JP3741455B2 - Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same - Google Patents

Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same Download PDF

Info

Publication number
JP3741455B2
JP3741455B2 JP26645994A JP26645994A JP3741455B2 JP 3741455 B2 JP3741455 B2 JP 3741455B2 JP 26645994 A JP26645994 A JP 26645994A JP 26645994 A JP26645994 A JP 26645994A JP 3741455 B2 JP3741455 B2 JP 3741455B2
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
zsm
type
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26645994A
Other languages
Japanese (ja)
Other versions
JPH08126844A (en
Inventor
隆 角田
光弘 関口
節隆 金島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP26645994A priority Critical patent/JP3741455B2/en
Priority to TW84110909A priority patent/TW305876B/zh
Publication of JPH08126844A publication Critical patent/JPH08126844A/en
Application granted granted Critical
Publication of JP3741455B2 publication Critical patent/JP3741455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【産業上の利用分野】
本発明は、炭化水素の接触転化触媒及び接触転化方法に関する。さらに詳しくは、炭化水素原料を接触分解する触媒及びそれを使用することにより、石油化学原料として価値のあるエチレンを主成分とする低級オレフィンとベンゼン、トルエン、キシレンを主成分とする単環芳香族炭化水素を効率よく安定に製造する方法に関する。
【0002】
【従来の技術】
従来より種々の炭化水素原料を、固体酸触媒、特に酸あるいはアンモニウム塩などで脱アルカリした酸型のゼオライトと接触させ、クラッキング、異性化、不均化、芳香族化等の反応を用いて転化させることはよく知られている。
代表的なものとしては、Y型ゼオライトを用いて軽油、重質油等をガソリン留分に転化することは、石油精製で広く実施されている。また、ZSM−5型ゼオライトを用いて軽質炭化水素を芳香族化合物に転化する方法が提案されている。例えば特開昭49ー41322号公報、特開昭50ー49233号公報、特開昭50ー4029号公報等が挙げられる。更に特開昭60ー222428公報、特開平3ー130236公報等には、ZSM−5型ゼオライトを用いて軽質炭化水素を低級オレフィンと芳香族炭化水素に転化する方法が、また米国特許第4361502号明細書、特開平2ー184638号公報には、銀を含有する酸型のゼオライトを用いて軽質炭化水素を低級オレフィンに転化する方法が提案されている。
【0003】
従来より炭化水素原料から低級オレフィンと単環芳香族炭化水素を得る方法としては、熱分解法が広く用いられているが、熱分解であるが故に過酷な反応条件を必要とするため、化学原料としては使いにくいメタンの副生が多い。更に分解生成物中のエチレン、プロピレン等のオレフィン類、ベンゼン、トルエン等の単環芳香族炭化水素類の製品得率は、ほぼ限定された割合を有しており収率構造上の融通性に乏しく、またこれらの合計収率(有効製品収率)は60%程度に止まる等の問題を有している。
【0004】
従ってこれら熱分解法の問題点を解決するため、従来より固体酸触媒、特に酸型のゼオライト触媒を用いる炭化水素の接触分解法が検討されてきた。
しかしながら公知の方法はいずれも、化学原料として有用なエチレンを主成分とする低級オレフィン類(炭素数2〜4のオレフィン、即ちエチレン、プロピレン、ブテン類)ならびに単環芳香族炭化水素類(炭素数6〜9の芳香族でベンゼン及びアルキルベンゼン)をともに効率よく、かつ安定に、しかもエチレンを主成分とする低級オレフィンを単環芳香族炭化水素より高収率に得る方法としては不充分である。
【0005】
例えば、Y型ゼオライトを用いる接触転化法では価値の低い軽質パラフィンの生成が多い上、芳香族炭化水素類の生成は極めて少ない。ZSM−5型ゼオライトを用いる方法では一般に、芳香族炭化水素類の収率は比較的高いが、分解ガス組成はエタン、プロパン等の軽質パラフィン類が主体で、低級オレフィンの選択性に劣る。また低級オレフィンの選択性を向上させるため、銅あるいは銀を担持する方法(特開平2ー1413号公報、特開平2ー184638号公報)が知られているが、この方法ではプロピレン収率は向上するもののエチレンや芳香族炭化水素の収率は低い。更に、上記の酸型ゼオライトによる炭化水素の接触転化法に於いては、触媒上にコークが蓄積するため、頻繁にコークを燃焼除去する再生操作が必要となるが、この再生操作の繰り返しによって触媒の活性が永久劣化するという問題がある。これはコークの燃焼によって生じた水蒸気によりゼオライトが加水分解され、ゼオライト結晶からアルミニウムが脱離し、これに伴い活性点であるプロトンが消失することに起因する現象であり、この種の反応に酸型ゼオライトを利用しようとする場合、避けては通れない大きな課題となっている。
【0006】
このため酸型ゼオライトに銀カチオンを導入し、上記の活性低下を抑制する方法(特開昭59ー117584号公報)が提案されているが、その抑制効果が充分でないことに加え、収率面に於いても低級オレフィンの選択性が低いという問題がある。
【0007】
【発明が解決しようとする課題】
本発明は、エチレンを主成分とする低級オレフィンと単環芳香族炭化水素とをバランスよくかつ高収率に得ることが可能で、しかも高温水蒸気による劣化が少なく、安定な炭化水素転化触媒、並びに上記触媒を用いた製造法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記問題点を解決し、1種又は2種以上の炭化水素を含む原料から低級オレフィン類及び単環芳香族炭化水素類を効率よく、かつエチレンを主成分とする低級オレフィン類を単環芳香族炭化水素類よりも高収率に得る方法について鋭意検討を重ねた。その結果、実質的にプロトンを持たないアルカリ金属イオン型及び/又はアルカリ土類金属イオン型のゼオライトに銀を導入した触媒を用いると、驚くべきことに低級オレフィン及び単環芳香族炭化水素が効率よく安定に、かつエチレンを主成分とする低級オレフィンが単環芳香族炭化水素類よりも高収率に得られることを見いだした。
【0009】
即ち、本発明は、1)SiO2/Al23モル比が20以上である実質的にプロトンを持たないアルカリ金属イオン型及び/又はアルカリ土類金属イオン型の中間細孔径ゼオライトであり、上記ゼオライトが銀を伴うことを特徴とする炭化水素転化触媒、2)中間細孔径ゼオライトがZSM - 5である前記1)記載の炭化水素転化触媒、3)前記1)、2)のいずれかに記載の触媒を、1種又は2種以上の炭化水素を含む原料に550〜750℃の温度で接触させることを特徴とする低級オレフィン及び単環芳香族炭化水素の製造方法であって、低級オレフィンを単環芳香族炭化水素より高収率で得る製造方法、である。以下、本発明をより詳細に説明する。
【0010】
本発明に用いる中間細孔径ゼオライトは、A型ゼオライトで代表される小細孔径ゼオライト、X型、Y型ゼオライトで代表される大細孔径ゼオライトの中間の細孔径を有するもので、有効細孔径として約5Å〜6.5Åの範囲のものが好ましい。これらの代表例としては、ZSM−5,ZSM−8,ZSM−11,ZSM−12,ZSM−21,ZSMー23、ZSM−35,ZSM−38等が挙げられるが、好ましいものとしては、ZSM−5,ZSM−11,ZSM−38であり、ZSM−5が特に好ましい。また、P.A.Jacobs and J.A.Martens,「Stud.Surf.Sci.Catal.」33,P.167ー215(1987オランダ)に記載のZSM−5,11類似のゼオライトを用いることもできる。
【0011】
また、これらゼオライトのSiO2/Al23モル比は、触媒としての安定性から20以上が必要である。SiO2/Al23モル比の上限は特に限定されるものではないが、一般的には、SiO2/Al23モル比が20〜500程度のものが用いられる。
本発明の触媒は、中間細孔径ゼオライトがアルカリ金属イオン型及び/又はアルカリ土類金属イオン型であることが必要であり、好ましくはアルカリ金属イオン型であり、Na及び/又はKイオン型の中間細孔径ゼオライトが特に好ましい。中間細孔径ゼオライトをアルカリ金属イオン型及び/又はアルカリ土類金属イオン型にする方法については特に制約はなく、公知のイオン交換法によって実施すればよいが、いずれにしても実質的にゼオライトの酸性サイトがなくなるまで十分にアルカリ金属イオン及び/又はアルカリ土類金属イオンでイオン交換を行うことが重要である。
【0012】
本発明の触媒は、上記ゼオライトに銀を導入することが必要である。該ゼオライトに銀を導入する方法としては、通常行われているイオン交換法、含浸法、混練り法等の手段が挙げられるが、イオン交換法が特に好ましい。この際、導入された銀の少なくとも一部はカチオンとしてゼオライト中に存在させる。使用する金属塩としては、例えば硝酸銀、酢酸銀、硫酸銀、等が挙げられる。ゼオライトに対する銀の含有量は、0.1〜10重量%であることが好ましく、さらに好ましくは0.2〜5重量%である。銀の含有量が0.1重量%以下では活性が充分ではなく、10重量%以上加えてもそれ以上性能が向上しない。
【0013】
中間細孔径ゼオライトにアルカリ金属イオン及び/又はアルカリ土類金属イオンと銀を導入する順序、回数には特に制約はなく、ゼオライトをアルカリ金属イオン型及び/又はアルカリ土類金属イオン型にした後、銀を導入してもよく、逆にゼオライトに銀を導入した後、ゼオライトをアルカリ金属イオン型及び/又はアルカリ土類金属イオン型にしてもよい。但し、いずれの場合に於いても調製後のゼオライトが、実質的にプロトンをもたないように調製することが重要である。
【0014】
尚、これらゼオライトは、必要に応じて焼成してから用いることができる。更に、使用に際し適切な粒子形状を付与するため、例えばアルミナ、シリカ、シリカーアルミナ、ジルコニア、チタニア、ケイソウ土、粘土等の耐火性無機酸化物の多孔性母体をマトリックスあるいはバインダーとして配合し、成型して用いることもできる。また、水添又は脱水素金属成分を更に添加して用いてもよい。
【0015】
本発明の製造法に於ける1種又は2種以上の炭化水素を含む原料は、炭素数2〜約25のノルマルパラフィン、イソパラフィン、オレフィン、シクロパラフィン、側鎖アルキル基を有するシクロパラフィン類等を主成分として含むものであり、例えばエタン、プロパン、ブタン、ブテン等のガス類、ペンタン、ペンテン、ヘキサン、ヘプタン、オクタン単独及びこれらの混合物を主体とする軽質ナフサ、重質ナフサ、直留ナフサ、C10〜C20を主に含む灯軽油留分、C19〜C25からなる減圧軽油留分等が挙げられる。特にプロパン、ブタン、ブテン、ペンタン、ペンテン、ナフサ留分が好ましいものとして挙げられる。
【0016】
本発明の製造法は、上記の炭化水素原料を本発明の炭化水素転化触媒に高温で接触させることにより、低級オレフィン及び単環芳香族炭化水素を製造することができる。
本発明の製造法に於ける反応条件は、原料炭化水素により異なるが、550〜750℃の温度で、0.1〜10気圧の炭化水素分圧であることが好ましく、さらに好ましくは、570〜700℃の温度で、0.2〜8気圧の炭化水素分圧が採用される。 また、原料炭化水素と触媒との接触時間は、原料炭化水素の熱分解性と反応温度を考慮し、熱分解の影響が過大にならないように設定する必要があるが、通常は1秒以下が適当である。
【0017】
本発明の製造法は、固定床式、流動床式あるいは気流搬送式等反応様式は問わないが、連続的に触媒の再生を実施する流動接触分解(FCC)型の反応様式が好適に利用できる。
尚、触媒の再生は、通常空気又は酸素を含むイナートガス中、400〜800℃の温度で触媒上のコークを燃焼除去することにより実施することができる。FCC型の反応装置を用いる場合には、反応熱供給の必要から反応温度より高い再生温度が必要となるが、本発明の触媒は水熱安定性が高いため、このような高温の再生に於いても触媒の劣化が小さく安定である。
【0018】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
【0019】
【実施例1】
水熱合成後、濾過、水洗、乾燥を行い、空気中550℃で焼成して調製したZSM−5型ゼオライト(SiO2/Al23=126)を3.4N塩化ナトリウム水溶液(10ml/g−ゼオライト)中で90℃、3時間イオン交換し、濾過水洗後110℃で乾燥してNa+型ZSM−5を調製した。続いてこのNa+型ZSM−5を0.02N硝酸銀水溶液(10ml/g−ゼオライト)を用いて室温、3時間イオン交換処理した。水洗、乾燥後、空気中550℃で焼成して触媒1を調製した。化学分析の結果、その組成は無水ベースにおける酸化物のモル比で表して次の組成を有していた。
0.49Ag2O,0.61Na2O,Al23,126SiO2
【0020】
【実施例2】
実施例1で得られた触媒を用いて、炭化水素転化性能を調べた。
石英反応管(内径16mmφ)に8〜16メッシュに整粒した触媒2gを充填し、大気圧下窒素を100cc/min流通させ所定温度まで昇温した。次に窒素流通下において、原料のナフサ(比重0.684、組成:パラフィン79.0重量%、ナフテン15.0重量%、芳香族炭化水素5.9重量%、オレフィン0.1重量%)を31.3cc/hrで反応器に供給した。ナフサ供給開始6分後の反応生成物を直接ガスクロマトグラフに導入して組成を分析した。680℃に於ける反応結果を比較例1,2、参考例1の結果とともに表1に示す。
【0021】
表1からNa+型ZSM−5ゼオライトは、ほとんどナフサの分解活性を示さないが、これに銀を導入すると分解活性が飛躍的に向上すること、更にその収率構造は、酸型のZSM−5に銀を導入して得たAgH+型ZSM−5とは大幅に異なり、エチレンを主体とした低級オレフィンの選択性が顕著に向上することがわかる。
【0022】
【比較例1】
実施例1で得られたNa+型ZSM−5をそのまま触媒(比較触媒1)とした他は実施例2と同様の条件でナフサの転化反応を行った。結果を表1に示す。
【0023】
【比較例2】
実施例1で用いたZSM−5型ゼオライト(SiO2/Al23=126)を1N硝酸水溶液(10ml/g−ゼオライト)中で室温、3時間イオン交換し、濾過水洗後110℃で乾燥してH+型ZSM−5を調製した。続いてこのH+型ZSM−5を0.1N硝酸銀水溶液(10ml/g−ゼオライト)を用いて室温、3時間イオン交換処理した。水洗、乾燥後、空気中550℃で焼成して、銀を含むH+型ZSM−5触媒(比較触媒2)を調製した。化学分析の結果、その組成は無水ベースにおける酸化物のモル比で表して次の組成を有していた。
0.48Ag2O,Al23,126SiO2
この触媒を用いて、実施例2と同様の条件でナフサの転化反応を行った結果を表1に示す。
【0024】
【参考例1】
ゼオライトの代わりに磁器製ラシヒリング(外径3mmφ、長さ3mm)を充填し、実施例2と同様にナフサの熱分解を680℃の条件にて実施した。結果を表1に示す。
【0025】
【実施例3】
硝酸銀水溶液の濃度を0.1Nに変えた他は実施例1と同様にして、銀を含むNa+型ZSM−5ゼオライト触媒(触媒2)を調製した。化学分析の結果、その組成は無水ベースにおける酸化物のモル比で表して次の組成を有していた。
0.88Ag2O,0.15Na2O,Al23,126SiO2
【0026】
【実施例4】
実施例3で得られた触媒を用いて、反応温度を660℃とする他は実施例2と同様の条件でナフサの転化反応を行った。結果を実施例5,7,8、比較例3の結果とともに表2に示す。表2に示す通り、本発明の方法によると価値の低いメタン及び重質分(C +炭化水素)の収率は熱分解よりも低く抑えながら、有効製品収率(エチレン、プロピレン、C芳香族炭化水素の合計収率)を熱分解よりも大幅に高くすることができ、選択性に優れることがわかる。
【0027】
【実施例5】
反応温度を680℃に変えた以外は実施例4と同様にして、ナフサの転化反応を行った。結果を表2に示す。
【0028】
【実施例6】
塩化ナトリウムを塩化カリウムに変えた以外は実施例3と同様にして、銀を含むK+型ZSM−5ゼオライト触媒(触媒3)を調製した。化学分析の結果、その組成は無水ベースにおける酸化物のモル比で表して次の組成を有していた。
0.60Ag2O,0.44K2O,Al23,126SiO2
【0029】
【実施例7】
触媒3を用いて実施例2と同様の条件でナフサの転化反応を行った。結果を表2に示す。
【0030】
【実施例8】
触媒充填量を2gから3gに変え、反応温度を680℃とした以外は実施例7と同様の条件でナフサの転化反応を実施した。結果を表2に示す。
【0031】
【比較例3】
反応温度を790℃とした以外は参考例1と同様の条件でナフサの熱分解を行った。結果を表2に示す。
【0032】
【実施例9】
Na+型ZSM−5ゼオライト(SiO2/Al23=30)を0.03N硝酸銀水溶液(10ml/g−ゼオライト)を用いて室温、3時間イオン交換処理した。水洗、乾燥後、空気中550℃で焼成して触媒4を調製した。化学分析の結果、その組成は無水ベースにおける酸化物のモル比で表して次の組成を有していた。
0.24Ag2O,0.79Na2O,Al23,30SiO2
【0033】
【実施例10】
触媒4を用いて、実施例2と同様の条件でナフサの転化反応を行った。反応結果を表3に示す。
【0034】
【比較例4】
実施例9で用いたNa+型ZSM−5型ゼオライトを1N硝酸水溶液(10ml/g−ゼオライト)を用いて、室温、3時間イオン交換を行い、H+型ZSM−5ゼオライトとした。続いて実施例9と同様の条件で銀含有H+型ZSM−5ゼオライト触媒(比較触媒3)を調製した。化学分析の結果、その組成は無水ベースにおける酸化物のモル比で表して次の組成を有していた。
0.16Ag2O,Al23,30SiO2
この触媒を用いて、触媒充填量を1gに変えた以外は実施例10と同様の条件で、転化反応を実施した結果を表3に示す。
【0035】
【実施例11】
水熱合成後、濾過、水洗、乾燥を行い、空気中550℃で焼成して調製したZSM−5型ゼオライト(SiO2/Al23=175)を3.4N塩化ナトリウム水溶液(10ml/g−ゼオライト)中で90℃、3時間イオン交換し、濾過水洗後110℃で乾燥してNa+型ZSM−5を調製した。続いてこのNa+型ZSM−5を、1N酢酸バリウム水溶液(10ml/g−ゼオライト)中で90℃、2時間イオン交換し、濾過水洗後110℃で乾燥してBa2+Na+型ZSM−5を調製した。
【0036】
続いてこのBa2+Na+型ZSM−5を、0.1N硝酸銀水溶液(10ml/g−ゼオライト)を用いて室温、3時間イオン交換処理した。水洗、乾燥後、空気中550℃で焼成して触媒5を調製した。化学分析の結果、その組成は無水ベースにおける酸化物のモル比で表して次の組成を有していた。
0.78Ag2O,0.20Na2O,0.02BaO,Al23,175SiO2
触媒5を用いて、実施例2と同様の条件でナフサの転化反応を行った。反応結果を表3に示す。
【0037】
【実施例12】
高温水蒸気による触媒劣化に対する耐性を比較するため以下の実験を行った。実施例3で調製した触媒2と同一の触媒2gを石英反応管に充填し、大気圧下窒素を485cc/minの流量で流し、触媒層の温度を750℃に設定した。引き続いて純水を15.6cc/hrの流量で2時間供給し、750℃、水蒸気分圧0.4atmの条件で2時間スチーミング処理を行った。
【0038】
次にこの触媒の反応活性を評価するため実施例2と同様の条件でナフサの転化反応を行い、ナフサ中のn−ペンタンの転化率から下式によりナフサ分解反応速度定数k(秒)を求めた。結果を比較例5,6の結果とともに表4に示す。尚、接触時間の計算には反応器入り出平均の組成を用い、空塔基準で行った。
k=θー1×ln{1/(1−n−ペンタン転化率)}
ここで θ : 接触時間(秒)
n−ペンタン転化率={ナフサ中のn−ペンタン(重量%)−反応生成物中のn−ペンタン(重量%)}÷ナフサ中のn−ペンタン(重量%)
【0039】
【比較例5】
比較例2で用いたH+型ZSM−5ゼオライトを触媒とし、充填量を4g,スチーミング処理時間を40分とした以外は実施例12と同様にして実験を行った。結果を表4に示す。
【0040】
【比較例6】
比較例2で用いた比較触媒2を触媒とした以外は実施例12と同様の条件で実験を行った。結果を表4に示す。
表4に示すとおり、比較例5で用いた酸型のゼオライトは、高温水蒸気に接すると短時間で活性が著しく低下するのに対して、本発明の触媒は活性低下が極めて小さく安定であることがわかる。また本発明の触媒は、酸型のゼオライトに銀を含有させた触媒(比較触媒2)に対しても耐劣化性が更に大きく向上していることがわかる。
【0041】
【表1】

Figure 0003741455
【0042】
【表2】
Figure 0003741455
【0043】
【表3】
Figure 0003741455
【0044】
【表4】
Figure 0003741455
【0045】
【発明の効果】
本発明の炭化水素転化触媒を、炭化水素原料の接触分解に用いると、従来の方法に比べて、エチレンを主成分とする低級オレフィンと単環芳香族炭化水素をバランスよく且つ高収率に得ることが可能である。しかも高温水蒸気による触媒劣化に対して耐性が高いため、触媒の活性低下も少なく安定な運転が可能となる。
【0046】
従って、本発明の触媒を用いた製造法は、石油化学工業、石油精製に広く利用することができ、特にエチレン、プロピレン等の低級オレフィンや芳香族化合物、高オクタン価ガソリンの製造に有効に利用できる。[0001]
[Industrial application fields]
The present invention relates to a catalytic catalytic conversion catalyst and a catalytic conversion method. More specifically, a catalyst for catalytic cracking of hydrocarbon raw materials and the use of the catalyst, lower olefins mainly composed of ethylene, which are valuable as petrochemical raw materials, and monocyclic aromatics composed mainly of benzene, toluene and xylene. The present invention relates to a method for producing hydrocarbons efficiently and stably.
[0002]
[Prior art]
Conventionally, various hydrocarbon raw materials are brought into contact with solid acid catalysts, especially acid-type zeolites that have been dealkalized with acids or ammonium salts, and converted using reactions such as cracking, isomerization, disproportionation, and aromatization. It is well known.
As a typical example, conversion of light oil, heavy oil and the like into a gasoline fraction using Y-type zeolite is widely practiced in petroleum refining. Further, a method for converting light hydrocarbons into aromatic compounds using ZSM-5 type zeolite has been proposed. For example, JP-A-49-41322, JP-A-50-49233, JP-A-50-4029 and the like can be mentioned. Further, JP-A-60-222428 and JP-A-3-130236 disclose a method of converting light hydrocarbons into lower olefins and aromatic hydrocarbons using ZSM-5 type zeolite, and US Pat. No. 4,361,502. In the specification, Japanese Patent Laid-Open No. 2-184638, a method for converting light hydrocarbons into lower olefins using an acid-type zeolite containing silver is proposed.
[0003]
Conventionally, as a method for obtaining lower olefins and monocyclic aromatic hydrocarbons from hydrocarbon raw materials, pyrolysis has been widely used, but because it is pyrolysis, it requires harsh reaction conditions. There are many by-products of methane that are difficult to use. Furthermore, the product yield of olefins such as ethylene and propylene, and monocyclic aromatic hydrocarbons such as benzene and toluene in the decomposition products has a nearly limited ratio, and yield yield is flexible. In addition, the total yield (effective product yield) is limited to about 60%.
[0004]
Therefore, in order to solve these problems of the thermal decomposition method, hydrocarbon catalytic cracking methods using a solid acid catalyst, particularly an acid type zeolite catalyst, have been studied.
However, all of the known methods are lower olefins based on ethylene (olefins having 2 to 4 carbon atoms, that is, ethylene, propylene, butenes) and monocyclic aromatic hydrocarbons (carbon number) which are useful as chemical raw materials. It is not sufficient as a method for obtaining a lower olefin having 6 to 9 aromatic benzene and alkyl benzene both efficiently and stably and having ethylene as a main component in a higher yield than a monocyclic aromatic hydrocarbon.
[0005]
For example, catalytic conversion using Y-type zeolite produces a lot of low-value light paraffin and produces very little aromatic hydrocarbons. In general, in the method using ZSM-5 type zeolite, the yield of aromatic hydrocarbons is relatively high, but the cracked gas composition is mainly light paraffins such as ethane and propane, and the selectivity of lower olefins is poor. In order to improve the selectivity of lower olefins, methods for supporting copper or silver (Japanese Patent Laid-Open Nos. 2-1413 and 2-184638) are known, but this method improves propylene yield. However, the yield of ethylene and aromatic hydrocarbons is low. Furthermore, in the above catalytic catalytic conversion of hydrocarbons with acid-type zeolite, coke accumulates on the catalyst, and thus a regeneration operation that frequently burns and removes coke is necessary. There is a problem that the activity of the is permanently deteriorated. This is due to the fact that zeolite is hydrolyzed by water vapor generated by the combustion of coke, aluminum is desorbed from the zeolite crystals, and the proton that is the active site disappears. When trying to use zeolite, it is a big problem that cannot be avoided.
[0006]
For this reason, a method of introducing a silver cation into an acid-type zeolite to suppress the above-described decrease in activity (JP-A-59-117484) has been proposed. However, there is a problem that the selectivity of the lower olefin is low.
[0007]
[Problems to be solved by the invention]
The present invention is able to obtain a lower olefin and a monocyclic aromatic hydrocarbon having ethylene as a main component in a well-balanced and high yield, and is less deteriorated by high-temperature steam, a stable hydrocarbon conversion catalyst, and It aims at providing the manufacturing method using the said catalyst.
[0008]
[Means for Solving the Problems]
The present inventors have solved the above-mentioned problems, efficiently lower olefins and monocyclic aromatic hydrocarbons from a raw material containing one or more hydrocarbons, and lower olefins mainly composed of ethylene. We have earnestly studied how to obtain higher yields than monocyclic aromatic hydrocarbons. As a result, surprisingly, lower olefins and monocyclic aromatic hydrocarbons are more efficient when using a catalyst in which silver is introduced into an alkali metal ion type and / or alkaline earth metal ion type zeolite having substantially no proton. It has been found that lower olefins mainly composed of ethylene can be obtained in a higher yield than monocyclic aromatic hydrocarbons.
[0009]
That is, the present invention is 1) an alkali metal ion type and / or alkaline earth metal ion type intermediate pore size zeolite having a SiO 2 / Al 2 O 3 molar ratio of 20 or more and having substantially no protons , The hydrocarbon conversion catalyst characterized in that the zeolite is accompanied by silver , 2) the hydrocarbon conversion catalyst according to 1) above, wherein the intermediate pore size zeolite is ZSM - 5, 3) the above 1), 2) A process for producing lower olefins and monocyclic aromatic hydrocarbons, wherein the catalyst described above is brought into contact with a raw material containing one or more hydrocarbons at a temperature of 550 to 750 ° C. Is obtained in a higher yield than monocyclic aromatic hydrocarbons . Hereinafter, the present invention will be described in more detail.
[0010]
The intermediate pore size zeolite used in the present invention has an intermediate pore size between a small pore size zeolite represented by A-type zeolite and a large pore size zeolite represented by X-type and Y-type zeolite. Those in the range of about 5 to 6.5 inches are preferred. Typical examples of these include ZSM-5, ZSM-8, ZSM-11, ZSM-12, ZSM-21, ZSM-23, ZSM-35, ZSM-38, etc. Preferred examples include ZSM. -5, ZSM-11 and ZSM-38, with ZSM-5 being particularly preferred. P.P. A. Jacobs and J.M. A. Martens, "Stud.Surf.Sci.Catal." 33, P. ZSM-5,11-like zeolite described in 167-215 (1987 Netherlands) can also be used.
[0011]
Also, the SiO 2 / Al 2 O 3 molar ratio of these zeolites needs to be 20 or more in view of stability as a catalyst. The upper limit of the SiO 2 / Al 2 O 3 molar ratio is not particularly limited, but generally those having a SiO 2 / Al 2 O 3 molar ratio of about 20 to 500 are used.
The catalyst of the present invention requires that the intermediate pore size zeolite be of the alkali metal ion type and / or alkaline earth metal ion type, preferably the alkali metal ion type, and the intermediate of Na and / or K ion type. A pore size zeolite is particularly preferred. There is no particular limitation on the method for converting the intermediate pore diameter zeolite into the alkali metal ion type and / or alkaline earth metal ion type, and it may be carried out by a known ion exchange method. It is important to perform ion exchange sufficiently with alkali metal ions and / or alkaline earth metal ions until there are no sites.
[0012]
The catalyst of the present invention needs to introduce silver into the zeolite . Examples of a method for introducing silver into the zeolite include commonly used means such as an ion exchange method, an impregnation method, and a kneading method. The ion exchange method is particularly preferable. At this time, at least a part of the introduced silver is present in the zeolite as a cation. Examples of the metal salt to be used include silver nitrate, silver acetate, silver sulfate and the like . The content of silver against the zeolite is preferably 0.1 to 10 wt%, more preferably from 0.2 to 5 wt%. When the silver content is 0.1% by weight or less, the activity is not sufficient, and even when 10% by weight or more is added, the performance is not further improved.
[0013]
There are no particular restrictions on the order and number of times of introducing alkali metal ions and / or alkaline earth metal ions and silver into the medium pore diameter zeolite, and after making the zeolite into an alkali metal ion type and / or alkaline earth metal ion type , Silver may be introduced. Conversely, after introducing silver into the zeolite, the zeolite may be made into an alkali metal ion type and / or an alkaline earth metal ion type. However, in any case, it is important that the prepared zeolite is prepared so as to have substantially no proton.
[0014]
These zeolites can be used after calcining if necessary. Furthermore, in order to give an appropriate particle shape in use, a porous matrix of a refractory inorganic oxide such as alumina, silica, silica-alumina, zirconia, titania, diatomaceous earth, clay, etc. is blended as a matrix or binder and molded. It can also be used. Further, a hydrogenated or dehydrogenated metal component may be further added and used.
[0015]
The raw material containing one or more hydrocarbons in the production method of the present invention includes normal paraffins having 2 to about 25 carbon atoms, isoparaffins, olefins, cycloparaffins, cycloparaffins having side chain alkyl groups, and the like. Light naphtha, heavy naphtha, straight-run naphtha mainly composed of gases such as ethane, propane, butane, butene, pentane, pentene, hexane, heptane, octane alone and mixtures thereof. C 10 -C 20 kerosene and gas oil fraction mainly containing vacuum gas oil fraction and the like consisting of C 19 -C 25. Particularly preferred are propane, butane, butene, pentane, pentene and naphtha fractions.
[0016]
In the production method of the present invention, lower olefins and monocyclic aromatic hydrocarbons can be produced by bringing the above hydrocarbon raw materials into contact with the hydrocarbon conversion catalyst of the present invention at a high temperature.
Although the reaction conditions in the production method of the present invention vary depending on the raw material hydrocarbon, it is preferably a hydrocarbon partial pressure of 0.1 to 10 atm at a temperature of 550 to 750 ° C., more preferably 570 to 570. A hydrocarbon partial pressure of 0.2-8 atm is employed at a temperature of 700 ° C. The contact time between the raw material hydrocarbon and the catalyst needs to be set so that the influence of the thermal decomposition does not become excessive in consideration of the thermal decomposability of the raw material hydrocarbon and the reaction temperature. Is appropriate.
[0017]
The production method of the present invention is not limited to a reaction mode such as a fixed bed type, a fluidized bed type, or an air flow conveyance type, but a fluid catalytic cracking (FCC) type reaction mode in which catalyst regeneration is continuously performed can be suitably used. .
The regeneration of the catalyst can be carried out by burning and removing coke on the catalyst at a temperature of 400 to 800 ° C. in an inert gas usually containing air or oxygen. When an FCC type reactor is used, a regeneration temperature higher than the reaction temperature is required due to the necessity of supply of reaction heat, but the catalyst of the present invention has high hydrothermal stability. Even if it is, the deterioration of the catalyst is small and stable.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0019]
[Example 1]
After hydrothermal synthesis, ZSM-5 type zeolite (SiO 2 / Al 2 O 3 = 126) prepared by filtration, washing with water and drying and calcining at 550 ° C. in air was added to a 3.4N sodium chloride aqueous solution (10 ml / g). -Zeolite) was ion exchanged at 90 ° C for 3 hours, washed with filtered water and dried at 110 ° C to prepare Na + type ZSM-5. Subsequently, this Na + -type ZSM-5 was subjected to ion exchange treatment at room temperature for 3 hours using a 0.02N aqueous silver nitrate solution (10 ml / g-zeolite). After washing with water and drying, catalyst 1 was prepared by calcination in air at 550 ° C. As a result of chemical analysis, the composition had the following composition expressed as a molar ratio of oxides on an anhydrous basis.
0.49Ag 2 O, 0.61 Na 2 O, Al 2 O 3 , 126SiO 2
[0020]
[Example 2]
Using the catalyst obtained in Example 1, hydrocarbon conversion performance was examined.
A quartz reaction tube (inner diameter: 16 mmφ) was filled with 2 g of a catalyst having a particle size of 8 to 16 mesh, and nitrogen was passed at 100 cc / min under atmospheric pressure to raise the temperature to a predetermined temperature. Next, under the flow of nitrogen, the raw material naphtha (specific gravity 0.684, composition: paraffin 79.0 wt%, naphthene 15.0 wt%, aromatic hydrocarbon 5.9 wt%, olefin 0.1 wt%) The reactor was fed at 31.3 cc / hr. The reaction product 6 minutes after the start of naphtha supply was directly introduced into the gas chromatograph and the composition was analyzed. The reaction results at 680 ° C. are shown in Table 1 together with the results of Comparative Examples 1 and 2 and Reference Example 1.
[0021]
From Table 1, Na + -type ZSM-5 zeolite shows almost no decomposition activity of naphtha, but when silver is introduced into this, the decomposition activity is remarkably improved. It can be seen that the selectivity of lower olefins mainly composed of ethylene is significantly improved, unlike AgH + type ZSM-5 obtained by introducing silver into No. 5.
[0022]
[Comparative Example 1]
A naphtha conversion reaction was carried out under the same conditions as in Example 2 except that the Na + -type ZSM-5 obtained in Example 1 was used as a catalyst (Comparative Catalyst 1). The results are shown in Table 1.
[0023]
[Comparative Example 2]
The ZSM-5 type zeolite (SiO 2 / Al 2 O 3 = 126) used in Example 1 was ion-exchanged in a 1N nitric acid aqueous solution (10 ml / g-zeolite) at room temperature for 3 hours, washed with filtered water and dried at 110 ° C. Thus, H + type ZSM-5 was prepared. Subsequently, this H + type ZSM-5 was subjected to an ion exchange treatment at room temperature for 3 hours using a 0.1N silver nitrate aqueous solution (10 ml / g-zeolite). After washing with water and drying, it was calcined in air at 550 ° C. to prepare an H + -type ZSM-5 catalyst (comparative catalyst 2) containing silver. As a result of chemical analysis, the composition had the following composition expressed as a molar ratio of oxides on an anhydrous basis.
0.48Ag 2 O, Al 2 O 3 , 126SiO 2
Table 1 shows the results of the conversion reaction of naphtha using this catalyst under the same conditions as in Example 2.
[0024]
[Reference Example 1]
Porcelain Raschig rings (outer diameter 3 mmφ, length 3 mm) were filled in place of zeolite, and naphtha was thermally decomposed at 680 ° C. in the same manner as in Example 2. The results are shown in Table 1.
[0025]
[Example 3]
A Na + -type ZSM-5 zeolite catalyst (catalyst 2) containing silver was prepared in the same manner as in Example 1 except that the concentration of the aqueous silver nitrate solution was changed to 0.1N. As a result of chemical analysis, the composition had the following composition expressed as a molar ratio of oxides on an anhydrous basis.
0.88Ag 2 O, 0.15Na 2 O, Al 2 O 3 , 126SiO 2
[0026]
[Example 4]
Using the catalyst obtained in Example 3, the naphtha conversion reaction was carried out under the same conditions as in Example 2 except that the reaction temperature was 660 ° C. The results are shown in Table 2 together with the results of Examples 5, 7, 8 and Comparative Example 3. As shown in Table 2, according to the method of the present invention, the yields of low-value methane and heavy components (C 9 + hydrocarbons) are kept lower than thermal decomposition, while effective product yields (ethylene, propylene, C 6 ~ the total yield) of 8 aromatic hydrocarbons can be significantly higher than the thermal decomposition, it can be seen that excellent selectivity.
[0027]
[Example 5]
A naphtha conversion reaction was carried out in the same manner as in Example 4 except that the reaction temperature was changed to 680 ° C. The results are shown in Table 2.
[0028]
[Example 6]
A K + -type ZSM-5 zeolite catalyst (catalyst 3) containing silver was prepared in the same manner as in Example 3 except that sodium chloride was changed to potassium chloride. As a result of chemical analysis, the composition had the following composition expressed as a molar ratio of oxides on an anhydrous basis.
0.60 Ag 2 O, 0.44 K 2 O, Al 2 O 3 , 126 SiO 2
[0029]
[Example 7]
Naphtha conversion reaction was carried out using the catalyst 3 under the same conditions as in Example 2. The results are shown in Table 2.
[0030]
[Example 8]
The naphtha conversion reaction was carried out under the same conditions as in Example 7 except that the catalyst charge was changed from 2 g to 3 g and the reaction temperature was 680 ° C. The results are shown in Table 2.
[0031]
[Comparative Example 3]
Naphtha was pyrolyzed under the same conditions as in Reference Example 1 except that the reaction temperature was 790 ° C. The results are shown in Table 2.
[0032]
[Example 9]
Na + -type ZSM-5 zeolite (SiO 2 / Al 2 O 3 = 30) was subjected to an ion exchange treatment at room temperature for 3 hours using a 0.03N silver nitrate aqueous solution (10 ml / g-zeolite). After washing with water and drying, catalyst 4 was prepared by calcination in air at 550 ° C. As a result of chemical analysis, the composition had the following composition expressed as a molar ratio of oxides on an anhydrous basis.
0.24Ag 2 O, 0.79Na 2 O, Al 2 O 3 , 30SiO 2
[0033]
[Example 10]
Using catalyst 4, naphtha conversion reaction was carried out under the same conditions as in Example 2. The reaction results are shown in Table 3.
[0034]
[Comparative Example 4]
The Na + type ZSM-5 type zeolite used in Example 9 was subjected to ion exchange at room temperature for 3 hours using a 1N aqueous nitric acid solution (10 ml / g-zeolite) to obtain H + type ZSM-5 zeolite. Subsequently, a silver-containing H + -type ZSM-5 zeolite catalyst (Comparative Catalyst 3) was prepared under the same conditions as in Example 9. As a result of chemical analysis, the composition had the following composition expressed as a molar ratio of oxides on an anhydrous basis.
0.16Ag 2 O, Al 2 O 3 , 30SiO 2
Table 3 shows the results of carrying out the conversion reaction under the same conditions as in Example 10 except that the catalyst loading was changed to 1 g using this catalyst.
[0035]
Example 11
After hydrothermal synthesis, ZSM-5 type zeolite (SiO 2 / Al 2 O 3 = 175) prepared by filtering, washing with water, drying and calcining at 550 ° C. in air was added to a 3.4 N sodium chloride aqueous solution (10 ml / g). -Zeolite) was ion exchanged at 90 ° C for 3 hours, washed with filtered water and dried at 110 ° C to prepare Na + type ZSM-5. Subsequently, this Na + -type ZSM-5 was ion-exchanged at 90 ° C. for 2 hours in a 1N barium acetate aqueous solution (10 ml / g-zeolite), washed with filtered water, dried at 110 ° C., and Ba 2+ Na + -type ZSM-5. 5 was prepared.
[0036]
Subsequently, the Ba 2+ Na + type ZSM-5 was subjected to an ion exchange treatment at room temperature for 3 hours using a 0.1 N aqueous silver nitrate solution (10 ml / g-zeolite). After washing with water and drying, catalyst 5 was prepared by calcination at 550 ° C. in air. As a result of chemical analysis, the composition had the following composition expressed as a molar ratio of oxides on an anhydrous basis.
0.78Ag 2 O, 0.20Na 2 O, 0.02BaO, Al 2 O 3 , 175SiO 2
Using the catalyst 5, a naphtha conversion reaction was performed under the same conditions as in Example 2. The reaction results are shown in Table 3.
[0037]
Example 12
The following experiment was conducted in order to compare the resistance against catalyst degradation caused by high-temperature steam. A quartz reaction tube was filled with 2 g of the same catalyst as the catalyst 2 prepared in Example 3, nitrogen was flowed at a flow rate of 485 cc / min under atmospheric pressure, and the temperature of the catalyst layer was set to 750 ° C. Subsequently, pure water was supplied at a flow rate of 15.6 cc / hr for 2 hours, and a steaming process was performed for 2 hours under the conditions of 750 ° C. and water vapor partial pressure of 0.4 atm.
[0038]
Next, in order to evaluate the reaction activity of this catalyst, naphtha conversion reaction was carried out under the same conditions as in Example 2, and the naphtha decomposition reaction rate constant k (seconds) was obtained from the conversion rate of n-pentane in naphtha by the following equation. It was. The results are shown in Table 4 together with the results of Comparative Examples 5 and 6. The contact time was calculated on the basis of an empty column using the average composition of entering and leaving the reactor.
k = θ −1 × ln {1 / (1-n-pentane conversion)}
Where θ is the contact time (seconds)
n-Pentane conversion rate = {n-pentane in naphtha (% by weight) −n-pentane in reaction product (% by weight)} ÷ n-pentane in naphtha (% by weight)
[0039]
[Comparative Example 5]
The experiment was conducted in the same manner as in Example 12 except that the H + type ZSM-5 zeolite used in Comparative Example 2 was used as a catalyst, the filling amount was 4 g, and the steaming time was 40 minutes. The results are shown in Table 4.
[0040]
[Comparative Example 6]
The experiment was performed under the same conditions as in Example 12 except that the comparative catalyst 2 used in Comparative Example 2 was used as the catalyst. The results are shown in Table 4.
As shown in Table 4, the acid-type zeolite used in Comparative Example 5 has a significant decrease in activity in a short time when exposed to high-temperature steam, whereas the catalyst of the present invention has a very small decrease in activity and is stable. I understand. In addition, it can be seen that the catalyst of the present invention is further greatly improved in deterioration resistance compared to a catalyst (comparative catalyst 2) containing silver in acid-type zeolite.
[0041]
[Table 1]
Figure 0003741455
[0042]
[Table 2]
Figure 0003741455
[0043]
[Table 3]
Figure 0003741455
[0044]
[Table 4]
Figure 0003741455
[0045]
【The invention's effect】
When the hydrocarbon conversion catalyst of the present invention is used for catalytic cracking of hydrocarbon raw materials, lower olefins mainly composed of ethylene and monocyclic aromatic hydrocarbons can be obtained in a balanced and high yield than conventional methods. It is possible. In addition, since it is highly resistant to catalyst deterioration due to high-temperature steam, stable operation is possible with little decrease in catalyst activity.
[0046]
Therefore, the production method using the catalyst of the present invention can be widely used in the petrochemical industry and petroleum refining, and can be effectively used particularly for the production of lower olefins such as ethylene and propylene, aromatic compounds, and high octane gasoline. .

Claims (3)

SiO2/Al23モル比が20以上である実質的にプロトンを持たないアルカリ金属イオン型及び/又はアルカリ土類金属イオン型の中間細孔径ゼオライトであり、上記ゼオライトが銀を伴うことを特徴とする炭化水素転化触媒。It is an alkali metal ion type and / or alkaline earth metal ion type intermediate pore size zeolite having a SiO 2 / Al 2 O 3 molar ratio of 20 or more and substantially free of protons , wherein the zeolite is accompanied by silver. Characteristic hydrocarbon conversion catalyst. 中間細孔径ゼオライトがZSM-5である請求項1記載の炭化水素転化触媒Hydrocarbon conversion catalyst of claim 1 Symbol mounting medium pore diameter zeolite is ZSM-5 請求項1、請求項2のいずれかの請求項に記載の触媒を、1種又は2種以上の炭化水素を含む原料に550〜750℃の温度で接触させることを特徴とする低級オレフィン及び単環芳香族炭化水素の製造方法であって、低級オレフィンを単環芳香族炭化水素より高収率で得る製造方法Claim 1, the catalyst according to any one of claims 2, lower olefins and single, characterized in that contacting at a temperature of 550 to 750 ° C. in a raw material containing one or more hydrocarbons A process for producing a ring aromatic hydrocarbon, wherein a lower olefin is obtained in a higher yield than a monocyclic aromatic hydrocarbon.
JP26645994A 1994-10-28 1994-10-31 Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same Expired - Lifetime JP3741455B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26645994A JP3741455B2 (en) 1994-10-31 1994-10-31 Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same
TW84110909A TW305876B (en) 1994-10-28 1995-10-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26645994A JP3741455B2 (en) 1994-10-31 1994-10-31 Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same

Publications (2)

Publication Number Publication Date
JPH08126844A JPH08126844A (en) 1996-05-21
JP3741455B2 true JP3741455B2 (en) 2006-02-01

Family

ID=17431227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26645994A Expired - Lifetime JP3741455B2 (en) 1994-10-28 1994-10-31 Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same

Country Status (1)

Country Link
JP (1) JP3741455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006188A1 (en) 2019-07-10 2021-01-14 東ソー株式会社 Novel zeolite, and catalyst for use in production of aromatic hydrocarbon which comprises same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149185C (en) * 1998-08-25 2004-05-12 旭化成株式会社 process for producing ethylene and propylene
US6726834B2 (en) * 1999-10-22 2004-04-27 Intevep, S.A. Process for catalytic cracking of a hydrocarbon feed with a MFI aluminisilcate composition
CA2613470A1 (en) * 2005-07-01 2007-12-24 Albemarle Netherlands Bv Use of anionic clay in an fcc process
KR100651418B1 (en) * 2006-03-17 2006-11-30 에스케이 주식회사 Catalytic cracking process using fast fluidization for the production of light olefins from hydrocarbon feedstock
JP5094506B2 (en) * 2008-03-28 2012-12-12 出光興産株式会社 Production method of light olefin
US20110163002A1 (en) * 2008-09-15 2011-07-07 Patent Department Process for enhanced propylene yield from cracked hydrocarbon feedstocks and reduced benzene in resulting naphtha fractions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006188A1 (en) 2019-07-10 2021-01-14 東ソー株式会社 Novel zeolite, and catalyst for use in production of aromatic hydrocarbon which comprises same
KR20220034046A (en) 2019-07-10 2022-03-17 도소 가부시키가이샤 Novel zeolite and catalyst for aromatic hydrocarbon production containing same

Also Published As

Publication number Publication date
JPH08126844A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
JP3664502B2 (en) Process for producing lower olefins and monocyclic aromatic hydrocarbons
KR100572842B1 (en) Production of catalysts for olefin conversion
US7026263B2 (en) Hybrid catalysts for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks
JP2000300987A (en) Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
CA2285410C (en) Process for the conversion of hydrocarbons to olefins and aromatics
JPH01213238A (en) Conversion of paraffin
US5905179A (en) Hydrocarbon conversion catalyst composition and processes therefor and therewith
JPH0140656B2 (en)
US6107534A (en) Method of making an improved catalyst containing an acid-treated zeolite, a boron component, and a zinc component, a product from such method, and the use thereof in the conversion of hydrocarbons
US6514896B1 (en) Catalyst composition and a process of using thereof
JP3741455B2 (en) Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same
KR20010012397A (en) Improved catalyst composition useful for conversion of non-aromatic hydrocarbons to aromatics and light olefins
US6084142A (en) Method of making an improved zeolite catalyst, a product from such method, and the use thereof in the conversion of hydrocarbons
JPS60222428A (en) Catalytic conversion of hydrocarbon
US6034020A (en) Zeolite-based catalyst material, the preparation thereof and the use thereof
US6218590B1 (en) Zeolite material, a method of making such improved zeolite material and the use thereof in the conversion of non-aromatic hydrocarbons to aromatics and light olefins
US5945364A (en) Catalyst composition comprising acid-base leached zeolites
JP3966429B2 (en) Aromatic hydrocarbon production catalyst
US6013849A (en) Toluene disproportionation process using a zeolite/tungsten carbide catalyst
JP2801686B2 (en) Hydrocarbon catalytic conversion
US6090272A (en) Process for converting a cracked gasoline using a zeolite-based catalyst material
CA1234159A (en) Aromatization of propylene
CA2473751C (en) Hybrid catalysts for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks
Urdă et al. Aromatization of Cg Hydrocarbons on Modified ZSM-5 Zeolites
WO1998057744A1 (en) Zeolite composition and use in hydrocarbon conversion process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

EXPY Cancellation because of completion of term