対して、目標変速比に対応する比率でソレノイド弁駆動回路からの出力信号を変化させることで、ソレノイド弁駆動回路の分解能を超える分解能でソレノイド弁を駆動する電磁ソレノイド制御装置を提供すると共に、電磁ソレノイド制御装置として分解能が1/100程度の安価なものを用いてより高い分解能で変速比を制御できるトロイダル型無段変速機を提供することである。
【0012】
この発明は、ソレノイド弁を作動する電磁ソレノイドをduty制御する電磁ソレノイド制御装置において、PWM制御回路の分解能により制限される前記電磁ソレノイドの整数である分解能について、少なくとも車速、アクセル開度、エンジン回転数のうち1つ以上から定められる目標制御値に応じて零から前記電磁ソレノイドの分解能の2倍の整数値を最大値として選択し、選択された前記整数値が偶数値であれば、前記偶数値の二分の一をduty制御値として出力し、また、選択された前記整数値が奇数値であれば、前記奇数値の前後の偶数値の二分の一をそれぞれduty制御値として設定し、設定された2つの前記duty制御値を交互に出力して前記電磁ソレノイドをduty駆動制御することを特徴とする無段変速機用電磁ソレノイド制御装置に関する。
【0013】
更に、この発明は、対向して配置された入力ディスクと出力ディスク、前記両ディスクに対する傾転角度の変化に応じて前記入力ディスクの回転を無段階に変速して前記出力ディスクに伝達するパワーローラ、前記パワーローラを回転自在に支持する傾転軸方向に変位可能なトラニオン、前記トラニオンを前記傾転軸方向に変位させる油圧シリンダ、前記油圧シリンダへの油圧を制御する制御弁、前記制御弁に設けた変速比を設定するスリーブ、及び前記スリーブを変位させる作動油を前記制御弁に供給するため作動されるソレノイド弁を具備し、前記ソレノイド弁は請求項1に記載の前記電磁ソレノイド制御装置における前記電磁ソレノイドの出力によって作動されることを特徴とするトロイダル型無段変速機に関する。
【0014】
この発明による電磁ソレノイド制御装置は、上記のように構成されているので、低い分解能の電磁ソレノイドを用いながら、コントローラによって出力信号を切り換え制御することによって高い分解能の電磁ソレノイドを用いたと同等の効果を確保できる。また、このトロイダル型無段変速機は、作動油を供給制御するソレノイド弁を上記電磁ソレノイド制御装置を用いて行ったので、分解能が1/100程度の安価な電磁ソレノイド制御装置によって高い分解能で変速比を制御することができる。
【0015】
【発明の実施の形態】
以下、図面を参照しながら、この発明による電磁ソレノイド制御装置及びそれを適用したトロイダル型無段変速機の実施例について説明する。図1は電磁ソレノイド制御装置の一実施例を示す処理フロー図である。
【0016】
この発明による電磁ソレノイド制御装置は、電磁ソレノイド19をduty駆動制御するものであり、目標制御値より零から電磁ソレノイド19の分解能の2倍の整数値を最大値として選択し、選択された整数値が偶数値であれば、該偶数値の二分の一をduty制御値として出力し、また、選択された整数値が奇数値であれば、該奇数値の前後の偶数値の二分の一をそれぞれduty制御値として設定し、設定された2つのduty制御値を交互に出力して電磁ソレノイド19がduty駆動制御されるものである。
【0017】
また、この電磁ソレノイド制御装置は、図2に示すトロイダル型無段変速機におけるソレノイド弁21を駆動するのに適用できる。このトロイダル型無段変速機は、対向して配置された入力ディスク2と出力ディスク3、両ディスク2,3に対する傾転角度の変化に応じて入力ディスク2の回転を無段階に変速して出力ディスク3に伝達するパワーローラ4、パワーローラ4を回転自在に支持する傾転軸5方向に変位可能なトラニオン6、トラニオン6を傾転軸5方向に変位させるためピストン7を移動させる油圧シリンダ8(8a,8b)、油圧シリンダ8への油圧を制御する制御弁10、及び制御弁10を変位させる作動油を制御弁10に供給するため作動されるソレノイド弁21を具備し、ソレノイド弁21が電磁ソレノイド19の出力によって作動されるものである。
【0018】
この電磁ソレノイド制御装置の作動について、図1を参照して説明する。この実施例の電磁ソレノイド制御装置は、トロイダル型無段変速機における電磁ソレノイド19に適用した実施例を示し、分解能が1/100のソレノイド駆動回路において分解能が1/200と同等の分解能で変速比を制御するものである。メインの制御ルーチンで目標変速比e0が車速、アクセル開度、エンジン回転数等で決まると(ステップ1)、コントローラ20は目標変速比e0に応じた0から200の整数nを求める(ステップ2)。次いで、整数nが偶数であるか、又は奇数であるかを判定し(ステップ3)、整数nが偶数であるならば、n/2に対応する出力信号dutyを決定し(ステップ4)、その出力信号dutyをソレノイド弁21を作動する電磁ソレノイド19へ出力する(ステップ5)。次いで、メインの制御ルーチンへ戻る(ステップ9)。
【0019】
また、ステップ3の処理において、整数nが奇数であるならば、(n+1)/2に対応する出力信号dutyAと、(n−1)/2に対応する出力信号dutyBとをそれぞれ決定し(ステップ6)、出力信号dutyAとdutyBとをソレノイド弁21を作動する電磁ソレノイド19へ交互に出力する(ステップ7,8)。次いで、メインの制御ルーチンへ戻る(ステップ9)。ここで、出力信号dutyA及びdutyBのduty周期が20msecであれば、最初の20msecはdutyA、次の20msecはdutyBが出力され、これに応じてソレノイド弁21の出力圧力Pも、20msec毎に出力圧力PAとPBを繰り返すが、40msec間の平均出力圧力はPAとPBの中間の圧力、即ち、(PA+PB)/2となり、スリーブ11の位置も出力信号dutyA及びdutyBに対応する位置の中間に制御される。
【0020】
上記のように、この電磁ソレノイド制御装置は、分解能が1/100のソレノイド弁21の駆動回路で、スリーブ11の位置を1/200の分解能で制御したことと同等になり、従って、トロイダル型無段変速機の変速比の制御分解能もより高い1/200の分解能で制御できることになる。
【0021】
【発明の効果】
この発明による電磁ソレノイド制御装置及びそれを用いたトロイダル型無段変速機は、上記のように構成されているので、次のような効果を有する。即ち、この電磁ソレノイド制御装置は、上記のように、選択された整数値が偶数値に時にはその二分の一をduty制御値とし、奇数値の時にはその前後の偶数値の二分の一をそれぞれduty制御値として交互に出力し、電磁ソレノイドをduty駆動制御するので、分解能が1/100程度の安価な電磁ソレノイドを用いても、より高い分解能の電磁ソレノイドを用いたと同等の高精度のきめ細かい制御を行うことができる。従って、この電磁ソレノイド制御装置をトロイダル型無段変速機におけるスリーブを制御するソレノイド弁を駆動する電磁ソレノイドに適用した場合には、変速比を設定する前記スリーブの位置をよりきめ細かく駆動制御でき、それ故に、変速比をきめ細かく高精度に変速制御することができ、トロイダル型無段変速機自体ののコストを低減できる。
【図面の簡単な説明】
【図1】この発明によるトロイダル型無段変速機の作動の一実施例を示す処理フロー図である。
【図2】このトロイダル型無段変速機における油圧制御装置を示す概略説明図である。
【図3】従来の電磁ソレノイド制御装置の作動を示す処理フロー図である。
【符号の説明】
2 入力ディスク
3 出力ディスク
4 パワーローラ
5 傾転軸
6 トラニオン
8 油圧シリンダ
10 制御弁
11 スリーブ
19 電磁ソレノイド
20 コントローラ
21 ソレノイド弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic solenoid control device and a toroidal continuously variable transmission using the same.
[0002]
[Prior art]
In general, a toroidal continuously variable transmission includes a toroidal transmission unit 1 as shown in FIG. The toroidal transmission 1 of the toroidal-type continuously variable transmission continuously rotates the input disk 2 in accordance with the change in the tilt angle with respect to the input disk 2 and the output disk 3 that are arranged opposite to each other and the disks 2 and 3. A pair of power rollers 4 (only one is shown) that shifts and transmits to the output disk 3, and a pair of trunnions 6 that support the power rollers 4 rotatably and can tilt around the tilt shaft 5 (only one) (Illustrated).
[0003]
Usually, the trunnion 6 is in a neutral position at a certain gear ratio. That is, the trunnion 6 is in a position (= neutral position) where the rotation center line AA of the input disk 2 and the output disk 3 and the rotation center line BB of the power roller 4 intersect. Shifting is performed by displacing the trunnion 6 from the neutral position in the axial direction of the tilt shaft 5. When the trunnion 6 is displaced in the direction of the tilting axis, the trunnion 6 is tilted around the tilting axis 5 at a direction and speed according to the displacement direction and the amount of displacement, and the input disk 2 and the power roller 4 The speed is changed by changing the ratio between the radius drawn by the contact point and the radius drawn by the contact point between the output disk 3 and the power roller 4.
[0004]
In the toroidal continuously variable transmission, for example, the tilting drive of the power roller 4 is performed by the control valve 10. The control valve 10 is driven by an electromagnetic solenoid control device, and various types are conventionally known. For example, as shown in FIG. 2, the control valve 10 is slidably disposed in a hole formed in the valve case 12. The sleeve 11, the spool 13 slidably inserted in the sleeve 11, the precess cam 18 that displaces the spool 13 in the axial direction by being displaced integrally with the trunnion 6, and the spool 13 and the sleeve 11 are relatively displaced in the axial direction. Accordingly, the hydraulic cylinder 8 that displaces the trunnion 6 in the direction of the tilting shaft 5 by supplying or discharging the hydraulic pressure, the solenoid valve 21 that is operated to supply hydraulic oil to displace the sleeve 11 in the axial direction, and the solenoid valve 21 are provided. In order to operate, a control signal corresponding to the target gear ratio is sent to the electromagnetic solenoid 19 that electromagnetically drives the solenoid valve 21 and the electromagnetic solenoid 19 It is equipped with a controller 20.
[0005]
The spool 13 is slidably disposed in the sleeve 11, and a return spring 16 is provided between the sleeve 11 and the spool 13. One end of the spool 13 is in contact with the return spring 16, the spool 13 is biased to the right by the spring force, and one end of the lever 17 pivotally attached to the other end of the spool 13 is in contact with the other end of the lever 17. Is in contact with a recess cam 18 attached to the tip of the tilting shaft 5. For this reason, the spool 13 is displaced in the axial direction when the trunnion 6 is displaced in the axial direction of the tilting shaft 5 or is rotated around the tilting shaft 5.
[0006]
The electromagnetic solenoid 19 electromagnetically drives the solenoid valve 21, and the hydraulic pressure acting on the end of the sleeve 11 is controlled by opening / closing the solenoid valve 21. The solenoid valve 21 controls the magnitude of the pressure Ps acting on the left end of the sleeve 11 based on the output signal from the controller 20. The spool 13 is connected to the trunnion 6 that supports the power roller 4 via the recess cam 18 and is held at a position corresponding to the combined value of the tilt angle of the trunnion 6 and the displacement in the direction of the tilt shaft 5. The solenoid valve 21 outputs a pressure Ps acting on the left end of the sleeve 11 based on a signal from the controller 20, the sleeve 11 is pushed rightward by the action of the pressure Ps, and the sleeve 11 is pushed leftward by the return spring 15. Is pushed, and the sleeve 11 is controlled to a position where the force applied to the sleeve 11 is balanced. Accordingly, when the hydraulic pressure acts on the left end of the sleeve 11 via the solenoid valve 21 driven by the electromagnetic solenoid 19, the sleeve 11 moves to a position where the hydraulic pressure Ps and the force of the return spring 15 are balanced.
[0007]
In the electromagnetic solenoid control device in the control valve 10, the controller 20 sends an output signal corresponding to the target gear ratio to the electromagnetic solenoid 19 of the solenoid valve 21. That is, as shown in the process flow diagram of FIG. 3, the electromagnetic solenoid control starts, and the target gear ratio e 0 is calculated based on the shift information in the main routine (step 21). When the target gear ratio e 0 is calculated, the controller 20 calculates a duty (duty) corresponding to the calculated target gear ratio e 0 (step 22). When the duty is calculated, the calculated duty is output to the solenoid valve 19 (step 23). Next, the electromagnetic solenoid control returns to the start of the main routine again (step 24).
[0008]
Next, the operation of the toroidal type continuously variable transmission at the time of shifting will be described. Hereinafter, the case of shifting to the deceleration side will be described with reference to FIG.
(1) The solenoid valve 19 is actuated by a signal from the controller 20, the pressure Ps acts on the left end of the sleeve 11 through the conduit 14, and the sleeve 11 moves to the right side of the state of FIG. The relative position of the sleeve 11 and the spool 13 changes, the communication path between the Pd circuit and the PL circuit is opened, and the line pressure PL is supplied from the hydraulic source to the deceleration side cylinder chamber 8b through the conduit 9b. The communication path with the drain circuit is opened, and the hydraulic pressure in the acceleration side cylinder chamber 8a is drained to the tank through the pipe line 9a. As a result, (Pd circuit hydraulic pressure)> (Pu circuit hydraulic pressure), and the trunnion 6 faces downward. Offset. At this time, the power roller 4 starts to tilt in the direction of the arrow down about the tilt shaft 5 by the side slip force.
(2) As the power roller 4 tilts, the spool 13 shifts to the right in FIG. 2 by the combined value of the tilt displacement of the power roller 4 and the tilt angle, and the communication path between the Pd circuit and the PL circuit. When the communication path between the Pu circuit and the drain circuit is narrowed and the relative position between the sleeve 11 and the spool 13 is in a neutral state, Pd and Pu become equal.
(3) However, since the power roller 4 is still offset in the tilt axis direction in the above state, the power roller 4 continues to tilt due to the side slip force. As a result, the spool 13 moves to the right side of the neutral position with respect to the sleeve 11, and conversely, the communication path between the Pd circuit and the drain, and the communication path between the Pu circuit and the PL circuit are opened (Pd circuit hydraulic pressure) < (Pu circuit hydraulic pressure), the trunnion 6 is displaced upward, the displacement of the power roller 4 in the direction of the tilting axis is reduced, and the side slip force is weakened accordingly, and the tilting speed is reduced.
(4) As the trunnion 6 repeats reciprocating up and down around the neutral position, the amplitude decreases, the displacement of the power roller 4 in the direction of the tilt axis is zero, and the position of the spool 13 is neutral with respect to the sleeve 11. At this point, the gear shifting ends.
[0009]
Conventionally, as a linear pulse motor for increasing the resolution, there is one disclosed in Japanese Patent Application Laid-Open No. 63-11058. The linear pulse motor increases the operation resolution of the scale by mounting the fine movement mechanism in two stages on the scale. In addition, the hydraulic control device for an automatic transmission disclosed in Japanese Patent Application Laid-Open No. Hei 2-21063 reduces the hydraulic pressure to a low set value by the pressure reducing means during the operation of the clutch mechanism, and duty-controls this hydraulic pressure to control the clutch pressure. In addition, the shift shock is reduced by returning to high hydraulic pressure after the operation is completed. Furthermore, the variable displacement pump / motor displacement control device disclosed in Japanese Utility Model Laid-Open No. 2-131091 enables high-speed control and high resolution of the variable displacement pump at the same time.
[0010]
[Problems to be solved by the invention]
However, in the toroidal type continuously variable transmission, the resolution of the gear ratio depends on the resolution of the signal output to the solenoid valve 21, but the device that outputs this signal, that is, the solenoid valve drive circuit, has high reliability. The PWM control circuit is generally used because of its low cost. However, since the resolution of a general PWM control circuit is about 1/100, the resolution of the gear ratio is limited to 1/100 or less, and finer gear shift control cannot be performed. A PWM (Pulse Width Modulation) control circuit with higher resolution is also known, but the PWM control circuit becomes expensive and the advantage of PWM control is reduced.
[0011]
[Means for Solving the Problems]
The object of the present invention is to solve the above-mentioned problem, and the output signal from the solenoid valve drive circuit corresponding to a conventional target gear ratio does not change with time, but corresponds to the target gear ratio. By changing the output signal from the solenoid valve drive circuit at a ratio, an electromagnetic solenoid control device that drives the solenoid valve at a resolution that exceeds the resolution of the solenoid valve drive circuit is provided, and the resolution is 1/100 as an electromagnetic solenoid control device. An object is to provide a toroidal continuously variable transmission capable of controlling a gear ratio with higher resolution using a low-priced one.
[0012]
The present invention relates to an electromagnetic solenoid control device for duty-controlling an electromagnetic solenoid that operates a solenoid valve , and at least a vehicle speed, an accelerator opening degree, and an engine speed for a resolution that is an integer of the electromagnetic solenoid limited by a resolution of a PWM control circuit. selected as the largest value twice the integer value of the resolution of the electromagnetic solenoid from zero in accordance with the target control value determined from one or more of, if the integer value selected is even value, the even value outputs one-half as duty control value, also, if the odd value the integer value selected sets of the half-before and after the even values of the odd values as respective duty control value, is set two of the continuously variable transmission electromagnetic the duty control value is output alternately, characterized in that duty driving and controlling the electromagnetic solenoid and The present invention relates to a solenoid control device.
[0013]
Furthermore, the present invention provides an input disk and an output disk that are arranged to face each other, and a power roller that transmits the rotation of the input disk to the output disk by steplessly changing the rotation of the input disk in accordance with a change in tilt angle with respect to the two disks. the displaceable trunnion gyration axis direction of the power rollers rotatably supported, a hydraulic cylinder for displacing the trunnions in the tilt direction, the control valve for controlling the oil pressure to the hydraulic cylinder, the control valve 2. The electromagnetic solenoid control device according to claim 1, further comprising: a sleeve that sets a gear ratio provided; and a solenoid valve that is operated to supply hydraulic oil that displaces the sleeve to the control valve. The present invention relates to a toroidal continuously variable transmission that is actuated by the output of the electromagnetic solenoid.
[0014]
Since the electromagnetic solenoid control device according to the present invention is configured as described above, an effect equivalent to that of using a high-resolution electromagnetic solenoid is achieved by switching and controlling the output signal by a controller while using a low-resolution electromagnetic solenoid. It can be secured. In addition, since this toroidal continuously variable transmission uses a solenoid valve that controls the supply of hydraulic oil using the electromagnetic solenoid control device, a low-resolution electromagnetic solenoid control device with a resolution of about 1/100 is used to change the speed with high resolution. The ratio can be controlled.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an electromagnetic solenoid control device according to the present invention and a toroidal continuously variable transmission to which the electromagnetic solenoid control device is applied will be described below with reference to the drawings. FIG. 1 is a process flow diagram showing an embodiment of an electromagnetic solenoid control device.
[0016]
The electromagnetic solenoid control device according to the present invention performs duty drive control of the electromagnetic solenoid 19, selects an integer value that is zero to twice the resolution of the electromagnetic solenoid 19 as a maximum value from the target control value, and selects the selected integer value. Is an even value, the half of the even value is output as a duty control value, and if the selected integer value is an odd value, the half of the even value before and after the odd value is respectively The electromagnetic solenoid 19 is set as a duty control value, and the two set duty control values are alternately output to perform duty drive control of the electromagnetic solenoid 19.
[0017]
The electromagnetic solenoid control device can be applied to drive the solenoid valve 21 in the toroidal continuously variable transmission shown in FIG. This toroidal-type continuously variable transmission changes the rotation of the input disk 2 in a stepless manner according to changes in the tilt angle with respect to the input disk 2 and the output disk 3, both disks 2, 3 arranged opposite to each other, and outputs them. A power roller 4 that transmits to the disk 3, a trunnion 6 that can be displaced in the direction of the tilting shaft 5 that rotatably supports the power roller 4, and a hydraulic cylinder 8 that moves the piston 7 in order to displace the trunnion 6 in the direction of the tilting shaft 5. (8a, 8b), a control valve 10 that controls the hydraulic pressure to the hydraulic cylinder 8 and a solenoid valve 21 that is operated to supply hydraulic oil that displaces the control valve 10 to the control valve 10. It is actuated by the output of the electromagnetic solenoid 19.
[0018]
The operation of this electromagnetic solenoid control device will be described with reference to FIG. The electromagnetic solenoid control device of this embodiment shows an embodiment applied to an electromagnetic solenoid 19 in a toroidal-type continuously variable transmission, and in a solenoid drive circuit with a resolution of 1/100, the resolution is a resolution equivalent to 1/200 and a transmission ratio. Is to control. When the target speed ratio e0 is determined by the vehicle speed, accelerator opening, engine speed, etc. in the main control routine (step 1), the controller 20 obtains an integer n of 0 to 200 corresponding to the target speed ratio e0 (step 2). . Next, it is determined whether the integer n is an even number or an odd number (step 3). If the integer n is an even number, an output signal duty corresponding to n / 2 is determined (step 4). The output signal duty is output to the electromagnetic solenoid 19 that operates the solenoid valve 21 (step 5). Next, the process returns to the main control routine (step 9).
[0019]
If the integer n is an odd number in step 3, the output signal dutyA corresponding to (n + 1) / 2 and the output signal dutyB corresponding to (n-1) / 2 are determined (step 6) The output signals dutyA and dutyB are alternately output to the electromagnetic solenoid 19 that operates the solenoid valve 21 (steps 7 and 8). Next, the process returns to the main control routine (step 9). Here, if the duty cycle of the output signals dutyA and dutyB is 20 msec, dutyA is output for the first 20 msec and dutyB is output for the next 20 msec. PA and PB are repeated, but the average output pressure for 40 msec becomes an intermediate pressure between PA and PB, that is, (PA + PB) / 2, and the position of the sleeve 11 is also controlled between the positions corresponding to the output signals dutyA and dutyB. The
[0020]
As described above, this electromagnetic solenoid control device is equivalent to the solenoid valve 21 drive circuit having a resolution of 1/100 and controlling the position of the sleeve 11 with a resolution of 1/200. The control ratio resolution of the step transmission can be controlled with a higher resolution of 1/200.
[0021]
【The invention's effect】
Since the electromagnetic solenoid control device and the toroidal continuously variable transmission using the electromagnetic solenoid control device according to the present invention are configured as described above, they have the following effects. That is, as described above, when the selected integer value is an even value, the electromagnetic solenoid control device sets the duty control value to a half of the selected integer value, and when the selected integer value is an odd value, the half of the even value before and after that is set to the duty value. As the control value is output alternately and duty drive control of the electromagnetic solenoid is performed, even if an inexpensive electromagnetic solenoid with a resolution of about 1/100 is used, high-precision fine control equivalent to that using a higher resolution electromagnetic solenoid is performed. It can be carried out. Therefore, when this electromagnetic solenoid control device is applied to an electromagnetic solenoid for driving a solenoid valve for controlling a sleeve in a toroidal-type continuously variable transmission, the position of the sleeve for setting the gear ratio can be controlled more finely. Therefore, the gear ratio can be finely controlled with high precision, and the cost of the toroidal type continuously variable transmission itself can be reduced.
[Brief description of the drawings]
FIG. 1 is a process flow diagram showing an embodiment of the operation of a toroidal continuously variable transmission according to the present invention.
FIG. 2 is a schematic explanatory view showing a hydraulic control device in the toroidal type continuously variable transmission.
FIG. 3 is a process flow diagram showing the operation of a conventional electromagnetic solenoid control device.
[Explanation of symbols]
2 Input disk 3 Output disk 4 Power roller 5 Tilt shaft 6 Trunnion 8 Hydraulic cylinder 10 Control valve 11 Sleeve 19 Electromagnetic solenoid 20 Controller 21 Solenoid valve

Claims (2)

ソレノイド弁を作動する電磁ソレノイドをduty制御する電磁ソレノイド制御装置において、PWM制御回路の分解能により制限される前記電磁ソレノイドの整数である分解能について、少なくとも車速、アクセル開度、エンジン回転数のうち1つ以上から定められる目標制御値に応じて零から前記電磁ソレノイドの分解能の2倍の整数値を最大値として選択し、選択された前記整数値が偶数値であれば、前記偶数値の二分の一をduty制御値として出力し、また、選択された前記整数値が奇数値であれば、前記奇数値の前後の偶数値の二分の一をそれぞれduty制御値として設定し、設定された2つの前記duty制御値を交互に出力して前記電磁ソレノイドをduty駆動制御することを特徴とする無段変速機用電磁ソレノイド制御装置。In an electromagnetic solenoid control apparatus for duty-controlling an electromagnetic solenoid that operates a solenoid valve , at least one of a vehicle speed, an accelerator opening, and an engine speed is selected as a resolution that is an integer of the electromagnetic solenoid limited by a resolution of a PWM control circuit. selected as the largest value twice the integer value of the resolution of the electromagnetic solenoid from zero in accordance with the target control value determined from the above, if the integer value selected is even value, one-half of said even value outputs as the duty control value, also, if the odd value the integer value selected, sets the one-half longitudinal even value of the odd values as respective duty control value, set two of the An electromagnetic solenoid control for a continuously variable transmission, wherein duty control value is alternately output by performing duty drive control of the electromagnetic solenoid. Control device. 対向して配置された入力ディスクと出力ディスク、前記両ディスクに対する傾転角度の変化に応じて前記入力ディスクの回転を無段階に変速して前記出力ディスクに伝達するパワーローラ、前記パワーローラを回転自在に支持する傾転軸方向に変位可能なトラニオン、前記トラニオンを前記傾転軸方向に変位させる油圧シリンダ、前記油圧シリンダへの油圧を制御する制御弁、前記制御弁に設けた変速比を設定するスリーブ、及び前記スリーブを変位させる作動油を前記制御弁に供給するため作動されるソレノイド弁を具備し、前記ソレノイド弁は請求項1に記載の前記電磁ソレノイド制御装置における前記電磁ソレノイドの出力によって作動されることを特徴とするトロイダル型無段変速機。Oppositely disposed input disk and output disk, power roller for transmitting the rotation of the input disk in accordance with a change in tilt angle with respect to the discs to the output discs by steplessly, rotating the power roller freely displaceable trunnion gyration axis direction for supporting a hydraulic cylinder for displacing the trunnions in the tilt direction, the control valve for controlling the oil pressure to the hydraulic cylinder, setting the gear ratio provided in the control valve And a solenoid valve that is actuated to supply hydraulic oil that displaces the sleeve to the control valve, the solenoid valve being driven by an output of the electromagnetic solenoid in the electromagnetic solenoid control device according to claim 1. A toroidal-type continuously variable transmission that is actuated.
JP03311396A 1996-01-29 1996-01-29 Electromagnetic solenoid control device and toroidal continuously variable transmission using the same Expired - Fee Related JP3743049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03311396A JP3743049B2 (en) 1996-01-29 1996-01-29 Electromagnetic solenoid control device and toroidal continuously variable transmission using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03311396A JP3743049B2 (en) 1996-01-29 1996-01-29 Electromagnetic solenoid control device and toroidal continuously variable transmission using the same

Publications (2)

Publication Number Publication Date
JPH09203450A JPH09203450A (en) 1997-08-05
JP3743049B2 true JP3743049B2 (en) 2006-02-08

Family

ID=12377603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03311396A Expired - Fee Related JP3743049B2 (en) 1996-01-29 1996-01-29 Electromagnetic solenoid control device and toroidal continuously variable transmission using the same

Country Status (1)

Country Link
JP (1) JP3743049B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233089A1 (en) 2002-07-19 2004-02-05 Daimlerchrysler Ag Gearbox with continuously variable transmission

Also Published As

Publication number Publication date
JPH09203450A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
US6932739B2 (en) Continuously variable transmission apparatus
US20030216216A1 (en) Apparatus and method for controlling transmission ratio of toroidal-type continuously variable transmission unit for continuously variable transmission apparatus
JP2002039351A (en) Control device for continuously variable transmission with infinite transmission gear ratio
JP2790627B2 (en) Control method and control device for belt continuously variable transmission
JP2004308853A (en) Continuously variable transmission
JP2001324001A (en) Shift control device of continuously variable transmission
EP1069348A2 (en) Controller for infinite speed ratio transmission
JP3743049B2 (en) Electromagnetic solenoid control device and toroidal continuously variable transmission using the same
JP2004052861A (en) Toroidal type continuously variable transmission
JP3460676B2 (en) Control device for infinitely variable speed ratio transmission
JP4035317B2 (en) Toroidal continuously variable transmission
JP4670569B2 (en) Continuously variable transmission
JPH0539847A (en) Speed change control device for toroidal continuously variable transmission
JP4696472B2 (en) Continuously variable transmission
JPH05263913A (en) Speed change control method for automatic transmission for vehicle
JPH09210164A (en) Troidal continuously variable transmission
JP4940589B2 (en) Continuously variable transmission
JP3790192B2 (en) Toroidal continuously variable transmission
JP3517960B2 (en) Transmission control device for toroidal continuously variable transmission
JP4253891B2 (en) Powertrain control device
JP2004060717A (en) Toroidal stepless change gear
JPH10274301A (en) Toroidal continuously variable transmission
JP2788633B2 (en) Belt continuously variable transmission
JP2000018353A (en) Continuously variable transmission
JPH11247984A (en) Transmission control device for indefinite gear ratio type continuously variable transmission

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees