JP3735430B2 - Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device - Google Patents

Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device Download PDF

Info

Publication number
JP3735430B2
JP3735430B2 JP00841197A JP841197A JP3735430B2 JP 3735430 B2 JP3735430 B2 JP 3735430B2 JP 00841197 A JP00841197 A JP 00841197A JP 841197 A JP841197 A JP 841197A JP 3735430 B2 JP3735430 B2 JP 3735430B2
Authority
JP
Japan
Prior art keywords
fine particles
liquid
fine particle
capillary
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00841197A
Other languages
Japanese (ja)
Other versions
JPH10206302A (en
Inventor
保雄 向阪
信彦 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanomax Japan Inc
Original Assignee
Kanomax Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanomax Japan Inc filed Critical Kanomax Japan Inc
Priority to JP00841197A priority Critical patent/JP3735430B2/en
Publication of JPH10206302A publication Critical patent/JPH10206302A/en
Application granted granted Critical
Publication of JP3735430B2 publication Critical patent/JP3735430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N2001/2893Preparing calibration standards

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は微粒子を気相中に分散させるための微粒子分散方法と微粒子分散装置及びそれを用いた粒径分布測定装置に関するものである。
【0002】
【従来の技術】
微粒子はその粒径分布等を測定するために、各粒子が凝集していない1次粒子の状態で液体中又は空気中に分散させて測定が可能となる。しかし微粒子の相互間にはファンデルワールス力、静電気力、液架橋力等の力が働いて容易に凝集し、1次粒子にまで分散させることが困難である。従って粒径分布を測定する際には、まず微粒子を十分に分散させる必要がある。又微粒子を測定対象とする種々の機器を校正する場合や、クリーンルーム等に用いられるフィルタの効率試験をする場合にも、高濃度で十分気相中に分散した微粒子が必要となる。従来の微粒子分離方法としては、湿式分散法と乾式分散法とが考えられている。湿式分散法は水中等液中に微粒子を混入させ、界面活性剤等を用いて各粒子を分離するものであり、乾式分離法は凝集体を機械的に粉砕したり、高速気流中に入れることによって気相中に分散させる方法である。
【0003】
【発明が解決しようとする課題】
しかしながらこのような従来の分散装置においても、粒径の平均が1μm以下の微粒子の場合には、凝集体を効率良く分散させることは難しいという欠点があった。
【0004】
本発明は1μm以下の微粒子も比較的容易に分散させることのできる分散方法と分散装置、及びこれを用いて粒子の粒径及び分布を測定するための粒径分布測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本願の請求項1の発明は、測定対象となる凝集した微粒子を液体中に分散させ、前記分散させた液体を第1の細管を介して噴霧手段に導き、前記噴霧手段に高圧空気を流入させることによって霧化し、前記霧化された液滴を前記液体の蒸発温度より高い温度に加熱された加熱管に導くことにより霧化された液滴を急激に沸騰蒸発させ、凝縮された微粒子を空気中に分散させることを特徴とするものである。
【0006】
本願の請求項2の発明は、測定対象となる凝集した微粒子を含む液体を第1の細管を介して供給する試料供給手段と、前記第1の細管の端部が開放された第2の細管を有し、該第2の細管内に高圧空気を流入させることによって噴霧する噴霧手段と、噴霧された液滴が導かれ、前記液体の蒸発温度より高い温度に加熱された加熱管と、を有し、霧化された液滴を急激に沸騰蒸発させることにより凝集した微粒子を気中に分散させることを特徴とするものである。
【0007】
本願の請求項3の発明では、前記試料供給手段の微粒子を分散させる液体はフッ素系不活性液体であることを特徴とするものである。
【0008】
本願の請求項4の発明は、請求項2又は3のいずれか1項記載の微粒子分散装置と、前記微粒子分散装置により気中に分散された微粒子を両極に帯電させ、電圧を印加した二重円筒に導くと共に、円筒の空隙より一部の微粒子を取り出す微分型電気移動度分析装置と、前記微分型電気移動度分析装置により捕集された微粒子の個数を計数する凝縮核カウンタと、を有することを特徴とするものである。
【0009】
このような特徴を有する本願の請求項1,2の発明によれば、凝集した微粒子を液体中に分散させて第1の細管を介して噴霧手段に導いている。噴霧手段では高圧空気を流入させて霧状としており、霧状となった微小な液滴を加熱管により急激に沸騰蒸発させる。こうすれば沸騰蒸発時に液滴中で凝集していた微粒子が核***状態となって気中に1次微粒子として分散させることができる。又請求項4の発明では、これを用いて微粒子の粒径分布を正確に測定することができるという効果が得られる。
【0010】
【発明の実施の形態】
次に本発明の一実施の形態による微粒子の分散装置について説明する。図1はこの実施の形態による微粒子分散装置の主要部の構成を示す図である。本図において容器1には試料となる微量の微粒子を凝集した状態で含む液体を入れる。この容器1を超音波バス2中に保持し、超音波振動を加えることによって試料をある程度まで分散させておくものとする。そしてこの容器1には第1の細管であるキャピラリ3を挿入して噴霧手段の第2の細管4に連結するように構成する。第2の細管4には外部より加圧した清浄な空気をダクト5を介して流入させる。そして細管4の端部には熱絶縁体から成るキャビティ6を設けておく。第2の細管4,ダクト5及びキャビティ6は噴霧手段7を構成している。噴霧手段7は第2の細管4からキャビティ6に達するときに圧力の急激な低下によって霧状の微小な液滴を発生させるものであって、その端部にはねじ止めにより継ぎ手を介して絶縁された分散用の金属管8が連結される。この金属管8は例えばステンレス製とし、一定の長さLを有するものとする。この金属管8は外部より容器1の液体の沸点より十分高い温度となるように一定の温度で加熱しておく加熱用の管である。このためこの金属管8にはヒータ9及び温度制御装置10が接続されている。
【0011】
次にこの微粒子分散装置の動作について説明する。容器1内に液体中に凝集している微粒子から成る試料を微量混入させ、超音波バス2によってある程度分散させる。そしてダクト5より圧縮した空気を導くと、容器1内の試料を含む溶媒がキャピラリ3を介して第2の細管4に吸引され、噴霧手段7のキャビティ6で霧状となる。そして霧状となった微小な液滴は金属管8に導かれる。キャビティ6は熱絶縁体で構成されているため、霧状の空気は金属管8に達してから急激に液滴の温度が上昇する。従って液滴が沸騰蒸発することとなり、微小液滴の核となっていた凝集している微粒子は核***状態となって、液滴内に含まれていた微粒子を夫々の微粒子毎に1次粒子として分離させ、気相中に分散させることができる。そのため分散した微粒子の粒径分布や個数濃度の測定を行うことができる。尚超音波バス2により容器1に超音波振動を与えることにより、キャピラリ3での詰まりが回避できるという副次的な効果がある。
【0012】
次にこの実施の形態による微粒子分散装置を用いた粒径分布測定装置の全体構成について図2を用いて説明する。微粒子分散装置の金属管8より分散した微粒子を含む空気(エアロゾル)をダクト11を介して空冷部12に導く。空冷部12は多数のフィン13が接続されており、このエアロゾルを冷却するものである。尚、空冷部12は水冷,電子冷却等の冷却機能によって常温に温度制御できるものでもよい。又冷却によって生じる液滴はドレイン14より排出される。
【0013】
次に冷却された空気流は微分型電気移動度分析装置(以下、DMA(ディファレンシャル モビィリティ アナライザ)という)に導かれる。DMAはJournal of Aerosol Science, 1975, Vol.6, pp.443-451, gAerosol classification by electric mobility : apperatus, theory, and applications"に示されているように、一定の電気移動度を持った粒子を分級する高精度の分級装置である。図3(a)はその構成を示す概略図であり、図示のように上部円筒21にAm−241等の放射線源22を設けて通過する微粒子を両極の平衡帯電状態とする。そしてこのエアロゾルを二重円筒から成る微粒子捕集部23の外筒内の内壁側に導く。内筒の外周部にはクリーンエアを導き、内筒に一定の電圧Vを印加する。そして内筒の下部に内筒とわずかの間隙を介してダクト24の開口部を配置し、内筒によって捕集されなかった微粒子をダクト24に導く。そしてダクト24に流入した微粒子の個数を凝縮核カウンタ(CNC)25によって計数する。凝縮核カウンタ25は微粒子を含んだ空気を水蒸気又はアルコール蒸気で飽和させ、夫々の微粒子を核として水蒸気又はアルコール蒸気を凝縮させ、成長粗大化して光学的に観察できるようにしてその数を計数するものである。この場合には図3(b)に示すように、印加した電圧Vに対して粒子の個数が直接得られることとなる。尚発生粒子個数濃度が凝縮核カウンタ25の測定上限濃度を越える場合には、凝縮核カウンタ25の前段に希釈装置26を挿入して希釈した後、凝縮核カウンタ25に加える。
【0014】
ここでDMAに印加する電圧Vを変化させて捕集される微粒子の粒子数を計測する。こうすれば電圧の連続的な変化により計数値が変化する。前述したように微粒子は十分分散しているため、微粒子の粒径分布を正確に測定することができる。尚、微粒子分散装置によって分散された微粒子の粒径分布測定装置としては、光散乱法をはじめ他の測定方法の適用も可能である。
【0015】
【実施例】
次に本発明の実施例について説明する。この実施例においては、キャピラリ3の内径を0.95mmφとし、第2の細管4の内径を1.5mmφとし、金属管の内径を11.5mmφとした。又金属管の長さLは30cmとする。又容器1の凝集している粒子を入れる溶媒としてフッ素系不活性液体(例えば商品名フロリナート等)を用いた。フロリナートは沸点56℃であり、蒸発潜熱21cal /g、比熱0.25cal /g・℃であり、水と比べて沸点及び潜熱が低いので容易に沸騰させることができる。又超純水のように不純物を溶かすことがなく蒸発残渣が少ないので溶媒として好適である。又ダクト5に加える空気の圧力は2気圧とした。又金属管8の温度は溶媒であるフロリナートの沸点56℃より十分高い一定の温度、例えば300℃となるようにあらかじめ制御しておく。尚溶媒はフロリートに限定されているものではないが、沸点が低く容易に沸騰せることができる液体であることが好ましい。又加熱する温度は霧状の液滴をごく短時間で沸騰蒸発させることができるように沸点より十分高い温度を選択する。
【0016】
さてこの実施例では微粒子として(1)単分散球形ポリスチレンラテックス(以下、PSLという)粒子、(2)α−Fe2 3 粒子、(3)α−FeOOH粒子、(4)カーボンブラック粒子を用いた。(1)の粒子は表1に示すように対数をとったときの分散σg が1.0、即ち単分散であり、その粒径は顕微鏡計測によって0.35μmと確認されている。又(2)〜(4)のα−Fe2 3 、α−FeOOH粒子、カーボンブラック粒子については夫々個数基準の幾何平均系dpstg=0.22μm、0.08μm、0.26μmである。
【表1】

Figure 0003735430
【0017】
これらの微粒子を分散させ、DMA20にて分級した。DMA20は微粒子捕集部23の外筒の半径を19.5mm、内筒の9.25mmとし、有効長を45.5cmとする。そして流入させるエアロゾルの流量を0.95l/分、クリーンエアの流量を10l/分とした。尚PSL粒子に対しては20l/分とした。こうして分周した後、微粒子の個数を凝縮核カウンタ25にて計数した結果を図4〜図7に示す。尚DMAにて測定される粒子径は流体抵抗力相当径dpdである。こうして得られた微粒子の粒径dpdと分散σg の結果を表2に示す。
【表2】
Figure 0003735430
【0018】
このように粒径が1μm以下の種々の微粒子について、ほぼ理論値に近い粒径分布が得られた。このため噴霧手段7により液滴として噴霧させ、これを急速に加熱蒸発させることによって核となっている粒子を、ほぼ1次粒子に近い形で分散させることができることが確認できた。このため種々の粒子を簡単に且つ連続的に分散させることが可能となる。
【0019】
【発明の効果】
以上詳細に説明したように本願の請求項1〜3の発明によれば、凝縮し易い微粒子、特に1μm以下の粒径を有する粒子を効果的に連続して分散させることができる。従ってこの分散装置を用いて粉体を測定対象とする種々の測定機器の構成が可能となる。又クリーンルームに用いられるフィルタの効率試験をするためには、フィルタの上流側と下流側で粒子濃度を測定する必要があるが、上流側で高濃度で十分分散した1次粒子を供給するためにこの微粒子分散装置が有効となる。その他、微粒子を対象とする種々の測定装置にも本発明は有効となる。又請求項4の発明では、この微粒子分散装置を用いることによって1μm以下の微粒子についても効果的にその粒径分布を測定することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による微粒子分散装置の構成を示す断面図である。
【図2】この実施の形態による微粒子分散装置を用いた粒径分布測定装置の全体構成を示す図である。
【図3】DMA分級装置の構成を示す概略図である。
【図4】PSL粒子の分散の実験結果を示すグラフである。
【図5】Fe2 3 粒子の分散の実験結果を示すグラフである。
【図6】α−FeOOHの粒子の分散の実験結果を示すグラフである。
【図7】カーボンブラック粒子の分散の実験結果を示すグラフである。
【符号の説明】
1 容器
2 超音波バス
3 キャピラリ
4 細管
5,11,24 ダクト
7 噴霧手段
8 金属管
9 ヒータ
10 温度制御装置
12 空冷部
13 フィン
14 ドレイン
20 DMA
21 上部円筒
22 放射線源
23 微粒子捕集部
25 凝縮核カウンタ
26 希釈部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine particle dispersion method and a fine particle dispersion apparatus for dispersing fine particles in a gas phase, and a particle size distribution measuring apparatus using the same.
[0002]
[Prior art]
In order to measure the particle size distribution and the like of fine particles, it is possible to measure them by dispersing them in liquid or air in the form of primary particles in which each particle is not aggregated. However, forces such as van der Waals force, electrostatic force, and liquid cross-linking force act between the fine particles, so that they easily aggregate and are difficult to disperse to primary particles. Therefore, when measuring the particle size distribution, it is first necessary to sufficiently disperse the fine particles. Also, when calibrating various devices that measure fine particles or when performing an efficiency test of a filter used in a clean room or the like, fine particles sufficiently dispersed in the gas phase at a high concentration are required. As a conventional fine particle separation method, a wet dispersion method and a dry dispersion method are considered. The wet dispersion method mixes fine particles in a liquid such as water and separates each particle using a surfactant. The dry separation method mechanically pulverizes the aggregate or puts it in a high-speed air stream. This is a method of dispersing in the gas phase.
[0003]
[Problems to be solved by the invention]
However, even such a conventional dispersing apparatus has a drawback that it is difficult to efficiently disperse the aggregate in the case of fine particles having an average particle diameter of 1 μm or less.
[0004]
An object of the present invention is to provide a dispersion method and a dispersion apparatus capable of relatively easily dispersing fine particles of 1 μm or less, and a particle size distribution measuring apparatus for measuring the particle diameter and distribution of particles using the dispersion method and dispersion apparatus. And
[0005]
[Means for Solving the Problems]
In the invention of claim 1 of the present application, the agglomerated fine particles to be measured are dispersed in a liquid, the dispersed liquid is guided to the spraying means through the first thin tube, and high-pressure air is allowed to flow into the spraying means. The atomized droplets are rapidly boiled and evaporated by introducing the atomized droplets into a heating tube heated to a temperature higher than the evaporation temperature of the liquid, and the condensed fine particles are It is characterized by being dispersed in.
[0006]
According to the second aspect of the present invention, there is provided a sample supply means for supplying a liquid containing agglomerated fine particles to be measured through a first capillary tube, and a second capillary tube in which an end of the first capillary tube is opened. Spray means for spraying by flowing high-pressure air into the second narrow tube, and a heating tube to which the sprayed droplets are guided and heated to a temperature higher than the evaporation temperature of the liquid, The atomized droplets are rapidly boiled and evaporated to disperse the aggregated fine particles in the air.
[0007]
The invention of claim 3 of the present application is characterized in that the liquid in which the fine particles of the sample supply means are dispersed is a fluorine-based inert liquid.
[0008]
The invention according to claim 4 of the present application is the double particle dispersion device according to any one of claims 2 and 3, and a double electrode in which the fine particles dispersed in the air by the fine particle dispersion device are charged to both electrodes and a voltage is applied. A differential electric mobility analyzer that guides to a cylinder and extracts a part of the fine particles from a gap in the cylinder; and a condensation nucleus counter that counts the number of fine particles collected by the differential electric mobility analyzer. It is characterized by this.
[0009]
According to the first and second aspects of the present invention having such characteristics, the agglomerated fine particles are dispersed in the liquid and guided to the spraying means through the first thin tube. In the spraying means, high-pressure air is introduced to form a mist, and the mist-like minute droplets are rapidly boiled and evaporated by a heating tube. In this way, the fine particles aggregated in the droplets at the time of boiling evaporation become a fission state and can be dispersed in the air as primary fine particles. In the invention of claim 4, the effect that the particle size distribution of the fine particles can be accurately measured is obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, a fine particle dispersing apparatus according to an embodiment of the present invention will be described. FIG. 1 is a diagram showing the configuration of the main part of the fine particle dispersion device according to this embodiment. In this figure, the container 1 is filled with a liquid containing a minute amount of fine particles as a sample in an aggregated state. The container 1 is held in the ultrasonic bath 2, and the sample is dispersed to some extent by applying ultrasonic vibration. The container 1 is constructed such that a capillary 3 as a first capillary is inserted and connected to a second capillary 4 of the spraying means. Clean air pressurized from the outside flows into the second thin tube 4 through the duct 5. A cavity 6 made of a thermal insulator is provided at the end of the thin tube 4. The second narrow tube 4, the duct 5 and the cavity 6 constitute a spray means 7. The spray means 7 generates mist-like droplets by a rapid drop in pressure when reaching the cavity 6 from the second thin tube 4 and is insulated at the end by screwing. The dispersed metal pipes 8 are connected. The metal tube 8 is made of, for example, stainless steel and has a certain length L. This metal tube 8 is a heating tube that is heated from the outside at a constant temperature so that the temperature is sufficiently higher than the boiling point of the liquid in the container 1. For this reason, a heater 9 and a temperature control device 10 are connected to the metal tube 8.
[0011]
Next, the operation of this fine particle dispersing apparatus will be described. A small amount of a sample made of fine particles aggregated in a liquid is mixed in the container 1 and dispersed to some extent by the ultrasonic bath 2. Then, when the compressed air is introduced from the duct 5, the solvent containing the sample in the container 1 is sucked into the second thin tube 4 through the capillary 3 and becomes a mist in the cavity 6 of the spray means 7. The mist-like fine droplets are guided to the metal tube 8. Since the cavity 6 is made of a thermal insulator, the temperature of the droplet rapidly increases after the atomized air reaches the metal tube 8. Therefore, the droplets boil and evaporate, and the agglomerated fine particles that were the cores of the fine droplets are in a fission state, and the fine particles contained in the droplets become primary particles for each fine particle. It can be separated and dispersed in the gas phase. Therefore, the particle size distribution and number concentration of dispersed fine particles can be measured. By applying ultrasonic vibration to the container 1 by the ultrasonic bath 2, there is a secondary effect that clogging in the capillary 3 can be avoided.
[0012]
Next, the overall configuration of the particle size distribution measuring apparatus using the fine particle dispersing apparatus according to this embodiment will be described with reference to FIG. Air (aerosol) containing fine particles dispersed from the metal tube 8 of the fine particle dispersion device is guided to the air cooling unit 12 through the duct 11. The air cooling unit 12 is connected to a large number of fins 13 and cools the aerosol. The air-cooling unit 12 may be one that can be controlled to room temperature by a cooling function such as water cooling or electronic cooling. In addition, droplets generated by cooling are discharged from the drain 14.
[0013]
Next, the cooled air flow is guided to a differential electric mobility analyzer (hereinafter referred to as a DMA (differential mobility analyzer)). As shown in Journal of Aerosol Science, 1975, Vol.6, pp.443-451, gAerosol classification by electric mobility: apperatus, theory, and applications " 3 (a) is a schematic diagram showing the configuration, and as shown in the figure, the upper cylinder 21 is provided with a radiation source 22 such as Am-241, and fine particles passing therethrough are separated from each other. Then, the aerosol is guided to the inner wall side in the outer cylinder of the fine particle collecting unit 23. The clean air is guided to the outer peripheral part of the inner cylinder, and a constant voltage V is applied to the inner cylinder. Then, an opening of the duct 24 is arranged at a lower portion of the inner cylinder through a slight gap to guide the fine particles not collected by the inner cylinder to the duct 24. Then, the fine particles flowing into the duct 24 are introduced. Count the number to the condensation nucleus counter (CNC) 25 The condensation nucleus counter 25 saturates the air containing fine particles with water vapor or alcohol vapor, condenses the water vapor or alcohol vapor with each fine particle as a nucleus, grows coarsely, and can be optically observed. In this case, as shown in Fig. 3 (b), the number of particles can be directly obtained with respect to the applied voltage V. The generated particle number concentration is the condensation nucleus counter 25. When the concentration exceeds the measurement upper limit concentration, the dilution unit 26 is inserted in the previous stage of the condensation nucleus counter 25 for dilution, and then added to the condensation nucleus counter 25.
[0014]
Here, the number of particles collected by changing the voltage V applied to the DMA is measured. In this way, the count value changes due to a continuous change in voltage. As described above, since the fine particles are sufficiently dispersed, the particle size distribution of the fine particles can be accurately measured. Incidentally, as a particle size distribution measuring device of the fine particles dispersed by the fine particle dispersing device, other measuring methods such as a light scattering method can be applied.
[0015]
【Example】
Next, examples of the present invention will be described. In this embodiment, the inner diameter of the capillary 3 is 0.95 mmφ, the inner diameter of the second thin tube 4 is 1.5 mmφ, and the inner diameter of the metal tube is 11.5 mmφ. The length L of the metal tube is 30 cm. Further, a fluorine-based inert liquid (for example, trade name Fluorinert) was used as a solvent for containing the aggregated particles of the container 1. Fluorinate has a boiling point of 56 ° C., a latent heat of vaporization of 21 cal / g, a specific heat of 0.25 cal / g · ° C., and has a lower boiling point and latent heat than water, and can be boiled easily. Also, unlike ultrapure water, impurities are not dissolved and evaporation residue is small, so it is suitable as a solvent. The pressure of air applied to the duct 5 was 2 atm. The temperature of the metal tube 8 is controlled in advance so as to be a constant temperature sufficiently higher than the boiling point of 56 ° C. of fluorinate as a solvent, for example, 300 ° C. The solvent is not limited to floret, but is preferably a liquid that has a low boiling point and can be easily boiled. The heating temperature is selected to be sufficiently higher than the boiling point so that the mist droplets can be boiled and evaporated in a very short time.
[0016]
In this example, (1) monodispersed spherical polystyrene latex (hereinafter referred to as PSL) particles, (2) α-Fe 2 O 3 particles, (3) α-FeOOH particles, and (4) carbon black particles are used as the fine particles. It was. As shown in Table 1, the particle of (1) has a dispersion σ g of 1.0, that is, a monodisperse when the logarithm is taken, and its particle size is confirmed to be 0.35 μm by microscopic measurement. The α-Fe 2 O 3 , α-FeOOH particles, and carbon black particles (2) to (4) have geometric average systems d pstg of 0.22 μm, 0.08 μm, and 0.26 μm, respectively.
[Table 1]
Figure 0003735430
[0017]
These fine particles were dispersed and classified by DMA20. In the DMA 20, the radius of the outer cylinder of the particulate collection unit 23 is 19.5 mm, the inner cylinder is 9.25 mm, and the effective length is 45.5 cm. The flow rate of the inflowing aerosol was 0.95 l / min, and the flow rate of clean air was 10 l / min. For PSL particles, the rate was 20 l / min. After dividing the frequency in this way, the results of counting the number of fine particles by the condensation nucleus counter 25 are shown in FIGS. The particle diameter measured by DMA is a fluid resistance force equivalent diameter dpd . Table 2 shows the results of the particle diameter d pd and dispersion σ g of the fine particles thus obtained.
[Table 2]
Figure 0003735430
[0018]
Thus, for various fine particles having a particle size of 1 μm or less, a particle size distribution almost close to the theoretical value was obtained. For this reason, it has been confirmed that the particles that are the core can be dispersed in a form almost similar to the primary particles by spraying as droplets by the spray means 7 and rapidly heating and evaporating the droplets. For this reason, various particles can be easily and continuously dispersed.
[0019]
【The invention's effect】
As described above in detail, according to the first to third aspects of the present invention, fine particles that are easily condensed, particularly particles having a particle diameter of 1 μm or less can be effectively and continuously dispersed. Therefore, it is possible to configure various measuring instruments that use powder as a measurement object using this dispersing apparatus. In order to test the efficiency of a filter used in a clean room, it is necessary to measure the particle concentration upstream and downstream of the filter. In order to supply highly dispersed primary particles at a high concentration upstream. This fine particle dispersing apparatus is effective. In addition, the present invention is effective for various measuring devices for fine particles. In the invention of claim 4, by using this fine particle dispersing device, the effect that the particle size distribution of fine particles of 1 μm or less can be measured effectively is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a fine particle dispersion device according to an embodiment of the present invention.
FIG. 2 is a diagram showing an overall configuration of a particle size distribution measuring apparatus using a fine particle dispersing apparatus according to this embodiment.
FIG. 3 is a schematic diagram showing the configuration of a DMA classifier.
FIG. 4 is a graph showing experimental results of dispersion of PSL particles.
FIG. 5 is a graph showing experimental results of dispersion of Fe 2 O 3 particles.
FIG. 6 is a graph showing experimental results of dispersion of α-FeOOH particles.
FIG. 7 is a graph showing experimental results of dispersion of carbon black particles.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container 2 Ultrasonic bus 3 Capillary 4 Narrow tube 5, 11, 24 Duct 7 Spraying means 8 Metal tube 9 Heater 10 Temperature control apparatus 12 Air cooling part 13 Fin 14 Drain 20 DMA
21 Upper cylinder 22 Radiation source 23 Particulate collection part 25 Condensed nucleus counter 26 Dilution part

Claims (4)

測定対象となる凝集した微粒子を液体中に分散させ、
前記分散させた液体を第1の細管を介して噴霧手段に導き、
前記噴霧手段に高圧空気を流入させることによって霧化し、
前記霧化された液滴を前記液体の蒸発温度より高い温度に加熱された加熱管に導くことにより霧化された液滴を急激に沸騰蒸発させ、凝縮された微粒子を空気中に分散させることを特徴とする微粒子分散方法。
Disperse the agglomerated fine particles to be measured in a liquid,
Directing the dispersed liquid to the spraying means via the first capillary;
Atomized by flowing high-pressure air into the spray means,
The atomized droplet is rapidly boiled and evaporated by introducing the atomized droplet to a heating tube heated to a temperature higher than the evaporation temperature of the liquid, and the condensed fine particles are dispersed in the air. A fine particle dispersion method characterized by the above.
測定対象となる凝集した微粒子を含む液体を第1の細管を介して供給する試料供給手段と、
前記第1の細管の端部が開放された第2の細管を有し、該第2の細管内に高圧空気を流入させることによって噴霧する噴霧手段と、
噴霧された液滴が導かれ、前記液体の蒸発温度より高い温度に加熱された加熱管と、を有し、霧化された液滴を急激に沸騰蒸発させることにより凝集した微粒子を気中に分散させることを特徴とする微粒子分散装置。
A sample supply means for supplying a liquid containing agglomerated fine particles to be measured via the first capillary;
Spraying means for spraying by flowing high-pressure air into the second capillary, the second capillary having an open end of the first capillary;
A sprayed liquid droplet, and a heating tube heated to a temperature higher than the evaporation temperature of the liquid, and agglomerated fine particles in the air by rapidly evaporating the atomized liquid droplet A fine particle dispersing apparatus for dispersing.
前記試料供給手段の微粒子を分散させる液体はフッ素系不活性液体であることを特徴とする請求項2記載の微粒子分散装置。3. The fine particle dispersing apparatus according to claim 2, wherein the liquid for dispersing the fine particles in the sample supply means is a fluorine-based inert liquid. 請求項2又は3のいずれか1項記載の微粒子分散装置と、
前記微粒子分散装置により気中に分散された微粒子を両極に帯電させ、電圧を印加した二重円筒に導くと共に、円筒の空隙より一部の微粒子を取り出す微分型電気移動度分析装置と、
前記微分型電気移動度分析装置により捕集された微粒子の個数を計数する凝縮核カウンタと、を有することを特徴とする粒径分布測定装置。
The fine particle dispersion device according to any one of claims 2 and 3,
A differential electric mobility analyzer that charges fine particles dispersed in the air by the fine particle dispersing device to both poles, guides them to a double cylinder to which a voltage is applied, and takes out some fine particles from the voids of the cylinder;
A particle size distribution measuring apparatus comprising: a condensation nucleus counter that counts the number of fine particles collected by the differential electric mobility analyzer.
JP00841197A 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device Expired - Fee Related JP3735430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00841197A JP3735430B2 (en) 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00841197A JP3735430B2 (en) 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JPH10206302A JPH10206302A (en) 1998-08-07
JP3735430B2 true JP3735430B2 (en) 2006-01-18

Family

ID=11692413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00841197A Expired - Fee Related JP3735430B2 (en) 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3735430B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991099B2 (en) * 2002-09-04 2007-10-17 独立行政法人産業技術総合研究所 Method and apparatus for measuring particle size distribution of powder
WO2005100954A1 (en) * 2004-04-12 2005-10-27 Rion Co., Ltd. Method for calibrating particle counter
JP5427141B2 (en) * 2010-08-05 2014-02-26 オルガノ株式会社 Apparatus and method for measuring particles in liquid
FR3047312B1 (en) * 2016-01-28 2022-04-22 Laboratoire Nat De Metrologie Et Dessais CALIBRATION APPARATUS FOR A PARTICLE ANALYZER
CN115362024A (en) * 2020-04-02 2022-11-18 吉田工业株式会社 Wet-type micronizing device and method
CN111766184B (en) * 2020-06-30 2023-07-25 吉林大学 Method for measuring particle size distribution of titanium hydride powder compact

Also Published As

Publication number Publication date
JPH10206302A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
Wang et al. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles
US8459572B2 (en) Focusing particle concentrator with application to ultrafine particles
Wang et al. Effects of thermophoresis, vapor, and water film on particle removal of electrostatic precipitator
JPS62222145A (en) Method and apparatus for measuring impurity in liquid
Wang et al. Measurement of multi-wall carbon nanotube penetration through a screen filter and single-fiber analysis
Li et al. Performance study of a DC-corona-based particle charger for charge conditioning
JP3572319B2 (en) Particle analyzer in liquid
JP3735430B2 (en) Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device
Dey et al. A wet electrostatic precipitator (WESP) for soft nanoparticle collection
CN107921444A (en) The method and apparatus that selective aerosol particle collection is realized according to particle size
Oh et al. Effects of particle shape on the unipolar diffusion charging of nonspherical particles
Chen et al. Enhancement of filtration efficiency by electrical charges on nebulized particles
Fujitani et al. Particle deposition efficiency at air–liquid interface of a cell exposure chamber
TWI745391B (en) Colloid particle size-mass distribution measurement technology
Awasthi et al. The effect of nanoparticle morphology on the measurement accuracy of mobility particle sizers
He et al. A comparison study of the filtration behavior of air filtering materials of masks against inert and biological particles
Seto et al. Formation of highly charged nanodroplets by condensation–electrospray device
Lore et al. Inter-laboratory performance between two nanoparticle air filtration systems using scanning mobility particle analyzers
Mustika et al. Dual needle corona discharge to generate stable bipolar ion for neutralizing electrosprayed nanoparticles
Ichihara et al. Aerosolization of colloidal nanoparticles by a residual-free atomizer
Wu et al. Deposition removal of monodisperse and polydisperse submicron particles by a negative air ionizer
Pan et al. Influence of heat exchange on the motion characteristics and mechanical behavior of fine particles in an electrostatic precipitator
Pyo et al. Development of filter-free particle filtration unit utilizing condensational growth: With special emphasis on high-concentration of ultrafine particles
de Oliveira et al. Efficiency of electrostatic precipitation of NiO nanoparticles dispersed by atomization
CN107399715B (en) A kind of preparation facilities and preparation method of charged nanosize particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees