JP3738594B2 - AC-DC converter - Google Patents

AC-DC converter Download PDF

Info

Publication number
JP3738594B2
JP3738594B2 JP06121799A JP6121799A JP3738594B2 JP 3738594 B2 JP3738594 B2 JP 3738594B2 JP 06121799 A JP06121799 A JP 06121799A JP 6121799 A JP6121799 A JP 6121799A JP 3738594 B2 JP3738594 B2 JP 3738594B2
Authority
JP
Japan
Prior art keywords
value
circuit
output
converter
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06121799A
Other languages
Japanese (ja)
Other versions
JP2000262059A (en
Inventor
一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP06121799A priority Critical patent/JP3738594B2/en
Publication of JP2000262059A publication Critical patent/JP2000262059A/en
Application granted granted Critical
Publication of JP3738594B2 publication Critical patent/JP3738594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、入力される交流電源から見た基本波力率をほぼ1にしつつ、負荷に給電する交流−直流変換装置に関する。
【0002】
【従来の技術】
図2は、この種の交流−直流変換装置の代表的な回路構成図であり、1は交流−直流変換装置、2は交流−直流変換装置1の入力の交流電源、3は交流−直流変換装置1の負荷を示す。
【0003】
この交流−直流変換装置1は、例えばダイオードをブリッジ接続してなる単相全波整流回路11と、リアクトル12と、自己消弧形素子としてのMOSFET13と、シャント抵抗14と、ダイオード15と、電解コンデンサ16と、制御回路20または制御回路50のいずれか一方とから構成されている。
【0004】
なお図2において、リアクトル12,MOSFET13,シャント抵抗14,ダイオード15,電解コンデンサ16からなる電力変換回路は、周知の昇圧チョッパ回路と称されるものであり、また、電解コンデンサ16の陰極端子側を基準電位(接地記号で示す)としている。
図3は、図2に示した交流−直流変換装置1に基づいた、この発明の従来例としての制御回路20の詳細回路構成図である。
【0005】
この制御回路20には単相全波整流回路11の整流電圧(端子A)から制御回路20の回路電圧Vccを生成するレギュレータ回路21と、前記整流電圧の検出値に基づく値を生成し、この値を後述の乗算演算器31の一方の入力とする抵抗22,23と、出力電圧設定値としての基準電源24と、電解コンデンサ16の陽極端子側電圧、すなわち交流−直流変換装置1の出力電圧(端子D)の検出値に基づく値を生成する抵抗25,26と、基準電源24からの出力電圧設定値と抵抗27を介した交流−直流変換装置1の出力電圧の検出値に基づく値との偏差を増幅する演算増幅器28と、演算増幅器28の周波数−増幅度を設定する抵抗29,コンデンサ30と、演算増幅器28の出力値と、抵抗22,23を介した前記整流電圧の検出値に基づく値とを乗算演算する乗算演算器31と、乗算演算器31の出力電流値を後述の演算増幅器43への入力電圧値に変換するトランジスタ32,抵抗33,トランジスタ34としてそれぞれのベース端子およびコレクタ端子を並列接続したn個(図示の場合n=3)のトランジスタ34a〜34c,抵抗35〜40からなる変換回路と、前記基準電位(端子E)から見たシャント抵抗14の単相全波整流回路11側(端子B)の電圧、すなわち、前記昇圧チョッパ回路の入力電流の検出値に基づく値を生成する抵抗41,42と、前記変換回路を介した乗算演算器31に基づく値と、抵抗41,42を介して前記入力電流の検出値をレベルシフトした値との偏差を増幅する演算増幅器43と、演算増幅器43の出力値をPWM演算し、このPWM演算値に基づいてMOSFET13をオン・オフさせる駆動信号(端子G)を発生するべく、キャリア発生器44,PWMコンパレータ45から形成されるPWM演算回路とを備えている。
【0006】
上述の制御回路20を備えた交流−直流変換装置1において、一般に交流電源2の電圧波形は正弦波であり、その結果、単相全波整流回路11の整流電圧は正弦波を全波整流した波形となる。
【0007】
また、負荷3が定常状態(一定値)では、端子Dの値を抵抗25,26で分圧した交流−直流変換装置1の出力電圧に基づく値と、基準電源24からの出力電圧設定値との偏差を増幅する演算増幅器28の出力の波形はほぼ直線状である。従って、抵抗22,23を介した前記整流電圧の検出値に基づく値である正弦波を全波整流した波形と、演算増幅器28の前記出力波形との乗算値である乗算演算器31の出力も正弦波を全波整流した波形となる。
【0008】
同様に、負荷3が定常状態(一定値)では、シャント抵抗14に流れる電流も正弦波を全波整流した波形となる。演算増幅器43への双方の前記入力の偏差を増幅する演算増幅器43の出力の波形も正弦波を全波整流した波形となる。
【0009】
その結果、交流電源2の周波数より十分高い繰り返し周波数でキャリア発生器44が出力する鋸歯状波形のキャリア信号と、演算増幅器43の出力値とをPWMコンパレータ45で比較演算したMOSFET13への駆動信号によるMOSFET13のオン・オフ比は、前記電力変換回路の出力電圧が一定となるよう、且つ、前記入力電流が全波整流電圧と同相で相似となるように交流電源2の1周期に変化し、従って、交流電源2の電圧の位相と基本波電流の位相とはほぼ同相になる。
すなわち、制御回路20により交流−直流変換装置1の出力電圧を一定にして負荷3に供給しつつ、交流電源2から見た基本波力率をほぼ1にしている。
【0010】
【発明が解決しようとする課題】
上述の制御回路20を備えた従来の交流−直流変換装置1において、交流電源2から見た基本波力率をほぼ1にするためには、演算増幅器43の非反転入力値と反転入力値とは、非反転入力値≒反転入力値の関係が必要である。さらに、前記入力電流の瞬時値が零レベルのときでも確実に上述の力率1の状態にするためには、非反転入力値<反転入力値の関係も必要である。
【0011】
例えば、負荷3が開放された直後には、交流−直流変換装置1の出力電圧が急上昇し、従って、抵抗25,26による前記出力電圧に基づく値と基準電源24からの出力電圧設定値との偏差を増幅する演算増幅器28の出力は急減してLowレベルとなり、その結果、乗算演算器31の出力に接続されたトランジスタ32がカットオフし、演算増幅器43への反転入力であるトランジスタ34のコレクタ電圧は前記電圧Vccを抵抗38と抵抗39とで分圧した値となる。
【0012】
また、上述の負荷3が開放されているときには、シャント抵抗14に流れる前記入力電流の瞬時値もほぼ零となり、抵抗41,42を介して該入力電流の検出値をレベルシフトした値、すなわち、演算増幅器43の非反転入力値と、前記反転入力値(電圧Vccを抵抗38と抵抗39とで分圧した値)とは非反転入力値>反転入力値の関係になる恐れがあり、その結果、この期間ではMOSFET13のスイッチング時のオン時間または「オン・オフ比」が過大になり、この交流−変換装置1を安定に制御できないことがあった。
【0013】
この主要因として、抵抗41,42それぞれの抵抗値のバラツキが挙げられ、従来は抵抗41,42それぞれの値を微調整することにより対応していた。
この発明の目的は、従来の制御回路に簡単な回路を付加して、上記問題点を解決する交流−直流変換装置を提供することにある。
【0014】
【課題を解決するための手段】
この第1の発明は、入力される交流電圧を整流回路により整流し、この整流電圧を電力変換回路により出力電圧設定値に基づく直流電圧に変換して出力するべく、前記出力電圧設定値と、前記電力変換回路が出力する直流電圧の検出値に基づく値との偏差を増幅する第1の偏差増幅器と、前記整流電圧の検出値に基づく値と、前記第1の偏差増幅器の出力値とを乗算演算する乗算演算器と、前記電力変換回路の入力電流の検出値が非反転端子に入力され、前記乗算演算器の乗算値に基づく値が反転入力端子に入力されて、前記電力変換回路の入力電流の検出値に基づく値と、前記乗算演算器の乗算値に基づく値との偏差を増幅する第2の偏差増幅器と、該第2の偏差増幅器の出力値をPWM演算し、このPWM演算値に基づいて前記電力変換器を形成する自己消弧形素子をオン・オフさせるPWM演算回路とから構成される制御回路を備えた交流−直流変換装置において、
前記制御回路に、前記第1の偏差増幅器の出力値が所定の値以下になったときに動作するコンパレータ回路と、このコンパレータ回路が動作したときに、前記入力電流の検出値に基づく値を所定の値だけ低下させさせて、前記第2の偏差増幅器の非反転端子に入力される信号の値が反転入力端子に入力される信号の値より小さくなるようにする半導体スイッチ回路とを付加したことを特徴とする。
【0015】
また第2の発明は前記第1の発明の交流−直流変換装置において、
前記整流回路は単相全波整流回路により形成され、前記電力変換回路は、前記単相全波整流回路の出力の両端に、リアクトルと前記自己消弧形素子とシャント抵抗とを直列接続してなる第1の直列回路の両端を接続すると共に、前記自己消弧形素子の両端に、ダイオードとコンデンサとを直列接続してなる第2の直列回路の両端を接続して形成され、前記コンデンサの両端をこの電力変換回路の出力としたことを特徴とする。
【0016】
この発明によれば、前記制御回路にコンパレータ回路と半導体スイッチ回路とを付加することにより、無負荷状態でも、後述の如く、出力電圧を安定に制御でき、且つ、交流電源からみた基本波力率をほぼ1にすることができる。
【0017】
【発明の実施の形態】
図1は、図2に示した交流−直流変換装置1に基づいた、この発明の実施例としての制御回路50の詳細回路構成図であり、図3に示した従来例回路と同一機能を有するものには同一符号を付して、ここではその説明を省略する。
【0018】
すなわち図1に示した制御回路50にはレギュレータ回路21,抵抗22〜23,基準電源24,抵抗25〜27,演算増幅器28,抵抗29,コンデンサ30,乗算演算器31,トランジスタ32,抵抗33,トランジスタ34,抵抗35〜41,演算増幅器43,キャリア発生器44,PWMコンパレータ45の他に、抵抗42を分割した抵抗42a,42bと、定電流源51とトランジスタ52,53と基準電源54とからなるコンパレータ回路と、抵抗55,56とトランジスタ57とからなる半導体スイッチ回路とを備えている。
【0019】
図1において、例えば、負荷3が開放された直後には、交流−直流変換装置1の出力電圧が急上昇し、従って、抵抗25,26による前記出力電圧に基づく値と基準電源24からの出力電圧設定値との偏差を増幅する演算増幅器28の出力は急減するが、このとき電力変換回路出力が無負荷時の演算増幅器28の出力電圧より僅かに高く設定された基準電源54の電圧以下に演算増幅器28の出力値が下がると、トランジスタ52のコレクタ電圧がLowレベルからHighレベルに変化し、このHighレベルによって、抵抗55,56を介したトランジスタ57が導通状態となり、抵抗42bの両端を短絡する。その結果、シャント抵抗14に流れる入力電流(≒0)を抵抗41,42a,42bを介して該入力電流の検出値をレベルシフトした値を抵抗42bの短絡分だけ低下させる。
【0020】
ここで、抵抗42aと抵抗42bとの分割比を設定することにより、演算増幅器4の非反転入力値(電圧Vccを抵抗41と抵抗42aとで分圧した値)と、反転入力値(電圧Vccを抵抗38と抵抗39とで分圧した値)とは非反転入力値<反転入力値の関係にすることができる。
【0021】
すなわち、制御回路50により交流−直流変換装置1の出力電圧を一定にして負荷3に供給しつつ、負荷3が無負荷状態のときにも、交流電源2から見た基本波力率をほぼ1にすることができる。
【0022】
また、制御回路50により、図2に示した電力変換回路を構成するMOSFET13のオン・オフ比は交流電源2の1周期に渡って前記周期に同期して前記全波整流電圧と一次式の関係で変化し、電力変換回路出力が無負荷時の出力過電圧状態を防止できることから、リアクトル12のスイッチング電圧に基づくMOSFET13,ダイドード15,電解コンデンサ16それぞれの耐圧をより低くしたものが使用でき、さらにリアクトル12からの電磁異音も軽減される。
【0023】
なお、図2に示した交流−直流変換装置では、電力変換回路として昇圧チョッパ回路の例で示したが、降圧チョッパ回路やフライバック形変換回路などにおいても、この発明の制御回路は有効である。
【0024】
【発明の効果】
この発明によれば、従来の制御回路にコンパレータ回路と半導体スイッチ回路とを付加することにより、無負荷状態でも出力電圧を安定に制御でき、且つ、交流電源からみた基本波力率をほぼ1にすることができる。
さらに、電力変換回路を構成する半導体素子,電解コンデンサの耐圧をより低くできることから、この種の交流−直流変換装置の小型化,低価格化を計れる。
【図面の簡単な説明】
【図1】この発明の交流−直流変換装置の実施例を示す部分詳細回路構成図
【図2】代表的な交流−直流変換装置の回路構成図
【図3】交流−直流変換装置の従来例を示す部分詳細回路構成図
【符号の説明】
1…交流−直流変換装置、2…交流電源、3…負荷、11…単相全波整流回路、12…リアクトル、13…MOSFET、14…シャント抵抗、15…ダイオード、16…電解コンデンサ、20…制御回路、21…レギュレータ回路、22〜23…抵抗、24…基準電源、25〜27…抵抗、28…演算増幅器、29…抵抗、30…コンデンサ、31…乗算演算器、32…トランジスタ、33…抵抗、34…トランジスタ、35〜42,42a,42b…抵抗、43…演算増幅器、44…キャリア発生器、45…PWMコンパレータ、50…制御回路、51…定電流源、52,53…トランジスタ、54…基準電源、55,56…抵抗、57…トランジスタ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an AC-DC converter that feeds power to a load while setting a fundamental wave power factor viewed from an input AC power source to approximately 1.
[0002]
[Prior art]
FIG. 2 is a typical circuit configuration diagram of this type of AC-DC converter, wherein 1 is an AC-DC converter, 2 is an AC power supply for the input of the AC-DC converter 1, and 3 is an AC-DC converter. The load of the apparatus 1 is shown.
[0003]
This AC-DC converter 1 includes, for example, a single-phase full-wave rectifier circuit 11 formed by bridge-connecting diodes, a reactor 12, a MOSFET 13 as a self-extinguishing element, a shunt resistor 14, a diode 15, an electrolytic The capacitor 16 is composed of either the control circuit 20 or the control circuit 50.
[0004]
In FIG. 2, a power conversion circuit including a reactor 12, a MOSFET 13, a shunt resistor 14, a diode 15, and an electrolytic capacitor 16 is referred to as a known boost chopper circuit. Reference potential (indicated by ground symbol).
FIG. 3 is a detailed circuit configuration diagram of a control circuit 20 as a conventional example of the present invention based on the AC-DC converter 1 shown in FIG.
[0005]
The control circuit 20 generates a regulator circuit 21 that generates the circuit voltage Vcc of the control circuit 20 from the rectified voltage (terminal A) of the single-phase full-wave rectifier circuit 11, and a value based on the detected value of the rectified voltage. Resistors 22 and 23 having a value as one input of a multiplier 31 described later, a reference power supply 24 as an output voltage setting value, an anode terminal side voltage of the electrolytic capacitor 16, that is, an output voltage of the AC-DC converter 1 Resistors 25 and 26 that generate values based on the detected value of (terminal D), an output voltage setting value from the reference power supply 24, and a value based on the detected value of the output voltage of the AC-DC converter 1 via the resistor 27 Of the operational amplifier 28, the resistor 29 and the capacitor 30 for setting the frequency-amplification degree of the operational amplifier 28, the output value of the operational amplifier 28, and the detection of the rectified voltage via the resistors 22 and 23. A multiplication operation unit 31 for multiplying a value based on the above, a transistor 32 for converting an output current value of the multiplication operation unit 31 into an input voltage value to an operational amplifier 43 to be described later, a resistor 33, and a transistor 34. A single-phase full-wave of a shunt resistor 14 as viewed from the reference potential (terminal E), and a conversion circuit composed of n transistors 34a to 34c and resistors 35 to 40 with collector terminals connected in parallel (n = 3 in the figure). The voltage on the rectifier circuit 11 side (terminal B), that is, the resistors 41 and 42 that generate values based on the detected value of the input current of the step-up chopper circuit, the value based on the multiplier 31 through the conversion circuit, An operational amplifier 43 that amplifies a deviation from a value obtained by level-shifting the detected value of the input current via the resistors 41 and 42; and an output value of the operational amplifier 43 is PWM-calculated. Of order to generate the on-off is to drive signal (terminal G) the MOSFET13 based on the PWM calculation value, and a PWM computation circuit formed from the carrier generator 44, PWM comparator 45.
[0006]
In the AC-DC converter 1 provided with the control circuit 20 described above, the voltage waveform of the AC power supply 2 is generally a sine wave. As a result, the rectified voltage of the single-phase full-wave rectifier circuit 11 is a full-wave rectification of the sine wave. It becomes a waveform.
[0007]
When the load 3 is in a steady state (constant value), a value based on the output voltage of the AC-DC converter 1 obtained by dividing the value of the terminal D by the resistors 25 and 26, and an output voltage setting value from the reference power supply 24 The waveform of the output of the operational amplifier 28 that amplifies the deviation is substantially linear. Therefore, the output of the multiplier 31 which is a product of the waveform obtained by full-wave rectifying a sine wave that is a value based on the detected value of the rectified voltage via the resistors 22 and 23 and the output waveform of the operational amplifier 28 is also obtained. The waveform is a full-wave rectified sine wave.
[0008]
Similarly, when the load 3 is in a steady state (a constant value), the current flowing through the shunt resistor 14 also has a waveform obtained by full-wave rectification of a sine wave. The waveform of the output of the operational amplifier 43 that amplifies the deviation between the two inputs to the operational amplifier 43 is also a waveform obtained by full-wave rectifying the sine wave.
[0009]
As a result, the carrier signal having a sawtooth waveform output from the carrier generator 44 at a repetition frequency sufficiently higher than the frequency of the AC power supply 2 and the output value of the operational amplifier 43 are compared with the drive signal to the MOSFET 13 which is calculated by the PWM comparator 45. The on / off ratio of the MOSFET 13 changes in one cycle of the AC power supply 2 so that the output voltage of the power conversion circuit is constant and the input current is in phase with and similar to the full-wave rectified voltage. The phase of the voltage of the AC power supply 2 and the phase of the fundamental current are almost in phase.
That is, the fundamental wave power factor viewed from the AC power source 2 is set to about 1 while the control circuit 20 supplies the load 3 with a constant output voltage of the AC-DC converter 1.
[0010]
[Problems to be solved by the invention]
In the conventional AC-DC converter 1 provided with the control circuit 20 described above, in order to set the fundamental wave power factor viewed from the AC power source 2 to approximately 1, the non-inverting input value and the inverting input value of the operational amplifier 43 are Requires a relationship of non-inverted input value≈inverted input value. Further, in order to ensure that the power factor is 1 even when the instantaneous value of the input current is at a zero level, the relationship of non-inverted input value <inverted input value is also necessary.
[0011]
For example, immediately after the load 3 is opened, the output voltage of the AC-DC converter 1 rises rapidly. Therefore, the value based on the output voltage by the resistors 25 and 26 and the output voltage setting value from the reference power supply 24 are The output of the operational amplifier 28 that amplifies the deviation rapidly decreases to a low level. As a result, the transistor 32 connected to the output of the multiplier 31 is cut off, and the collector of the transistor 34 that is the inverting input to the operational amplifier 43 is obtained. The voltage is a value obtained by dividing the voltage Vcc by the resistor 38 and the resistor 39.
[0012]
Further, when the load 3 is opened, the instantaneous value of the input current flowing through the shunt resistor 14 is also substantially zero, and a value obtained by level-shifting the detected value of the input current via the resistors 41 and 42, that is, The non-inverting input value of the operational amplifier 43 and the inverting input value (value obtained by dividing the voltage Vcc by the resistor 38 and the resistor 39) may be in a relationship of non-inverting input value> inverting input value, and as a result. During this period, the ON time or “ON / OFF ratio” at the time of switching of the MOSFET 13 becomes excessive, and the AC-converter 1 may not be stably controlled.
[0013]
The main factor is variation in resistance values of the resistors 41 and 42. Conventionally, this has been dealt with by finely adjusting the values of the resistors 41 and 42.
An object of the present invention is to provide an AC-DC converter that solves the above problems by adding a simple circuit to a conventional control circuit.
[0014]
[Means for Solving the Problems]
The first invention rectifies an input AC voltage by a rectifier circuit, converts the rectified voltage into a DC voltage based on an output voltage setting value by a power conversion circuit, and outputs the DC voltage. A first deviation amplifier that amplifies a deviation from a value based on a detected value of the DC voltage output from the power conversion circuit; a value based on the detected value of the rectified voltage; and an output value of the first deviation amplifier. A multiplication operation unit for performing a multiplication operation, a detected value of an input current of the power conversion circuit is input to a non-inverting terminal, a value based on a multiplication value of the multiplication operation unit is input to an inverting input terminal, and the power conversion circuit The second deviation amplifier that amplifies the deviation between the value based on the detected value of the input current and the value based on the multiplication value of the multiplier, and the PWM value of the output value of the second deviation amplifier are PWM-calculated. Said power conversion based on value In DC converter, - alternating with a control circuit composed of a PWM calculation circuit for turning on and off the self-turn-off elements forming
A comparator circuit that operates when an output value of the first deviation amplifier becomes a predetermined value or less is set in the control circuit, and a value based on the detected value of the input current is predetermined when the comparator circuit operates. And a semiconductor switch circuit for reducing the value of the signal input to the non-inverting terminal of the second deviation amplifier to be smaller than the value of the signal input to the inverting input terminal. It is characterized by.
[0015]
A second invention is the AC-DC converter of the first invention,
The rectifier circuit is formed of a single-phase full-wave rectifier circuit, and the power conversion circuit includes a reactor, a self-extinguishing element, and a shunt resistor connected in series at both ends of the output of the single-phase full-wave rectifier circuit. Both ends of the first series circuit, and both ends of the self-extinguishing element are connected to both ends of a second series circuit in which a diode and a capacitor are connected in series. Both ends are output from the power conversion circuit.
[0016]
According to the present invention, by adding a comparator circuit and a semiconductor switch circuit to the control circuit, the output voltage can be stably controlled even in a no-load state, as will be described later, and the fundamental wave power factor as viewed from the AC power source. Can be set to approximately 1.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a detailed circuit configuration diagram of a control circuit 50 as an embodiment of the present invention based on the AC-DC converter 1 shown in FIG. 2, and has the same function as the conventional circuit shown in FIG. Components are denoted by the same reference numerals, and description thereof is omitted here.
[0018]
That is, the control circuit 50 shown in FIG. 1 includes a regulator circuit 21, resistors 22 to 23, a reference power supply 24, resistors 25 to 27, an operational amplifier 28, a resistor 29, a capacitor 30, a multiplication calculator 31, a transistor 32, a resistor 33, In addition to the transistor 34, the resistors 35 to 41, the operational amplifier 43, the carrier generator 44, and the PWM comparator 45, the resistors 42a and 42b obtained by dividing the resistor 42, the constant current source 51, the transistors 52 and 53, and the reference power source 54 And a semiconductor switch circuit composed of resistors 55 and 56 and a transistor 57.
[0019]
In FIG. 1, for example, immediately after the load 3 is opened, the output voltage of the AC-DC converter 1 rapidly rises. Therefore, the value based on the output voltage by the resistors 25 and 26 and the output voltage from the reference power supply 24 are shown. The output of the operational amplifier 28 that amplifies the deviation from the set value decreases rapidly. At this time, the output of the power conversion circuit is calculated to be lower than the voltage of the reference power supply 54 set slightly higher than the output voltage of the operational amplifier 28 at the time of no load. When the output value of the amplifier 28 decreases, the collector voltage of the transistor 52 changes from the Low level to the High level, and this High level causes the transistor 57 through the resistors 55 and 56 to be in a conductive state, thereby short-circuiting both ends of the resistor 42b. . As a result, the value obtained by level-shifting the detected value of the input current (≈0) flowing through the shunt resistor 14 via the resistors 41, 42a, and 42b is reduced by the short circuit of the resistor 42b.
[0020]
Here, by setting the division ratio of the resistor 42a and the resistor 42b, calculating the non-inverting input value of the amplifier 4 3 (divided values in the voltage Vcc and the resistor 41 and the resistor 42a), the inverting input value (voltage The value obtained by dividing Vcc by the resistor 38 and the resistor 39 can be in a relationship of non-inverted input value <inverted input value.
[0021]
That is, while the control circuit 50 supplies the load 3 with the output voltage of the AC-DC converter 1 kept constant, the fundamental wave power factor viewed from the AC power source 2 is approximately 1 even when the load 3 is in an unloaded state. Can be.
[0022]
Further, the control circuit 50 causes the on / off ratio of the MOSFET 13 constituting the power conversion circuit shown in FIG. 2 to be related to the full-wave rectified voltage and the primary expression in synchronization with the period over one period of the AC power supply 2. Since the output overvoltage state when the power conversion circuit output is not loaded can be prevented, the MOSFET 13, the diode 15 and the electrolytic capacitor 16 having a lower withstand voltage based on the switching voltage of the reactor 12 can be used. The electromagnetic noise from 12 is also reduced.
[0023]
In the AC-DC converter shown in FIG. 2, the example of the step-up chopper circuit is shown as the power conversion circuit. However, the control circuit of the present invention is also effective in the step-down chopper circuit and the flyback type conversion circuit. .
[0024]
【The invention's effect】
According to the present invention, by adding a comparator circuit and a semiconductor switch circuit to the conventional control circuit, the output voltage can be stably controlled even in a no-load state, and the fundamental wave power factor viewed from the AC power source is set to about 1. can do.
Furthermore, since the breakdown voltage of the semiconductor element and the electrolytic capacitor constituting the power conversion circuit can be further reduced, it is possible to reduce the size and price of this type of AC-DC converter.
[Brief description of the drawings]
FIG. 1 is a partial detailed circuit diagram showing an embodiment of an AC-DC converter according to the present invention. FIG. 2 is a circuit diagram of a typical AC-DC converter. FIG. 3 is a conventional example of an AC-DC converter. Part detailed circuit configuration diagram showing
DESCRIPTION OF SYMBOLS 1 ... AC-DC converter, 2 ... AC power supply, 3 ... Load, 11 ... Single phase full wave rectifier circuit, 12 ... Reactor, 13 ... MOSFET, 14 ... Shunt resistance, 15 ... Diode, 16 ... Electrolytic capacitor, 20 ... Control circuit, 21 ... Regulator circuit, 22-23 ... Resistor, 24 ... Reference power supply, 25-27 ... Resistor, 28 ... Operational amplifier, 29 ... Resistor, 30 ... Capacitor, 31 ... Multiplier, 32 ... Transistor, 33 ... Resistor 34 ... Transistor 35-42, 42a, 42b Resistor 43 ... Operational amplifier 44 ... Carrier generator 45 ... PWM comparator 50 ... Control circuit 51 ... Constant current source 52, 53 ... Transistor 54 ... reference power supply, 55, 56 ... resistor, 57 ... transistor.

Claims (2)

入力される交流電圧を整流回路により整流し、この整流電圧を電力変換回路により出力電圧設定値に基づく直流電圧に変換して出力するべく、
前記出力電圧設定値と、前記電力変換回路が出力する直流電圧の検出値に基づく値との偏差を増幅する第1の偏差増幅器と、
前記整流電圧の検出値に基づく値と、前記第1の偏差増幅器の出力値とを乗算演算する乗算演算器と、
前記電力変換回路の入力電流の検出値が非反転端子に入力され、前記乗算演算器の乗算値に基づく値が反転入力端子に入力されて、前記電力変換回路の入力電流の検出値に基づく値と、前記乗算演算器の乗算値に基づく値との偏差を増幅する第2の偏差増幅器と、
該第2の偏差増幅器の出力値をPWM演算し、このPWM演算値に基づいて前記電力変換器を形成する自己消弧形素子をオン・オフさせるPWM演算回路とから構成される制御回路を備えた交流−直流変換装置において、
前記制御回路に、
前記第1の偏差増幅器の出力値が所定の値以下になったときに動作するコンパレータ回路と、
このコンパレータ回路が動作したときに、前記入力電流の検出値に基づく値を所定の値だけ低下させて、前記第2の偏差増幅器の非反転端子に入力される信号の値が反転入力端子に入力される信号の値より小さくなるようにする半導体スイッチ回路とを付加したことを特徴とする交流−直流変換装置。
In order to rectify the input AC voltage by the rectifier circuit, convert this rectified voltage to a DC voltage based on the output voltage setting value by the power conversion circuit, and output it,
A first deviation amplifier that amplifies a deviation between the output voltage setting value and a value based on a detected value of the DC voltage output from the power conversion circuit;
A multiplication calculator that multiplies the value based on the detected value of the rectified voltage and the output value of the first deviation amplifier;
The detected value of the input current of the power conversion circuit is input to a non-inverting terminal, the value based on the multiplication value of the multiplication calculator is input to the inverting input terminal, and the value based on the detected value of the input current of the power conversion circuit And a second deviation amplifier for amplifying a deviation from a value based on a multiplication value of the multiplication operator;
A control circuit including a PWM operation circuit that performs PWM operation on the output value of the second deviation amplifier and turns on / off the self-extinguishing element forming the power converter based on the PWM operation value; In the AC-DC converter
In the control circuit,
A comparator circuit that operates when an output value of the first deviation amplifier becomes a predetermined value or less;
When this comparator circuit operates, the value based on the detected value of the input current is reduced by a predetermined value, and the value of the signal input to the non-inverting terminal of the second deviation amplifier is input to the inverting input terminal An AC-DC converter characterized by adding a semiconductor switch circuit that makes it smaller than the value of the signal to be transmitted .
請求項1に記載の交流−直流変換装置において、
前記整流回路は単相全波整流回路により形成され、
前記電力変換回路は、
前記単相全波整流回路の出力の両端に、リアクトルと前記自己消弧形素子とシャント抵抗とを直列接続してなる第1の直列回路の両端を接続すると共に、
前記自己消弧形素子の両端に、ダイオードとコンデンサとを直列接続してなる第2の直列回路の両端を接続して形成され、
前記コンデンサの両端をこの電力変換回路の出力としたことを特徴とする交流−直流変換装置。
In the AC-DC converter of Claim 1,
The rectifier circuit is formed by a single-phase full-wave rectifier circuit,
The power conversion circuit includes:
Connecting both ends of a first series circuit formed by connecting a reactor, the self-extinguishing element, and a shunt resistor in series to both ends of the output of the single-phase full-wave rectifier circuit;
Formed at both ends of the self-extinguishing element by connecting both ends of a second series circuit in which a diode and a capacitor are connected in series;
An AC-DC converter characterized in that both ends of the capacitor are output from the power converter circuit.
JP06121799A 1999-03-09 1999-03-09 AC-DC converter Expired - Fee Related JP3738594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06121799A JP3738594B2 (en) 1999-03-09 1999-03-09 AC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06121799A JP3738594B2 (en) 1999-03-09 1999-03-09 AC-DC converter

Publications (2)

Publication Number Publication Date
JP2000262059A JP2000262059A (en) 2000-09-22
JP3738594B2 true JP3738594B2 (en) 2006-01-25

Family

ID=13164824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06121799A Expired - Fee Related JP3738594B2 (en) 1999-03-09 1999-03-09 AC-DC converter

Country Status (1)

Country Link
JP (1) JP3738594B2 (en)

Also Published As

Publication number Publication date
JP2000262059A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
US8493757B2 (en) AC/DC converter with a PFC and a DC/DC converter
US8503205B2 (en) AC/DC converter with a PFC and a DC/DC converter
JP3994953B2 (en) Power factor correction circuit
US6373734B1 (en) Power factor correction control circuit and power supply including same
Kim et al. New modulated carrier controlled PFC boost converter
US5612609A (en) Continuous conduction mode switching power supply with improved power factor correction
JP4678215B2 (en) Switching power supply
US20050219871A1 (en) Piecewise on-time modulation apparatus and method for a power factor corrector
US10312800B2 (en) AC-DC converter
TWI430071B (en) Power factor correction circuit, control circuit therefor and method for driving load circuit through power factor correction
JPH07245955A (en) Regulated power supply with improved power factor and uninterruptible power supply
JP2004056997A (en) High power factor transformer system and method therefor
JP6272691B2 (en) Amplitude normalization circuit, power supply device and electronic device
JP6091088B2 (en) DC stabilized power supply
US11637493B2 (en) Electrical circuits for power factor correction by measurement and removal of overtones and power factor maximization
US11552554B2 (en) Electrical circuits for power factor correction by measurement and removal of overtones using a constant or slowly varying first frequency
US20190097532A1 (en) Ac-dc converter
US20230208284A1 (en) Systems and Methods of Unwanted Harmonic Content Removal for Power Conversion
JPH03230759A (en) Power supply device and improving method for power factor
KR101609726B1 (en) Control circuit of switching rectifier with high power factor
JP3738594B2 (en) AC-DC converter
JP2515650B2 (en) Power factor correction circuit and switching power supply circuit using the power factor correction circuit
JP4423994B2 (en) Power factor correction circuit
JPH10127046A (en) Control circuit for step-up converter
JP2001086737A (en) Power supply

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees