JP3741402B2 - Two-electrode electrogas welding method - Google Patents

Two-electrode electrogas welding method Download PDF

Info

Publication number
JP3741402B2
JP3741402B2 JP28216298A JP28216298A JP3741402B2 JP 3741402 B2 JP3741402 B2 JP 3741402B2 JP 28216298 A JP28216298 A JP 28216298A JP 28216298 A JP28216298 A JP 28216298A JP 3741402 B2 JP3741402 B2 JP 3741402B2
Authority
JP
Japan
Prior art keywords
groove
welding
width
backing material
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28216298A
Other languages
Japanese (ja)
Other versions
JP2000107893A (en
Inventor
黒 盈 昭 乙
垣 忠 彦 宮
江 敦 忠 本
井 浩 辻
田 昌 宏 太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28216298A priority Critical patent/JP3741402B2/en
Publication of JP2000107893A publication Critical patent/JP2000107893A/en
Application granted granted Critical
Publication of JP3741402B2 publication Critical patent/JP3741402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、2電極エレクトロガス溶接用裏当材および溶接方法に係り、特に、厚鋼板の2電極エレクトロガス溶接において優れた溶接作業性と良好な溶け込み形状が得られる2電極エレクトロガス溶接方法に関する。
【0002】
【従来の技術】
立向自動溶接方法としてエレクトロガス溶接が、造船,円筒形貯油タンクをはじめ鉄骨,橋梁,重電機器,製鉄設備等の鋼壁溶接に主として用いられている。エレクトロガス溶接において、電圧,電流を上昇して入熱を上げると、高能率であるが、高張力鋼の溶接には溶接入熱量が大きいために、溶接金属や母材熱影響部等の切欠靭性を劣化させる要因となる。
【0003】
特に最近は、熱影響部の健全性を保つために低入熱溶接が強く要求される傾向にあり、このような要求に対して、細径フラックス入りワイヤを用い板厚方向に高速振動でアーク点を移動させるエレクトロガス溶接は、開先断面積を極力小さくした狭開先溶接を、低入熱で高能率に行えるため、鋼板の立向溶接に適している。
【0004】
このようなエレクトロガス溶接を行う装置の概略を説明すると、垂直に立てられ隣り合う2鋼板の間の開先の裏面に、水冷銅当金あるいは固形裏当材を当接し、表面には水冷の摺動銅当金を当てて、この摺動銅当金の溝(開先に対向)と開先で囲まれる空間に、扁平な溶接トーチを挿入し、これを板厚方向に高速振動させながら、溶接トーチを通して細径フラックス入りワイヤを該空間に連続的に供給し、かつ溶接トーチおよび摺動銅当金を連続的に上方に駆動しながら、開先の立向溶接を行う。
【0005】
前記エレクトロガス溶接が適用できる板厚(開先の深さ)は、60mm程度までであり、板厚がこれ以上の極厚鋼板になると、開先部の端縁部に溶け込み不良が生じるなど、部分的な溶け込み不良を生じやすい。
【0006】
そこで、本発明者らは、溶け込み不良等の欠陥がなくかつ高能率な、極厚鋼板の溶接が可能な2電極エレクトロガス溶接装置を提案した(特開平10−118771号公報)。
【0007】
【発明が解決しようとする課題】
前記2電極エレクトロガス溶接装置での極厚鋼板の溶接は、アークの安定性および溶接金属の切欠靭性の確保から、細径フラックス入りワイヤが用いられる。しかし、フラックス入りワイヤの溶融によって生成されるスラグは、摺動銅板側ワイヤのアークによってせき止められ、摺動銅板のスラグ逃がしから排出できず、溶融プールの摺動銅板側電極裏当材側電極との間(ワイヤ極間)、および、裏当材側電極と裏当材の間、にスラグが滞在してスラグ跳ねが発生する。跳ねたスラグは、開先面および溶接トーチに付着して、開先幅が狭い裏当材側で電極が接触して溶接を中断したり、溶融プールにスラグが多く溜まって、溶接アーク熱が開先面に十分伝わらず、融合不良の発生や、良好な裏波ビードが得られない、という問題があった。
【0008】
本発明は、極厚鋼板の2電極エレクトロガス溶接において、スラグ跳ねがなくアークが安定して溶接作業性が良好で、裏波ビードが良好で融合不良のない健全な溶接部が得られるとともに、溶接を中断することなく高能率に溶接できる、2電極エレクトロガス溶接方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
)厚鋼板の2電極エレクトロガス溶接において、開先形状が開先ギャップを有するV開先、板厚が40〜100mm鋼板の開先裏面に、開先幅方向xの幅W1が裏面側開先ギャップよりも広いスラグ溜まり用の第1の溝さらに該第1の溝の中央部に幅W2が前記幅W1よりも狭く裏面側開先ギャップよりも広く第1の溝の底面から前記板厚の方向yに堀り下げた裏ビード形成用の第2の溝を設けた、前記開先幅方向xおよび板厚の方向yに直交する垂直方向zに延びる固形裏当材を当接して、前記開先内で前記板厚の方向yに分布する2電極を該板厚の方向yに揺動駆動して裏面側開先ギャップ側の溶融スラグを前記固形裏当材のスラグ溜まり用の第1の溝に流出させながら溶接することを特徴とする2電極エレクトロガス溶接方法。
【0010】
(2)裏面側開先ギャップの開先幅方向の幅は8〜15mm、第1の溝の幅W1は20〜45mm、かつ、第2の幅W2は12〜23mmであることを特徴とする上記(1)に記載の2電極エレクトロガス溶接方法。
【0011】
)第1の溝は深さ1.0〜2.0mm、かつ、第2の溝は深さが第1の溝底面から1.0〜2.0mmであることを特徴とする上記(1)又は(2)記載の2電極エレクトロガス溶接方法
【0012】
なお、上記裏当材とは、金属酸化物や弗化物等を焼成または焼結した固形裏当材をいう。
【0013】
【発明の実施の形態】
図1に、2電極エレクトロガス溶接装置を用いて溶接する状態の模式図を示す。溶接トーチ2の裏当材3側に裏当材側電極5を、溶接部をシールドするシールドガスのガス供給口9を有する摺動銅板10側に摺動鋼板側電極4を備え、ワイヤ極間距離11を一定に保ち、かつ裏当材3と摺動銅板10との間で電極を、揺動方向1に示すように、溶接開先の裏面と表面間を揺動しながら、アーク6により溶接金属8を形成して溶接する。
【0014】
溶融スラグ7は、摺動銅板10側のスラグ逃がし12より容易に逃がすことができるが、溶接トーチ2のト−チ間や裏当材3側の溶融スラグ7は、外部に逃がすことは困難で、スラグ跳ねが生じる。
【0015】
したがって、2電極エレクトロガス溶接を作業性良く、無欠陥で高能率に実施するには、溶接トーチ2のト−チ間や裏当材3側の溶接スラグ7の量をコントロールする必要がある。
【0016】
図2に、本発明の2電極エレクトロガス溶接用裏当材3を、また、図3に、裏当材3を開先裏面16に当接した例を、それぞれ示す。裏当材3表面の長手方向(z方向)中央部に、2段溝(13,14)を設け、2段溝はスラグ溜まり用の第1の溝13、第1の溝13の中央部に第1の溝13から堀り下げた裏ビード形成用の第2の溝14を設けている。
【0017】
鋼板15の板厚Tは、2電極の溶接トーチ2で溶接可能でかつ高温割れの生じない板厚T40mm以上とし、溶接速度の低下に伴う溶接入熱量増での溶接部の切欠靭性低下から100mm以下として、開先形状は開先ギャップを有するV開先で、溶接入熱量を低くするために溶接トーチ2のセット可能な範囲で狭開先とする。
【0018】
なお、裏当材3当接側の開先ギャップは8〜15mm、摺動銅板10側の開先ギャップは20〜30mm程度であることが、溶接作業性および溶接能率から好ましい。
【0019】
このように構成された2電極エレクトロガス用裏当材3を用いる本発明の溶接方法においては、フラックス入りワイヤの溶融によって生成された裏当材側電極5と裏当材3間の溶融スラグ7は、第1の溝13に流出して溶融プールに溜まることがない。また、溶接トーチ2間(ワイヤ4/5間)の溶融スラグ7は、溶融スラグ量の少ない摺動銅板10側および裏当材3側に流出するので溶融プールに溜まることがない。したがって、スラグ跳ねが生じずスラグが溶接トーチ2または開先面に付着することがないので、連続して安定した溶接ができる。さらに、溶接熱が開先面に十分伝わるので、融合不良が生じることがない。
【0020】
お、裏当材3の開先裏面16への当接は、図3に示すように、アルミ箔,亜鉛箔などの金属箔の耐熱テープ17に接着剤を付けたもの、あるいは裏当材を開先裏面に押し付けるマグネットまたは拘束用治具で行う。また、裏当材3の開先裏面16への当接を良好とするために、裏当材3と開先裏面16との間にガラス繊維シートを挾んでも良い。
【0021】
裏当材3の第1の溝13の深さt1は、1.0〜2.0mmとする。第1の溝13の深さt1が1.0mm未満であると、フラックス入りワイヤの溶融によって生成された裏当材側電極と裏当材3間の溶融スラグ7が流出しきれず、また、第1の溝13の深さt1が1.0mm未満で幅を広くしても溶融スラグ7は開先裏面16と第1の溝間13に流れていかず、溶接の進行に伴って溶融スラグ7が増加してスラグ跳ねが発生し開先面および溶接トーチ2に付着して、開先幅が狭い裏当材3側で裏当材側電極5が開先壁に接触して溶接が中断したり、溶接アーク熱が開先面に十分伝わらず、融合不良が発生するようになる。
【0022】
第1の溝13の深さt1が2.0mmを超えると、溶融スラグ7は第1の溝13に流出して溶融プールに溜まらずスラグ跳ねがなく良好であるが、図4の(a)に示すように開先裏面16に第1の溝部と第2の溝14部に溶接金属が突出して、裏ビードは二段ビード18となる。
【0023】
裏当材3の第1の溝13の幅w1は、20〜45mmとする。第1の溝13の幅w1が20mm未満であると、フラックス入りワイヤの溶融によって生成された裏当材側電極5と裏当材3間の溶融スラグ7が流出しきれずに、溶接の進行に伴って溶融スラグ7が増加してスラグ跳ねが発生し開先面および溶接トーチ2に付着して、開先幅が狭い裏当材3側で裏当材電極5が開先壁に接触して溶接が中段したり、溶接アーク熱が開先面に十分伝わらず、融合不良が発生するようになる。第1の溝13の幅w1が45mmを超えると、開先裏面16に第1の溝13部と第2の溝14部に溶接金属が突出して二段ビード18となる。
【0024】
裏当材3の第2の溝14の深さt2は、第1の溝13底面から1.0〜2.0mm、幅w2は12〜23mmとする。第2の溝14の深さt2が第1の溝13の底面から1.0未満であると、溶融スラグ7が多いので第2の溝14までスラグで被われて、図4の(b)に示すように、裏ビードが形成されない場合がある。第2の溝14の幅w2が12mm未満であると、裏ビードが良好に形成されず図4の(c)に示すように、アンダーカット19が生じる。第2の溝14の深さt2が、第1の溝13の底面から2mmを超えると、または第2の溝14の幅w2が23mmを超えると、図4の(d)に示すように裏ビードが出すぎてオーバーラップ20が生じる。
【0025】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。表1に示す各寸法の裏当材を試作した。溶接は、表2に示す成分,板厚の鋼板および開先形状として、同表に示す溶接条件で溶接長1000mmを2電極エレクトロガス溶接装置で溶接した。なお、溶接ワイヤ4,5は、JIS Z3319 YFEG−42C 1.6mm径のフラックス入りワイヤを用いた。
【0026】
溶接中のアーク状態および溶接終了後の裏ビード形状の観察をした後、マクロ試験片を各10個採取して溶け込み形状を調べた。それらの結果を表1にまとめて示す。
【0027】
【表1】

Figure 0003741402
【0028】
【表2】
Figure 0003741402
【0029】
表1中、試験No.1〜6が本発明の実施例、試験No.7〜14が比較例である。本発明の実施例である試験No.1〜6は、2段溝を設けた裏当材形状の深さおよび幅が適正であるので、フラックス入りワイヤの溶融によって生成した溶融スラグ7は、裏当材3の第1の溝13に流出してコントロールされて溶融プールに溜まることがないので、スラグ跳ねが生じず溶接トーチ2や開先面に付着することがないので、溶接熱が開先面に十分伝わって最後まで融合不良が生じることなく溶接できた。また、裏ビード形状も良好であるなど極めて満足な結果であった。
【0030】
比較例中の試験No.7は、裏当材3の第1の溝13の深さt1が小さいので、また、試験No.9は、第1の溝13の幅w1が小さいので、いずれも生成スラグ7が溶融プールに溜まりスラグ跳ねが生じ、試験No.7は溶接長650mmで、試験No.9は溶接長700mmで、跳ねたスラグが開先面および溶接トーチ2に付着蓄積して、溶接トーチ2の揺動が困難となったので溶接を中止した。また、マクロ断面を調べた結果溶融不良もあった。
【0031】
試験No.8は、第1の溝13の深さt1が大きいので、また、試験No.10は、第1の溝13の幅w1が大きいので、いずれも生成スラグ7の流出は良好でスラグ跳ねは生じず溶接中断および溶融不良は生じなかったが、裏ビードが二段ビードとなった。
【0032】
試験No.11は、第2の溝14の深さt2が小さいので、裏ビードが形成されなかった。
【0033】
試験No.12は、第2の溝14の深さt2が大きく、また、試験No.14は、第2の溝14の幅w2が大きいので、いずれも裏ビードにオーバラップが生じた。
【0034】
試験No.13は、第2の溝14の幅w2が小さいので、アンダーカットが生じた。
【0035】
【発明の効果】
以上のように本発明の2電極エレクトロガス溶接方法によれば、スラグ跳ねがなくアークが安定して溶接作業性が良好で、裏波ビードが良好で融合不良のない健全な溶接部が得られるとともに、溶接を中断することなく高能率に溶接できる。
【図面の簡単な説明】
【図1】 2電極エレクトロガス溶接装置を用いて溶接する状態の模式図であり、開先の縦断面を示す。ただし摺動銅板10は側面を示す。
【図2】 本発明の2電極エレクトロガス溶接いる裏当材を示す平面図である。
【図3】 本発明の2電極エレクトロガス溶接いる裏当材を開先裏面に当接した例を示す平面図である。
【図4】 (a),(b),(c)および(d)は、2電極エレクトロガス溶接方法によって形成された各種裏ビードの形状を示す平面図である。
【符号の説明】
1:揺動方向 2:溶接トーチ
3:裏当材 4:摺動銅板側電極
5:裏当材側電極 6:アーク
7:溶融スラグ 8:溶接金属
9:ガス供給口 10:摺動銅板
11:ワイヤ極間距離 12:スラグ逃がし
13:第1の溝 14:第2の溝
15:鋼板 16:開先裏面
17:耐熱テープ 18:二段ビード
19:アンダーカット 20:オーバーラップ[0001]
BACKGROUND OF THE INVENTION
The present invention 2 relates to the electrode electro-gas welding backing strip and welding methods, in particular, the thickness good weldability and good penetration 2 electrode electro gas soluble shape is obtained against the second electrode electro-gas welding of steel plates Regarding the method.
[0002]
[Prior art]
As a vertical automatic welding method, electrogas welding is mainly used for steel wall welding of shipbuilding, cylindrical oil storage tanks, steel frames, bridges, heavy electrical equipment, steelmaking facilities, and the like. In electrogas welding, increasing the heat input by increasing the voltage and current results in high efficiency. However, because welding heat input is large in welding high-strength steel, notches such as weld metal and base metal heat-affected areas are cut off. It becomes a factor which degrades toughness.
[0003]
Recently, in order to maintain the soundness of the heat-affected zone, low-heat-input welding has tended to be strongly demanded. Electrogas welding for moving points is suitable for vertical welding of steel sheets because narrow groove welding with a groove cross-sectional area as small as possible can be performed with low heat input and high efficiency.
[0004]
An outline of an apparatus for performing such electrogas welding will be described. A water-cooled copper metal or a solid backing material is brought into contact with the back surface of a groove between two vertically-adjacent steel plates, and the surface is water-cooled. Applying a sliding copper alloy, a flat welding torch is inserted into the space surrounded by the groove (opposite the groove) and the groove of this sliding copper alloy, and this is vibrated at high speed in the plate thickness direction. The vertical welding of the groove is performed while continuously supplying the small-diameter flux-cored wire to the space through the welding torch and continuously driving the welding torch and the sliding copper plating upward.
[0005]
The plate thickness (groove depth) to which the electrogas welding can be applied is up to about 60 mm, and when the plate thickness is an extra-thick steel plate of more than this, a poor melting occurs at the edge portion of the groove portion, etc. Prone to partial penetration failure.
[0006]
Accordingly, the present inventors have a and high efficiency without defects such as poor penetration welding of very thick steel plate has proposed possible two electrode electro-gas welding device (JP-A 10-118771 JP).
[0007]
[Problems to be solved by the invention]
For the welding of an extremely thick steel plate using the two-electrode electrogas welding apparatus, a thin flux cored wire is used in order to ensure the stability of the arc and the notch toughness of the weld metal. However, the slag generated by the melting of the flux-cored wire is blocked by the arc of the sliding copper plate side wire and cannot be discharged from the slag relief of the sliding copper plate, and the sliding copper plate side electrode and backing material side electrode of the molten pool Slag stays between the wire (between the wire electrodes) and between the backing material side electrode and the backing material, and slag splash occurs. The splashed slag adheres to the groove surface and the welding torch, and the electrode comes into contact with the backing material side with a narrow groove width to interrupt welding, or a lot of slag accumulates in the molten pool, causing welding arc heat to be generated. There was a problem that the groove surface was not sufficiently transmitted, resulting in poor fusion, and a good back bead could not be obtained.
[0008]
In the present invention, in the two-electrode electrogas welding of an extra-thick steel plate, there is no slag splash, the arc is stable, the welding workability is good, the back bead is good, and a healthy weld with no poor fusion is obtained. It can be welded with high efficiency without interrupting the welding, and an object thereof is to provide a two-electrode electro-gas welding how.
[0009]
[Means for Solving the Problems]
(1) In the second electrode electro-gas welding of thick steel plates, a V groove which groove shape having a groove gap, the groove rear surface of the steel plate thickness is 40 to 100 mm, the width W1 of the groove width direction x is The first groove for slag accumulation wider than the back side groove gap, and the width W2 at the center of the first groove is narrower than the width W1 and wider than the back side groove gap from the bottom surface of the first groove. A solid backing material extending in the groove width direction x and the vertical direction z perpendicular to the plate thickness direction y and provided with a second groove for forming a back bead drilled in the plate thickness direction y is applied. In contact therewith, the two electrodes distributed in the plate thickness direction y in the groove are driven to swing in the plate thickness direction y, so that the molten slag on the back side groove gap side is accumulated in the slag reservoir of the solid backing material. first 2 electrode electro-gas welding direction, characterized by welding while the outflow into the groove of use .
[0010]
(2) The width in the groove width direction of the back surface side groove is 8 to 15 mm, the width W1 of the first groove is 20 to 45 mm, and the second width W2 is 12 to 23 mm. The two-electrode electrogas welding method according to (1) above .
[0011]
(3) the first groove depth 1.0~2.0mm and, of the second groove depth is characterized 1.0~2.0M m Der Rukoto from the first groove bottom The two-electrode electrogas welding method according to the above (1) or (2) .
[0012]
The backing material refers to a solid backing material obtained by firing or sintering a metal oxide, fluoride, or the like.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing a state of welding using a two-electrode electrogas welding apparatus. A backing material side electrode 5 is provided on the backing material 3 side of the welding torch 2, and a sliding steel plate side electrode 4 is provided on the sliding copper plate 10 side having a gas supply port 9 for shielding gas for shielding the welded portion. While maintaining the distance 11 constant, and the electrode 6 between the backing material 3 and the sliding copper plate 10, as shown in the oscillating direction 1, the arc 6 oscillates between the back surface and the surface of the welding groove. A weld metal 8 is formed and welded.
[0014]
The molten slag 7 can be easily released from the slag relief 12 on the sliding copper plate 10 side, but it is difficult to escape the molten slag 7 between the torches of the welding torch 2 or the backing material 3 side to the outside. Slag splash occurs.
[0015]
Therefore, in order to perform the two-electrode electrogas welding with high workability and high efficiency without defects, it is necessary to control the amount of the welding slag 7 between the torches of the welding torch 2 or the backing material 3 side.
[0016]
Figure 2, the backing material 3 for two electrodes electro-gas welding of the present invention, also in FIG. 3, an example in which contact with the backing strip 3 to groove back surface 16, respectively. A two-step groove (13, 14) is provided at the center of the surface of the backing material 3 in the longitudinal direction (z direction), and the two-step groove is formed at the center of the first groove 13 and the first groove 13 for slag accumulation. A second groove 14 for forming a back bead that is dug down from the first groove 13 is provided.
[0017]
The plate thickness T of the steel plate 15 can be welded by the two-electrode welding torch 2 and has a thickness T of 40 mm or more that does not cause high temperature cracking. In the following, the groove shape is a V groove having a groove gap, and the groove shape is narrow within a range in which the welding torch 2 can be set in order to reduce the welding heat input.
[0018]
In addition, it is preferable from welding workability | operativity and welding efficiency that the groove gap by the side of the backing material 3 is 8-15 mm, and the groove gap by the side of the sliding copper plate 10 is about 20-30 mm.
[0019]
Molten slag between the welding in the process, backing material side electrode 5 and the backing material 3 which has been produced by melting of the flux cored wire of the thus constructed 2 the invention the back electrode electro-gas Ru with those timber 3 7 does not flow out into the first groove 13 and accumulate in the molten pool. Moreover, since the molten slag 7 between the welding torches 2 (between the wires 4/5) flows out to the sliding copper plate 10 side and the backing material 3 side with a small amount of molten slag, it does not accumulate in the molten pool. Therefore, slag splash does not occur and slag does not adhere to the welding torch 2 or the groove surface, so that continuous and stable welding can be performed. Furthermore, since welding heat is sufficiently transmitted to the groove surface, no fusion failure occurs.
[0020]
Na us, abutment against the groove rear surface 16 of the backing material 3, as shown in FIG. 3, as attached aluminum foil, an adhesive heat tape 17 of metallic foil, such as zinc foil, or backing material With a magnet or a restraining jig that presses against the back of the groove. In addition, a glass fiber sheet may be sandwiched between the backing material 3 and the groove back surface 16 in order to improve the contact of the backing material 3 with the groove back surface 16.
[0021]
The depth t1 of the first groove 13 of the backing material 3 is 1.0 to 2.0 mm. When the depth t1 of the first groove 13 is less than 1.0 mm, the molten slag 7 between the backing material side electrode 5 and the backing material 3 generated by melting the flux-cored wire cannot flow out, and Even if the depth t1 of the first groove 13 is less than 1.0 mm and the width is widened, the molten slag 7 does not flow between the groove back surface 16 and the first groove 13, and the molten slag 7 is moved along with the progress of welding. Slag splash occurs and adheres to the groove surface and the welding torch 2, the backing material side electrode 5 contacts the groove wall on the backing material 3 side where the groove width is narrow, and welding is interrupted. Otherwise, the welding arc heat is not sufficiently transmitted to the groove surface, resulting in poor fusion.
[0022]
When the depth t1 of the first groove 13 exceeds 2.0 mm, the molten slag 7 flows out into the first groove 13 and does not accumulate in the molten pool and is good without slag splashing. As shown, the weld metal protrudes from the groove rear surface 16 to the first groove portion and the second groove 14 portion, and the back bead becomes a two-stage bead 18.
[0023]
The width w1 of the first groove 13 of the backing material 3 is 20 to 45 mm. If the width w1 of the first groove 13 is less than 20 mm, the molten slag 7 between the backing material side electrode 5 and the backing material 3 generated by melting the flux-cored wire cannot flow out, and the welding progresses. Along with this, the molten slag 7 increases and slag splash occurs, adheres to the groove surface and the welding torch 2, and the backing material electrode 5 contacts the groove wall on the backing material 3 side where the groove width is narrow. Welding becomes middle stage or welding arc heat is not sufficiently transmitted to the groove surface, resulting in poor fusion. When the width w1 of the first groove 13 exceeds 45 mm, the weld metal protrudes from the groove back surface 16 to the first groove 13 portion and the second groove 14 portion to form a two-stage bead 18.
[0024]
The depth t2 of the second groove 14 of the backing material 3 is 1.0 to 2.0 mm from the bottom surface of the first groove 13 and the width w2 is 12 to 23 mm. When the depth t2 of the second groove 14 is less than 1.0 from the bottom surface of the first groove 13, since the molten slag 7 is large, the second groove 14 is covered with the slag, and FIG. As shown in FIG. 2, the back bead may not be formed. If the width w2 of the second groove 14 is less than 12 mm, the back bead is not formed well, and an undercut 19 occurs as shown in FIG. When the depth t2 of the second groove 14 exceeds 2 mm from the bottom surface of the first groove 13 or when the width w2 of the second groove 14 exceeds 23 mm, as shown in FIG. The bead comes out too much and the overlap 20 arises.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Trial backing materials having the dimensions shown in Table 1 were produced. Welding was performed using a two-electrode electrogas welding apparatus with a welding length of 1000 mm under the welding conditions shown in the table, with the components shown in Table 2, the steel plate having the thickness, and the groove shape. The welding wires 4 and 5 were JIS Z3319 YFEG-42C 1.6 mm diameter flux cored wires.
[0026]
After observing the arc state during welding and the back bead shape after the end of welding, ten macro test pieces were sampled to examine the penetration shape. The results are summarized in Table 1.
[0027]
[Table 1]
Figure 0003741402
[0028]
[Table 2]
Figure 0003741402
[0029]
In Table 1, test no. 1 to 6 are examples of the present invention, test Nos. 7 to 14 are comparative examples. Test No. which is an example of the present invention. Since the depth and width of the backing material shape provided with the two-step grooves are appropriate for Nos. 1 to 6, the molten slag 7 generated by the melting of the flux-cored wire is formed in the first groove 13 of the backing material 3. Since it does not flow out and is controlled and does not accumulate in the molten pool, slag splash does not occur and it does not adhere to the welding torch 2 or the groove surface, so that the welding heat is sufficiently transmitted to the groove surface, resulting in poor fusion until the end. We were able to weld it without causing it. Also, the back bead shape was good and the results were very satisfactory.
[0030]
Test No. in the comparative example. 7 has a small depth t1 of the first groove 13 of the backing material 3, and the test No. No. 9, since the width w1 of the first groove 13 is small, the generated slag 7 accumulates in the molten pool and slag splash occurs. No. 7 has a weld length of 650 mm. No. 9 has a weld length of 700 mm, and the slag bounced adheres and accumulates on the groove surface and the welding torch 2, making it difficult to swing the welding torch 2, so welding was stopped. Further, as a result of examining the macro cross section, there was a melting failure.
[0031]
Test No. No. 8 has a large depth t1 of the first groove 13, and the test No. No. 10, since the width w1 of the first groove 13 was large, the outflow of the generated slag 7 was good and no slag splash occurred, no welding interruption and poor melting occurred, but the back bead became a two-stage bead .
[0032]
Test No. In No. 11, since the depth t2 of the second groove 14 was small, the back bead was not formed.
[0033]
Test No. 12, the depth t2 of the second groove 14 is large. In No. 14, since the width w2 of the second groove 14 was large, the back bead overlapped.
[0034]
Test No. No. 13 had an undercut because the width w2 of the second groove 14 was small.
[0035]
【The invention's effect】
According to the two electrode electro-gas welding how of the present invention as described above, the arc without slag splashing is has good weldability stable, the sound welds without good fusion poor penetration bead As well as being obtained, it is possible to weld with high efficiency without interrupting welding.
[Brief description of the drawings]
FIG. 1 is a schematic view of a state where welding is performed using a two-electrode electrogas welding apparatus, and shows a longitudinal section of a groove. However, the sliding copper plate 10 shows a side surface.
It is a plan view showing a backing strip that are use in two-electrode electro-gas welding of the present invention; FIG.
3 is a plan view showing an example in which contact with a backing material that are use in two-electrode electro-gas welding groove back surface of the present invention.
4 (a), (b), (c) and (d) are plan views showing the shapes of various back beads formed by a two-electrode electrogas welding method. FIG.
[Explanation of symbols]
1: Swing direction 2: Welding torch 3: Backing material 4: Sliding copper plate side electrode 5: Backing material side electrode 6: Arc 7: Molten slag 8: Weld metal 9: Gas supply port 10: Sliding copper plate 11 : Distance between wire poles 12: Slag relief 13: First groove 14: Second groove 15: Steel plate 16: Groove back surface 17: Heat-resistant tape 18: Two-stage bead 19: Undercut 20: Overlap

Claims (3)

厚鋼板の2電極エレクトロガス溶接において、開先形状が開先ギャップを有するV開先、板厚が40〜100mm鋼板の開先裏面に、開先幅方向xの幅W1が裏面側開先ギャップよりも広いスラグ溜まり用の第1の溝さらに該第1の溝の中央部に幅W2が前記幅W1よりも狭く裏面側開先ギャップよりも広く第1の溝の底面から前記板厚の方向yに堀り下げた裏ビード形成用の第2の溝を設けた、前記開先幅方向xおよび板厚の方向yに直交する垂直方向zに延びる固形裏当材を当接して、前記開先内で前記板厚の方向yに分布する2電極を該板厚の方向yに揺動駆動して裏面側開先ギャップ側の溶融スラグを前記固形裏当材のスラグ溜まり用の第1の溝に流出させながら溶接することを特徴とする2電極エレクトロガス溶接方法。In two-electrode electro-gas welding of thick steel plates, a V groove having a groove shape groove gap, the groove rear surface of the steel plate thickness is 40 to 100 mm, the width W1 of the groove width direction x is the back side opening The first groove for storing the slag wider than the front gap, and the width W2 at the center of the first groove is narrower than the width W1 and wider than the back-side groove, and the plate thickness from the bottom surface of the first groove. A solid backing material extending in the vertical direction z perpendicular to the groove width direction x and the plate thickness direction y, provided with a second groove for forming a back bead drilled in the direction y of The two electrodes distributed in the plate thickness direction y in the groove are driven to swing in the plate thickness direction y, so that the molten slag on the back side groove gap side is used for the slag accumulation of the solid backing material . A two-electrode electrogas welding method, wherein welding is performed while flowing into one groove. 裏面側開先ギャップの開先幅方向の幅は8〜15mm、第1の溝の幅W1は20〜45mm、かつ、第2の幅W2は12〜23mmであることを特徴とする請求項1に記載の2電極エレクトロガス溶接方法。 The width in the groove width direction of the back surface side groove is 8 to 15 mm, the width W1 of the first groove is 20 to 45 mm, and the second width W2 is 12 to 23 mm. 2 electrode electro-gas welding method according to. 第1の溝は深さ1.0〜2.0mm、かつ、第2の溝は深さが第1の溝底面から1.0〜2.0mmであることを特徴とする請求項1又は請求項2記載の2電極エレクトロガス溶接方法The first groove depth 1.0 to 2.0 mm, and, according to claim 1 second grooves which are deep and wherein 1.0~2.0M m Der Rukoto from the first groove bottom Alternatively, the two-electrode electrogas welding method according to claim 2 .
JP28216298A 1998-10-05 1998-10-05 Two-electrode electrogas welding method Expired - Lifetime JP3741402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28216298A JP3741402B2 (en) 1998-10-05 1998-10-05 Two-electrode electrogas welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28216298A JP3741402B2 (en) 1998-10-05 1998-10-05 Two-electrode electrogas welding method

Publications (2)

Publication Number Publication Date
JP2000107893A JP2000107893A (en) 2000-04-18
JP3741402B2 true JP3741402B2 (en) 2006-02-01

Family

ID=17648917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28216298A Expired - Lifetime JP3741402B2 (en) 1998-10-05 1998-10-05 Two-electrode electrogas welding method

Country Status (1)

Country Link
JP (1) JP3741402B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605669B1 (en) 2005-08-10 2006-08-01 대우조선해양 주식회사 New copper shoe for electro gas welding

Also Published As

Publication number Publication date
JP2000107893A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
CN102333613B (en) The complex welding method that composition gas shielded arc welding and hidden arc welding form and composite arc bonding machine thereof
KR200418345Y1 (en) Electro gas welding machine
CN104874919B (en) A kind of slab narrow gap laser photocoagulation method
JP2004223548A (en) Method for joining aluminum and steel
CN107921569B (en) Vertical narrow groove gas shielded arc welding method
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
CN110860796B (en) Aluminum alloy small-current arc online cleaning auxiliary laser filler wire welding method
US20080206586A1 (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
CN110177643B (en) Single-sided submerged arc welding method and single-sided submerged arc welding device
KR100811920B1 (en) One side welding method of butt-welded joints
JP4978121B2 (en) Butt joining method of metal plates
CN108367376B (en) Vertical narrow groove gas shielded arc welding method
JP2012166204A (en) Water-cooled sliding copper strap for electrogas arc welding
GB2596819A (en) Joining of lead and lead alloys
JP3741402B2 (en) Two-electrode electrogas welding method
JP2007090386A (en) Two-sided welding process and welded structure formed thereby
JP3596723B2 (en) Two-electrode vertical electrogas arc welding method
CN108290239B (en) Vertical narrow groove gas shielded arc welding method
JP2001030091A (en) Structure of t-shaped joint with narrow groove, its welding method, and welded structure
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JPH11147175A (en) Gas shield arc welding method
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JP2007216275A (en) Shield gas for hybrid welding, and hybrid welding method using the shield gas
JPH0457435B2 (en)
US7371994B2 (en) Buried arc welding of integrally backed square butt joints

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term