JP3734777B2 - Antibacterial agent for resin - Google Patents

Antibacterial agent for resin Download PDF

Info

Publication number
JP3734777B2
JP3734777B2 JP2002215065A JP2002215065A JP3734777B2 JP 3734777 B2 JP3734777 B2 JP 3734777B2 JP 2002215065 A JP2002215065 A JP 2002215065A JP 2002215065 A JP2002215065 A JP 2002215065A JP 3734777 B2 JP3734777 B2 JP 3734777B2
Authority
JP
Japan
Prior art keywords
resin
antibacterial
acid
group
antibacterial agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215065A
Other languages
Japanese (ja)
Other versions
JP2003105128A (en
Inventor
昌弘 鋒山
克巳 篠田
正司 皆木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2002215065A priority Critical patent/JP3734777B2/en
Publication of JP2003105128A publication Critical patent/JP2003105128A/en
Application granted granted Critical
Publication of JP3734777B2 publication Critical patent/JP3734777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れる樹脂用抗菌剤に関する。さらに詳しくは、樹脂との加熱混練時や樹脂成形時の熱履歴によっても抗菌効果が低下しない耐熱性に優れた樹脂用抗菌剤に関する。
【0002】
【従来の技術】
従来、衛生上のニーズ等から、樹脂に抗菌剤を添加して抗菌性を付与することが行われてきた。添加する抗菌剤としては、無機系の抗菌剤(銀、銅、亜鉛ゼオライトなど)や、有機系の抗菌剤〔2−(4‘−チアゾリル)−ベンズイミダゾール、10,10’−オキシビスフェノキシアルシンなど〕が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの抗菌剤は樹脂とともに加熱混練する時や樹脂成形時の熱履歴により熱分解を起こし、抗菌性が低下したり成形体が着色するという問題があった。
また、炭酸ジエステルを含有している場合は、樹脂との混練時、もしくは経時的に炭酸ガスを発生し、樹脂の強度が低下するなどの問題があった。
本発明の目的は、樹脂との加熱混練時や樹脂成形時の熱履歴による抗菌性の低下や成形体の着色を抑制し、かつ樹脂強度を低下させることのない樹脂用抗菌剤を得ることにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意検討した結果、本発明に到達した。すなわち本発明は、一般式(1)または(2)で表される4級アンモニウム塩からなり、遊離ハロゲン含量が100ppm以下で、かつ炭酸ジエステル含量が200ppm以下であることを特徴とする樹脂用抗菌剤;該樹脂用抗菌剤を熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる樹脂に含有させてなる抗菌性樹脂組成物;並びに、該抗菌性樹脂組成物を成形してなる成形体である。
1234+・X- (1)
65CH2(CH3)25+・X- (2)
(式中、R1、R2およびR3はそれぞれ同一または異なる、炭素数が1〜22の直鎖または分岐の脂肪族炭化水素基、R4およびR5は炭素数が8〜22の直鎖または分岐の脂肪族炭化水素基、X-は超強酸のアニオンを表す。)
【0005】
【発明の実施の形態】
一般式(1)におけるR1、R2およびR3は炭素数1〜22(好ましくは1〜14)の直鎖または分岐の脂肪族炭化水素基(アルキル基、アルケニル基など)を表す。
直鎖の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、ヤシ油アルキル基、オレイル基などが挙げられ、分岐の炭化水素基としては、イソプロピル基、2−エチルヘキシル基などが挙げられる。
【0006】
一般式(1)におけるR4は炭素数8〜22(好ましくは10〜18)の直鎖また分岐の脂肪族炭化水素基(アルキル基、アルケニル基など)を表す。
直鎖の脂肪族炭化水素基としては、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、ヤシ油アルキル基、オレイル基などが挙げられ、分岐の脂肪族炭化水素基としては、2−エチルヘキシル基などが挙げられる。
【0007】
一般式(1)における4級アンモニウム基の具体例としては、トリメチルドデシルアンモニウム、トリメチルテトラデシルアンモニウム、トリメチルヘキサデシルアンモニウム、トリメチルオクタデシルアンモニウム、トリメチルヤシ油アルキルアンモニウム、トリメチルオレイルアンモニウム、トリメチル2−エチルヘキシルアンモニウム、ジメチルエチルドデシルアンモニウム、ジメチルエチルテトラデシルアンモニウム、ジメチルエチルヘキサデシルアンモニウム、ジメチルエチルオクタデシルアンモニウム、ジメチルエチルヤシ油アルキルアンモニウム、ジメチルエチルオレイルアンモニウム、ジメチルエチル2−エチルヘキシルアンモニウム、メチルジエチルドデシルアンモニウム、メチルジエチルテトラデシルアンモニウム、メチルジエチルヘキサデシルアンモニウム、メチルジエチルオクタデシルアンモニウム、メチルジエチルヤシ油アルキルアンモニウム、メチルジエチルオレイルアンモニウム、メチルジエチル2−エチルヘキシルアンモニウム、ジメチルジヘキシルアンモニウム、ジメチルジオクチルアンモニウム、ジメチルジデシルアンモニウム、ジメチルジドデシルアンモニウムなどが挙げられる。
これらのうち抗菌性の観点から好ましいのは、ジメチルジデシルアンモニウム、トリメチルヘキサデシルアンモニウムである。
【0008】
一般式(2)におけるR5は前記R4と同じである。
一般式(2)における4級アンモニウム基の具体例としては、ジメチルデシルベンジルアンモニウム、ジメチルドデシルベンジルアンモニウム、ジメチルテトラデシルベンジルアンモニウム、ジメチルヘキサデシルベンジルアンモニウム、ジメチルヤシ油アルキルベンジルアンモニウム、ジメチルオレイルベンジルアンモニウム、ジメチル2−エチルヘキシルベンジルアンモニウムなどが挙げられる。
これらのうち抗菌性の観点から好ましいのは、ジメチルドデシルベンジルアンモニウム、ジメチルテトラデシルベンジルアンモニウムである。
【0009】
一般式(1)、(2)においてX-で表されるアニオンを構成する超強酸は、Hammettの酸度関数(−H0)が通常11.93(100%硫酸の数値)以上のもので、プロトン酸、およびプロトン酸/ルイス酸の組み合わせが挙げられる。
プロトン酸の具体例としては、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸などが挙げられる。
プロトン酸/ルイス酸の組み合わせに用いられるプロトン酸としては、ハロゲン化水素(フッ化水素、塩化水素、臭化水素、ヨウ化水素など)が挙げられ、ルイス酸としては三フッ化硼素、五フッ化リン、五フッ化アンチモン、五フッ化砒素、五フッ化タウリンなどが挙げられる。プロトン酸/ルイス酸の組み合わせは任意であるが、具体例としては、四フッ化硼素酸、六フッ化リン酸、塩化フッ化硼素酸、六フッ化アンチモン、六フッ化砒素、六フッ化タウリンなどが挙げられる。
上記の超強酸のうち、耐熱性の観点から好ましいのはHammettの酸度関数(−H0)が12以上のもの(トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、四フッ化硼素酸、六フッ化リン酸、塩化フッ化硼素酸、六フッ化アンチモン、六フッ化砒素、六フッ化タウリンなど)である。
【0010】
一般式(1)または(2)で表される4級アンモニウム塩としては、上記4級アンモニウム基と上記超強酸で構成されるアニオンX-との任意の組み合わせのものが挙げられる。本発明の樹脂用抗菌剤においては、一般式(1)または(2)で表される4級アンモニウム塩はそれぞれ単独でもよいし、併用でもよい。
これらのうち、抗菌性と耐熱性の観点から好ましいのは、ジメチルジデシルアンモニウム、トリメチルヘキサデシルアンモニウム、ジメチルドデシルベンジルアンモニウムおよびジメチルテトラデシルベンジルアンモニウムなどの4級アンモニウム基とトリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、四フッ化硼素酸、六フッ化リン酸、塩化フッ化硼素酸、六フッ化アンチモン、六フッ化砒素、六フッ化タウリンなどのHammett酸度関数(−H0)が12以上の超強酸との組み合わせである。
【0011】
本発明の樹脂用抗菌剤の遊離ハロゲン含量は通常100ppm以下、好ましくは0〜50ppm、とくに好ましくは0〜10ppmである。遊離ハロゲン含量が100ppmを超えると抗菌剤自体、該抗菌剤を含有させてなる抗菌性樹脂組成物並びに該抗菌性樹脂組成物を成形してなる成形体の耐熱性が悪くなる。
また、本発明における炭酸ジエステルとしては、炭酸ジメチルおよび炭酸ジエチルが挙げられ、本発明の樹脂用抗菌剤中の炭酸ジエステルの含量は通常200ppm以下、好ましくは0〜100ppm、とくに好ましくは0〜50ppmである。該炭酸ジエステルが200ppmを超えると、後述する本発明の抗菌性樹脂組成物並びに該組成物を成形してなる成形体の樹脂強度が低下する。
【0012】
一般式(1)または(2)で表される4級アンモニウム塩の製造方法としては、遊離ハロゲン含量が100ppm以下(測定法:イオンクロマトグラフィー)で、かつ炭酸ジエステルの含量が200ppm以下(測定法:ガスクロマトグラフィー)となる方法であれば、特に限定されることはなく、通常次の方法で製造される。
前記超強酸のアルカリ金属(ナトリウム、カリウムなど)塩に、必要によりアルカリ金属の水酸化物(苛性ソーダ、苛性カリなど)を配合し[超強酸のアルカリ金属塩とアルカリ金属の水酸化物のモル比は1/0.01〜1/0.4]、さらに4級アンモニウム塩〔例えば、一般式(1)におけるアンモニウム基とハロゲンアニオンからなる塩〕の水溶液(20〜70重量%)を配合し[4級アンモニウム塩/超強酸塩のモル比は通常1/1〜1/1.5、好ましくは1/1.05〜1.3]、室温で約2時間撹拌混合した水分散液(A)を下記(i)−(ii)の工程、または該(A)を(iii)の工程で精製する。
(i) (A)に金属銀、酸化銀、炭酸銀および有機酸〔炭素数1〜10のカルボン酸(モノ−およびポリカルボン酸など)など〕銀から選ばれる物質(B)を、上記4級アンモニウム塩〔一般式(1)におけるアンモニウム基とハロゲンアニオンからなる塩〕に対し1.1〜1.5当量%となる量加え、析出する塩(ハロゲン化銀)と下層(水層)を分液除去し、さらに上層中の水分を減圧留去した後、減圧乾燥して析出する塩を除去し、アルカリ金属塩および遊離ハロゲンを除去する工程。
(ii) (i)で得られた液にハロゲン化水素水溶液(C)を加え70〜80℃で約1時間撹拌混合後、分液処理した下層(水層)を除去し、上層を減圧乾燥して、目的の4級アンモニウム塩を得る、過剰の銀を除去する工程。
(iii) (A)と同量以上の水を仕込み、室温〜80℃で1時間攪拌後、同温度で静置分液する。分液した下層を除去し、上層を減圧脱水して目的の4級アンモニウム塩を得る、アルカリハライドを除去する工程。
【0013】
本発明の樹脂用抗菌剤の適用対象樹脂としては、樹脂成形品の製造に用いられる樹脂であれば特に限定されることはなく、熱可塑性樹脂および熱硬化性樹脂が挙げられる。
熱可塑性樹脂としては、ビニル重合系樹脂〔ポリオレフィン樹脂[ポリエチレン、エチレン−α−オレフィン(炭素数3〜12)共重合体、エチレン−酢酸ビニル共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜12)共重合体など]、塩素含有ビニル樹脂(ポリ塩化ビニル、ポリ塩化ビニリデンなど)、(メタ)アクリル樹脂[(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルおよび(メタ)アクリル酸2−エチルヘキシルなどからなる群より選ばれた1種以上のモノマーの(共)重合物など]、スチレン樹脂(ポリスチレン、AS樹脂、ABS樹脂、スチレン−ブタジエン樹脂、スチレン−無水マレイン酸樹脂、スチレン−アクリル酸エステル樹脂、HIPSなど)など〕;縮合系樹脂〔ポリアミド樹脂(6ナイロン、66ナイロン、11ナイロン、12ナイロンなど)、熱可塑性ポリエステル樹脂(PET樹脂、PBT樹脂、PEN樹脂、ポリカーボネート樹脂など)、ポリオキシフェニレンなど〕;重付加系樹脂〔熱可塑性ポリウレタン樹脂、ポリアセタール樹脂など〕;開環重合系樹脂〔ポリオキシアルキレン(アルキレン基の炭素数:2〜4)樹脂など〕などが挙げられる。
【0014】
熱硬化性樹脂としては、不飽和ポリエステル樹脂(グリコールと、不飽和および飽和二塩基酸から誘導される不飽和ポリエステルと他のビニルモノマーとの架橋共重合物など)、エポキシ樹脂(ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂などのエポキシ樹脂の、ポリアミン、酸無水物などによる硬化樹脂など)、熱硬化性ポリウレタン樹脂(ポリウレタンフォームを含む)、高吸水性樹脂(架橋ポリアクリルアミドの部分加水分解物、架橋されたアクリル酸−アクリルアミド共重合体など)などが挙げられる。
【0015】
本発明の樹脂用抗菌剤の添加量は樹脂に対して通常10重量%以下、抗菌効果と樹脂物性の観点から、好ましくは0.1〜5重量%、とくに好ましくは0.3〜2重量%である。
【0016】
本発明の樹脂用抗菌剤を含有してなる抗菌性樹脂組成物は、必要によりさらに顔料、核剤、可塑剤、安定剤、充填材、難燃剤、酸化防止剤、紫外線吸収剤および帯電防止剤から選ばれるその他の添加剤を含有させることができる。
【0017】
顔料としては、酸化チタン、ベンガラ、黄鉛、カドミウム、群青、アゾ系、フタロシアニン系、建染染料系、キナクリドン系、ジオキサジン系、染付レーキなど;核剤としては、ジベンジリデンソルビトールなど;可塑剤としては、フタル酸エステル系(ジオクチルフタレートなど)、リン酸エステル系、アジピン酸系、セバチン酸エステル系、グリコール酸エステル系、ポリエステル系、エポキシ系など;安定剤としては、鉛白、塩基性亜硫酸鉛、三塩基性硫酸鉛、二塩基性亜リン酸鉛、シリカゲル共沈けい酸鉛、液状金属系、ラウレート系有機スズ、マレエート系有機スズ、メルカプタイド系有機スズ、アンチモン系、エポキシ系、亜リン酸エステル系など;充填材としては、炭酸カルシウム、タルク、クレー、けい酸、けい酸塩、アスベスト、マイカ、ガラス繊維、ガラスバルーン、カーボン繊維、金属繊維、セラミックウィスカ、チタンウィスカなど;難燃剤としては、リン酸エステル系[トリクレジルホスフェート、トリス(2,3ジブロモプロピル)ホスフェートなど]、臭素系(デカブロモビフェニルエーテルなど)、三酸化アンチモン、水酸化マグネシウム、ホウ酸塩系(ホウ酸亜鉛、メタホウ酸バリウムなど)、水酸化アルミニウム、赤リン、水酸化マグネシウム、ポリリン酸アンモニウム、ヘット酸、テトラブロモビスフェノールAなどが挙げられる。
【0018】
また、酸化防止剤としては、フェノール系酸化防止剤[2,6−ジ−t−ブチル−p−クレゾール(BHT)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)など];硫黄系酸化防止剤[ジラウリル3,3’−チオジプロピオネート(DLTDP)、ジステアリル3,3’−チオジプロピオネート(DSTDP)など];リン系酸化防止剤[トリフェニルホスファイト(TPP)、トリイソデシルホスファイト(TDP)など];アミン系酸化防止剤[オクチル化ジフェニルアミン、N−n−ブチル−p−アミノフェノール、N,N−ジイソプロピル−p−フェニレンジアミンなど]など;紫外線吸収剤としては、ベンゾフェノン系(2−ヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノンなど)、サリチレート系(フェニルサリチレート、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエートなど)、ベンゾトリアゾール系[(2’−ヒドロキシフェニル)ベンゾトリアゾール、(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、(2’−ヒドロキシ−5’−メタクリロイルオキシエチルフェニル)ベンゾトリアゾールおよびその(共)重合体など]、アクリル系[エチル−2−シアノ−3,3−ジフェニルアクリレート、メチル−2−カルボメトキシ−3−(パラメトキシベンジル)アクリレートなど]など;帯電防止剤としては、ポリマー型(ポリエーテルエステルアミドなど)などが挙げられる。
【0019】
上記その他の添加剤の使用量は、本発明の抗菌剤およびその他の添加剤が未添加の樹脂重量に対して、可塑剤、充填材は通常80%以下、好ましくは10〜50%、難燃剤は通常40%以下、好ましくは10〜30%、顔料は通常40%以下、好ましくは1〜10%、核剤、安定剤、帯電防止剤は通常10%以下、好ましくは1〜5%、酸化防止剤、紫外線防止剤は通常5%以下、好ましくは0.1〜2%である。
【0020】
本発明の抗菌性樹脂組成物およびそれを用いた成形体の作成方法としては、樹脂が熱可塑性樹脂の場合は、抗菌剤および必要によりその他の添加剤とペレットまたは粉末状の樹脂を混合機で所定濃度になるように配合し均一に混合後、押出機で加熱溶融混練して抗菌性樹脂組成物を得、次いで加熱成形機または射出成形機等により成形加工する方法や、予め高濃度の抗菌剤を樹脂に配合したいわゆるマスターバッチを作成しておき、次いで抗菌剤を含まない樹脂で所定濃度まで希釈し、必要によりその他の添加剤を配合した後、成形加工する方法等が挙げられる。
樹脂が熱硬化性樹脂の場合は、抗菌剤およびその他の添加剤を混合可能な成分に予め配合した後に成形する方法が挙げられる。
【0021】
本発明の抗菌性樹脂組成物は成形機(加熱成形機、射出成形機など)により、ブロック状物、板状物、シート、フィルムおよび糸などの成形体とされ、浴槽・洗面台等のサニタリー用品、冷蔵庫・洗濯機等の家電用品、食卓・台所等の家庭用品、塩ビパイプ等の建築用品、ポリエステル・ナイロン・スパンデックス等の繊維および繊維製品、ポリエチレンシート等の包装用品などの各種用途に使用される。
【0022】
【実施例】
以下実施例により本発明をさらに説明するが本発明はこれに限定されるものではない。実施例中の部は重量部、%は重量%を示す。
【0023】
製造例1
四フッ化硼素酸ナトリウム60部(0.55モル)を室温でジメチルジデシルアンモニウムクロライド50%水溶液362部(0.5モル)に加え、2時間撹拌した。この反応水溶液に酸化銀15部を加え、析出した塩と下層(水層)を分液除去し、さらに上層の水分を留去し、減圧乾燥(減圧度950hpa、105℃×3時間)後、抗菌剤の融点(60℃)以上の温度で溶融状態にして、析出した塩を除去した。
次いで、1/10N塩酸100部を投入し、70〜80℃で1時間撹拌した後、下層(水層)を分液除去し、上層を減圧乾燥(前記条件に同じ)して、常温で固体のジメチルジデシルアンモニウム四フッ化硼素酸塩(X1)を得た。得られたものの遊離ハロゲン含量は3ppm、炭酸ジエステル(炭酸ジメチルおよび炭酸ジエチル、以下同じ)は検出限界(10ppm)以下であった。
【0024】
製造例2
トリフルオロメタンスルホン酸ナトリウム95部(0.55モル)を室温でジメチルジデシルアンモニウムクロライド50%水溶液362部(0.5モル)に加え、2時間攪拌した。この反応水溶液に酸化銀70gを加え、析出した塩と下層の水層を分液除去し、さらに上層の水分を留去し、減圧乾燥(前記条件に同じ)後、抗菌剤の融点(60℃)以上の温度で溶融状態にして、析出した塩を除去した。
次いで、1/10N塩酸溶液100部を投入し、70〜80℃で1時間攪拌した後、下層(水層)を分液除去し、上層を減圧乾燥(前記条件に同じ)して、常温で固体のジメチルジデシルアンモニウムトリフルオロメタンスルホン酸塩(X2)を得た。得られたものの遊離ハロゲン含量は2ppm、炭酸ジエステルは検出限界(10ppm)以下であった。
【0025】
製造例3
四フッ化硼素酸ナトリウム293部(2.67モル)と30%苛性ソーダ水溶液65部(0.49モル)を室温で配合し、さらにジメチルジデシルアンモニウムクロライド80%エタノール溶液1081部(2.39モル)を加え2時間撹拌した。この反応溶液に水1100部を加え、50〜60℃でさらに攪拌した後、同温度で1時間静置した。下層(水層)を分液除去し、さらに上層のエタノールと水を留去して、常温で固体のジメチルジデシルアンモニウム四フッ化硼素酸塩(X3)を得た。得られたものの遊離ハロゲン含量は10ppm、炭酸ジエステルは検出限界(10ppm)以下であった。
【0026】
比較製造例1
四フッ化硼素酸ナトリウム60部(0.55モル)を室温でジメチルジデシルアンモニウムクロライド50%水溶液362部(0.5モル)に加え、2時間攪拌後、下層(水層)を分液除去した。上層の水分を留去し、減圧乾燥(前記条件に同じ)して、常温で固体のジメチルジデシルアンモニウム四フッ化硼素酸塩(Y1)を得た。得られたものの遊離ハロゲン含量は8,500ppm、炭酸ジエステルは検出限界(10ppm)以下であった。
【0027】
実施例1〜3、比較例1〜4
<樹脂用抗菌剤の耐熱性>
製造例1、2、3で得られた抗菌剤X1、X2、X3および比較製造例1で得られた抗菌剤:Y1(比較例1)、銀ゼオライト:Y2(比較例2)、2−(4‘−チアゾリル)−ベンズイミダゾール:Y3(比較例3)、塩化ジデシルジメチルアンモニウム:Y4(比較例4)を用いて、空気中での熱減量開始温度と熱可塑性樹脂の標準的な成形温度条件の250℃で1時間静置した時の重量減少量を熱分析装置[理学電機(株)製THERMOFLEX TMA8140]を用いて測定した。結果を表1に示す。
【0028】
【表1】

Figure 0003734777
【0029】
<樹脂用抗菌剤の抗菌性評価>
実施例4〜6、比較例5〜8
本発明の抗菌剤X1、X2、X3と、比較の抗菌剤Y1〜Y4について、抗菌性を最小発育阻止濃度(MIC)試験により評価した。即ち、培地としてHeart infusion broth(HIB)を用い、希釈法(参考;東京大学医科学研究所学友会編 微生物学)に従って測定した。X1、X2、Y1〜Y4をそれぞれHIBを用いて希釈し、124.8ppm〜0.98ppm(抗菌剤濃度)溶液を作成した。被検菌株大腸菌の一夜培養液(培地:HIB 菌数 106CFU/ml)50μlを加え37℃にて一夜培養した。その後、被検菌の増殖の有無を観察し発育を阻止する最小発育阻止濃度を求めた。結果を表2に示す。
表2から、本発明の樹脂用抗菌剤(実施例4〜6)は従来の4級アンモニウム塩型抗菌剤(比較例5)と同等の優れた抗菌性を有することがわかる。
【0030】
【表2】
Figure 0003734777
【0031】
<樹脂組成物の耐熱黄変性>
実施例7〜9、比較例9〜12
本発明の抗菌剤X1、X2、X3および比較の抗菌剤Y1〜Y4の各々と、熱可塑性樹脂としてポリプロピレン樹脂<商品名「J609H」、グランドポリマー(株)製>を重量比10/90でヘンシェルミキサーにて3分間ブレンドした後、ベント付き二軸押出機にて230℃、100rpm、滞留時間5分の条件で溶融混練し、それぞれのマスターバッチを得た。次に得られたマスターバッチをポリプロピレン樹脂で、表3に示す各成分の最終含有量になるように希釈し、樹脂組成物を得た。
上記で得た各樹脂組成物およびブランクとして抗菌剤を添加しない樹脂について、射出成形機(日精樹脂工業製)を用いて、シリンダー温度230℃の条件で100mm×100mm×2mmの成形片を作成し、色相を日本電色工業製の測色色差計を用いて測定した。結果を表3に示す。
【0032】
【表3】
Figure 0003734777
【0033】
<成形体の抗菌性評価>
実施例10〜12、比較例13〜16
実施例7〜9、比較例9〜12において得られた成形片について、抗菌性を日本工業規格で定められた抗菌加工製品−抗菌性試験方法・抗菌効果(JIS Z2801)により評価した。
【0034】
50mm×50mm×2mmの試験片を作成し、普通ブイヨン培地を滅菌精製水で500倍希釈した液で菌数を2.5×105〜10×105個/mlとなるように調製した試験菌液を試験片上に0.4ml滴下して、乾かないように上からフィルムをかぶせ温度35±1℃、相対湿度90%以上で24±1時間培養した。その後、試験片とフィルムを10mlのSCDLP培地で洗いだし、その液を速やかに生菌数測定に供して生菌数を求め、下記式により抗菌活性値Rを求めた。結果を表4に示す。
抗菌活性R=Log(ブランクの生菌数/試験片の生菌数)
注;<10は10として計算。
[抗菌活性Rは大きいほど抗菌活性が高いことを示す]
【0035】
【表4】
Figure 0003734777
【0036】
【発明の効果】
本発明の樹脂用抗菌剤は、優れた耐熱性と、高い抗菌性を有し、樹脂との加熱混練時や樹脂成形時の熱履歴によっても抗菌効果の低下と樹脂強度の低下がなく、成形体の着色も抑制されるという効果を奏するため、樹脂用抗菌剤として極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antibacterial agent for resins having excellent heat resistance. More specifically, the present invention relates to an antibacterial agent for resin excellent in heat resistance, in which the antibacterial effect does not decrease even when heated and kneaded with a resin or by heat history during resin molding.
[0002]
[Prior art]
Conventionally, antibacterial properties have been imparted by adding an antibacterial agent to a resin for hygienic needs and the like. Antibacterial agents to be added include inorganic antibacterial agents (silver, copper, zinc zeolite, etc.), organic antibacterial agents [2- (4′-thiazolyl) -benzimidazole, 10,10′-oxybisphenoxyarsine Etc.] are known.
[0003]
[Problems to be solved by the invention]
However, these antibacterial agents have a problem that when they are kneaded together with a resin or thermally history due to heat history during resin molding, the antibacterial properties are lowered and the molded product is colored.
Further, when the carbonic acid diester is contained, there is a problem that carbon dioxide gas is generated during kneading with the resin or with time, and the strength of the resin is lowered.
An object of the present invention is to obtain an antibacterial agent for resin that suppresses the decrease in antibacterial property and coloring of the molded product due to the heat history during heat kneading with the resin or during resin molding and does not decrease the resin strength. is there.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have arrived at the present invention as a result of intensive studies to achieve the above object. That is, the present invention is an antibacterial resin for resin comprising a quaternary ammonium salt represented by the general formula (1) or (2), having a free halogen content of 100 ppm or less and a carbonic acid diester content of 200 ppm or less. An antibacterial resin composition comprising a resin selected from the group consisting of a thermoplastic resin and a thermosetting resin; and a molded article formed by molding the antibacterial resin composition. is there.
R 1 R 2 R 3 R 4 N + · X (1)
C 6 H 5 CH 2 (CH 3) 2 R 5 N + · X - (2)
(Wherein R 1 , R 2 and R 3 are the same or different and each represents a straight or branched aliphatic hydrocarbon group having 1 to 22 carbon atoms; R 4 and R 5 are straight chain groups having 8 to 22 carbon atoms; (Chain or branched aliphatic hydrocarbon group, X represents an anion of a super strong acid.)
[0005]
DETAILED DESCRIPTION OF THE INVENTION
R 1 , R 2 and R 3 in the general formula (1) represent a linear or branched aliphatic hydrocarbon group (alkyl group, alkenyl group, etc.) having 1 to 22 (preferably 1 to 14) carbon atoms.
As the linear aliphatic hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, A palm oil alkyl group, an oleyl group, etc. are mentioned, As a branched hydrocarbon group, an isopropyl group, 2-ethylhexyl group, etc. are mentioned.
[0006]
R 4 in the general formula (1) represents a linear or branched aliphatic hydrocarbon group (alkyl group, alkenyl group, etc.) having 8 to 22 (preferably 10 to 18) carbon atoms.
Examples of the linear aliphatic hydrocarbon group include octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, coconut oil alkyl group, oleyl group, etc., and branched aliphatic hydrocarbons Examples of the group include a 2-ethylhexyl group.
[0007]
Specific examples of the quaternary ammonium group in the general formula (1) include trimethyldodecyl ammonium, trimethyl tetradecyl ammonium, trimethyl hexadecyl ammonium, trimethyl octadecyl ammonium, trimethyl coconut oil alkyl ammonium, trimethyl oleyl ammonium, trimethyl 2-ethylhexyl ammonium, Dimethyl ethyl dodecyl ammonium, dimethyl ethyl tetradecyl ammonium, dimethyl ethyl hexadecyl ammonium, dimethyl ethyl octadecyl ammonium, dimethyl ethyl palm oil alkyl ammonium, dimethyl ethyl oleyl ammonium, dimethyl ethyl 2-ethylhexyl ammonium, methyl diethyl dodecyl ammonium, methyl diethyl tetradecyl Ammonium Examples include rudiethylhexadecylammonium, methyldiethyloctadecylammonium, methyldiethyl coconut oil alkylammonium, methyldiethyloleylammonium, methyldiethyl-2-ethylhexylammonium, dimethyldihexylammonium, dimethyldioctylammonium, dimethyldidecylammonium, dimethyldidodecylammonium and the like. It is done.
Of these, dimethyldidecylammonium and trimethylhexadecylammonium are preferable from the viewpoint of antibacterial properties.
[0008]
R 5 in the general formula (2) is the same as R 4 described above.
Specific examples of the quaternary ammonium group in the general formula (2) include dimethyldecylbenzylammonium, dimethyldodecylbenzylammonium, dimethyltetradecylbenzylammonium, dimethylhexadecylbenzylammonium, dimethyl coconut oil alkylbenzylammonium, dimethyloleylbenzylammonium, dimethyl Examples include 2-ethylhexyl benzyl ammonium.
Of these, dimethyldodecylbenzylammonium and dimethyltetradecylbenzylammonium are preferred from the viewpoint of antibacterial properties.
[0009]
The super strong acid constituting the anion represented by X in the general formulas (1) and (2) has a Hammett acidity function (−H 0 ) of usually 11.93 (a value of 100% sulfuric acid) or more. Protic acids, and proton / Lewis acid combinations.
Specific examples of the protonic acid include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid and the like.
Examples of the protonic acid used in the protonic acid / Lewis acid combination include hydrogen halides (hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, etc.), and examples of the Lewis acid include boron trifluoride and pentafluoride. Phosphorous fluoride, antimony pentafluoride, arsenic pentafluoride, taurine pentafluoride and the like. The combination of proton acid / Lewis acid is arbitrary, but specific examples include boron tetrafluoride acid, hexafluorophosphoric acid, chlorofluoroboronic acid, antimony hexafluoride, arsenic hexafluoride, taurine hexafluoride Etc.
Among the above super strong acids, those having a Hammett acidity function (-H 0 ) of 12 or more (trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, boron tetrafluoroboric acid, hexafluoride are preferable from the viewpoint of heat resistance. Phosphoric acid, chlorofluoroboric acid, antimony hexafluoride, arsenic hexafluoride, taurine hexafluoride, etc.).
[0010]
Examples of the quaternary ammonium salt represented by the general formula (1) or (2) include any combination of the quaternary ammonium group and the anion X composed of the super strong acid. In the antibacterial agent for resin of the present invention, each of the quaternary ammonium salts represented by the general formula (1) or (2) may be used alone or in combination.
Of these, from the viewpoint of antibacterial properties and heat resistance, quaternary ammonium groups such as dimethyldidecylammonium, trimethylhexadecylammonium, dimethyldodecylbenzylammonium and dimethyltetradecylbenzylammonium, trifluoromethanesulfonic acid, and pentafluoro are preferable. ethanesulfonic acid, tetrafluoroboric acid, hexafluorophosphate, chloride fluoride borate, hexafluoroantimonate, hexafluoroarsenate, Hammett acidity function, such hexafluoride taurine (-H 0) of 12 or more Combination with super strong acid.
[0011]
The free halogen content of the antibacterial agent for resin of the present invention is usually 100 ppm or less, preferably 0 to 50 ppm, particularly preferably 0 to 10 ppm. When the free halogen content exceeds 100 ppm, the heat resistance of the antibacterial agent itself, the antibacterial resin composition containing the antibacterial agent, and the molded article formed by molding the antibacterial resin composition is deteriorated.
Further, examples of the carbonic acid diester in the present invention include dimethyl carbonate and diethyl carbonate, and the content of the carbonic acid diester in the antibacterial agent for resin of the present invention is usually 200 ppm or less, preferably 0 to 100 ppm, particularly preferably 0 to 50 ppm. is there. When the carbonic acid diester exceeds 200 ppm, the antibacterial resin composition of the present invention described later and the resin strength of a molded article formed by molding the composition are lowered.
[0012]
As a method for producing the quaternary ammonium salt represented by the general formula (1) or (2), the free halogen content is 100 ppm or less (measurement method: ion chromatography), and the carbonic acid diester content is 200 ppm or less (measurement method). Is not particularly limited, and is usually produced by the following method.
If necessary, alkali metal hydroxides (sodium, potassium, etc.) are mixed with alkali metal hydroxides (caustic soda, caustic potash, etc.) [molar ratio of alkali metal salt of super strong acid to alkali metal hydroxide is 1 / 0.01 to 1 / 0.4] and an aqueous solution (20 to 70% by weight) of a quaternary ammonium salt [for example, a salt comprising an ammonium group and a halogen anion in the general formula (1)] [4 The molar ratio of the quaternary ammonium salt / super strong acid salt is usually 1/1 to 1 / 1.5, preferably 1 / 1.05 to 1.3], and the aqueous dispersion (A) mixed with stirring at room temperature for about 2 hours is used. The following steps (i) to (ii) or (A) is purified in the step (iii).
(I) The substance (B) selected from metallic silver, silver oxide, silver carbonate and organic acid (such as carboxylic acids having 1 to 10 carbon atoms (mono- and polycarboxylic acids)) silver is added to (A) above 4 An amount of 1.1 to 1.5 equivalent% with respect to a quaternary ammonium salt [a salt composed of an ammonium group and a halogen anion in the general formula (1)] is added, and a precipitated salt (silver halide) and a lower layer (aqueous layer) are added. Step of removing liquid separation, further distilling off water in the upper layer under reduced pressure, drying under reduced pressure to remove precipitated salt, and removing alkali metal salt and free halogen.
(Ii) The aqueous solution of hydrogen halide (C) was added to the liquid obtained in (i), and after stirring and mixing at 70 to 80 ° C. for about 1 hour, the lower layer (aqueous layer) subjected to liquid separation treatment was removed, and the upper layer was dried under reduced pressure. And removing the excess silver to obtain the desired quaternary ammonium salt.
(Iii) Charge the same amount or more of water as (A), stir at room temperature to 80 ° C. for 1 hour, and then stand and separate at the same temperature. A step of removing an alkali halide by removing the separated lower layer and dehydrating the upper layer under reduced pressure to obtain a target quaternary ammonium salt.
[0013]
The application target resin of the antibacterial agent for resin of the present invention is not particularly limited as long as it is a resin used for the production of a resin molded product, and examples thereof include thermoplastic resins and thermosetting resins.
As the thermoplastic resin, vinyl polymerization resin [polyolefin resin [polyethylene, ethylene-α-olefin (3 to 12 carbon atoms) copolymer, ethylene-vinyl acetate copolymer, polypropylene, propylene-α-olefin (carbon number]). 4-12) Copolymers, etc.], chlorine-containing vinyl resins (polyvinyl chloride, polyvinylidene chloride, etc.), (meth) acrylic resins [(meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate And (co) polymers of one or more monomers selected from the group consisting of 2-ethylhexyl (meth) acrylate and the like], styrene resins (polystyrene, AS resin, ABS resin, styrene-butadiene resin, styrene-anhydrous) Maleic acid resin, styrene-acrylic acid ester resin, HIPS, etc.)]; condensation resin [ Polyamide resin (6 nylon, 66 nylon, 11 nylon, 12 nylon, etc.), thermoplastic polyester resin (PET resin, PBT resin, PEN resin, polycarbonate resin, etc.), polyoxyphenylene, etc .; polyaddition resin (thermoplastic polyurethane) Resin, polyacetal resin and the like]; ring-opening polymerization resin [polyoxyalkylene (carbon number of alkylene group: 2 to 4) resin and the like] and the like.
[0014]
Thermosetting resins include unsaturated polyester resins (such as crosslinked copolymers of glycols and unsaturated polyesters derived from unsaturated and saturated dibasic acids) and epoxy resins (bisphenol type epoxy resins). , Epoxy resins such as novolac epoxy resins and cycloaliphatic epoxy resins, cured resins with polyamines, acid anhydrides, etc.), thermosetting polyurethane resins (including polyurethane foams), superabsorbent resins (cross-linked polyacrylamides) Partial hydrolysates, cross-linked acrylic acid-acrylamide copolymers, etc.).
[0015]
The addition amount of the antibacterial agent for resin of the present invention is usually 10% by weight or less with respect to the resin, preferably 0.1 to 5% by weight, particularly preferably 0.3 to 2% by weight from the viewpoint of antibacterial effect and resin physical properties. It is.
[0016]
The antibacterial resin composition containing the antibacterial agent for resin of the present invention is further provided with a pigment, a nucleating agent, a plasticizer, a stabilizer, a filler, a flame retardant, an antioxidant, an ultraviolet absorber and an antistatic agent as necessary. The other additive chosen from can be contained.
[0017]
Examples of pigments include titanium oxide, bengara, yellow lead, cadmium, ultramarine, azo series, phthalocyanine series, vat dye series, quinacridone series, dioxazine series, dyed lake, etc .; nucleating agents such as dibenzylidene sorbitol; plasticizers Phthalates (dioctyl phthalate, etc.), phosphates, adipic acid, sebates, glycolates, polyesters, epoxies, etc .; stabilizers include lead white, basic sulfite Lead, tribasic lead sulfate, dibasic lead phosphite, silica gel co-precipitated lead silicate, liquid metal, laurate organotin, maleate organotin, mercaptide organotin, antimony, epoxy, phosphorous Acid ester, etc .; Fillers include calcium carbonate, talc, clay, silicic acid, silicate, asphalt Strike, mica, glass fiber, glass balloon, carbon fiber, metal fiber, ceramic whisker, titanium whisker, etc .; As a flame retardant, phosphate ester type [tricresyl phosphate, tris (2,3 dibromopropyl) phosphate, etc.], Bromine (such as decabromobiphenyl ether), antimony trioxide, magnesium hydroxide, borate (such as zinc borate and barium metaborate), aluminum hydroxide, red phosphorus, magnesium hydroxide, ammonium polyphosphate, het acid And tetrabromobisphenol A.
[0018]
Moreover, as antioxidant, phenolic antioxidant [2,6-di-t-butyl-p-cresol (BHT), 2,2′-methylenebis (4-methyl-6-t-butylphenol), etc.] Sulfur-based antioxidants [dilauryl 3,3′-thiodipropionate (DLTDP), distearyl 3,3′-thiodipropionate (DSTDP), etc.]; phosphorus antioxidants [triphenyl phosphite (TPP ), Triisodecyl phosphite (TDP), etc.]; amine antioxidants [octylated diphenylamine, Nn-butyl-p-aminophenol, N, N-diisopropyl-p-phenylenediamine, etc.], etc .; UV absorption Examples of the agent include benzophenone (2-hydroxybenzophenone, 2,4-dihydroxybenzophenone, 2,2 ′, 4,4 '-Tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, etc.), salicylates (phenyl salicylate, 2,4-di-t-butylphenyl-3, 5-di-t-butyl-4-hydroxybenzoate), benzotriazole-based [(2′-hydroxyphenyl) benzotriazole, (2′-hydroxy-5′-methylphenyl) benzotriazole, (2′-hydroxy- 3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, (2′-hydroxy-5′-methacryloyloxyethylphenyl) benzotriazole and its (co) polymer, etc.], acrylic [ethyl 2-cyano-3,3-diphenyl acrylate, methyl-2-cal Bomethoxy-3- (paramethoxybenzyl) acrylate and the like] and the like; Examples of the antistatic agent include polymer types (polyether ester amide and the like).
[0019]
The amount of the other additives used is usually 80% or less, preferably 10 to 50% of the plasticizer and filler relative to the weight of the resin to which the antibacterial agent and other additives of the present invention are not added. Is usually 40% or less, preferably 10 to 30%, pigment is usually 40% or less, preferably 1 to 10%, nucleating agent, stabilizer, antistatic agent is usually 10% or less, preferably 1 to 5%, oxidation The amount of the inhibitor and the ultraviolet ray inhibitor is usually 5% or less, preferably 0.1 to 2%.
[0020]
As the method for producing the antibacterial resin composition of the present invention and a molded body using the same, when the resin is a thermoplastic resin, an antibacterial agent and, if necessary, other additives and a pellet or powder resin are mixed in a mixer. After blending to a predetermined concentration and uniformly mixing, heat melt kneading with an extruder to obtain an antibacterial resin composition, then molding with a heat molding machine or injection molding machine, etc. A so-called master batch in which an agent is blended with a resin is prepared, then diluted to a predetermined concentration with a resin not containing an antibacterial agent, and if necessary, other additives are blended, followed by a molding process.
When resin is a thermosetting resin, the method of shape | molding after mix | blending an antibacterial agent and another additive in the component which can be mixed is mentioned.
[0021]
The antibacterial resin composition of the present invention is formed into a molded product such as a block-like product, a plate-like product, a sheet, a film, and a thread by a molding machine (such as a heating molding machine or an injection molding machine), and sanitary such as a bathtub and a washstand Used for various applications such as household appliances such as utensils, refrigerators and washing machines, household utensils such as dining tables and kitchens, building utensils such as PVC pipes, fibers and textiles such as polyester, nylon and spandex, and packaging supplies such as polyethylene sheets Is done.
[0022]
【Example】
Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. The part in an Example shows a weight part and% shows weight%.
[0023]
Production Example 1
60 parts (0.55 mol) of sodium tetrafluoroborate was added to 362 parts (0.5 mol) of a 50% aqueous solution of dimethyldidecylammonium chloride at room temperature and stirred for 2 hours. 15 parts of silver oxide was added to this reaction aqueous solution, the precipitated salt and the lower layer (aqueous layer) were separated and removed, and the water in the upper layer was further distilled off. After drying under reduced pressure (decompression degree 950 hpa, 105 ° C. × 3 hours), The molten salt was removed at a temperature equal to or higher than the melting point (60 ° C.) of the antibacterial agent to remove the precipitated salt.
Next, after adding 100 parts of 1 / 10N hydrochloric acid and stirring at 70 to 80 ° C. for 1 hour, the lower layer (aqueous layer) was separated and removed, and the upper layer was dried under reduced pressure (same conditions as above) and solid at room temperature. Of dimethyldidecylammonium tetrafluoroborate (X1) was obtained. The obtained product had a free halogen content of 3 ppm, and a carbonic acid diester (dimethyl carbonate and diethyl carbonate, the same applies hereinafter) was below the detection limit (10 ppm).
[0024]
Production Example 2
95 parts (0.55 mol) of sodium trifluoromethanesulfonate was added to 362 parts (0.5 mol) of a 50% aqueous solution of dimethyldidecylammonium chloride at room temperature and stirred for 2 hours. 70 g of silver oxide was added to this reaction aqueous solution, the precipitated salt and the lower aqueous layer were separated and removed, the upper layer water was distilled off, and dried under reduced pressure (same conditions as above), followed by the antibacterial melting point (60 ° C. ) The molten salt was removed at the above temperature to remove the precipitated salt.
Next, after adding 100 parts of 1 / 10N hydrochloric acid solution and stirring at 70 to 80 ° C. for 1 hour, the lower layer (aqueous layer) was separated and removed, and the upper layer was dried under reduced pressure (same conditions as above). Solid dimethyldidecyl ammonium trifluoromethanesulfonate (X2) was obtained. The free halogen content of the obtained product was 2 ppm, and the carbonic acid diester was below the detection limit (10 ppm).
[0025]
Production Example 3
293 parts (2.67 mol) of sodium tetrafluoroborate and 65 parts (0.49 mol) of a 30% aqueous sodium hydroxide solution were blended at room temperature, and further 1081 parts (2.39 mol) of an 80% ethanol solution of dimethyldidecylammonium chloride. ) Was added and stirred for 2 hours. 1100 parts of water was added to the reaction solution, and the mixture was further stirred at 50 to 60 ° C., and then allowed to stand at the same temperature for 1 hour. The lower layer (aqueous layer) was separated and removed, and the upper layer ethanol and water were distilled off to obtain dimethyldidecylammonium tetrafluoroborate (X3) solid at room temperature. The obtained product had a free halogen content of 10 ppm, and the carbonic acid diester was below the detection limit (10 ppm).
[0026]
Comparative production example 1
60 parts (0.55 mol) of sodium tetrafluoroborate is added to 362 parts (0.5 mol) of a 50% aqueous solution of dimethyldidecylammonium chloride at room temperature, and after stirring for 2 hours, the lower layer (aqueous layer) is separated and removed. did. Water in the upper layer was distilled off and dried under reduced pressure (same conditions as above) to obtain dimethyldidecylammonium tetrafluoroborate (Y1) solid at room temperature. The obtained product had a free halogen content of 8,500 ppm, and the carbonic acid diester was below the detection limit (10 ppm).
[0027]
Examples 1-3, Comparative Examples 1-4
<Heat resistance of antibacterial agent for resin>
Antibacterial agents X1, X2, and X3 obtained in Production Examples 1, 2, and 3 and antibacterial agents obtained in Comparative Production Example 1: Y1 (Comparative Example 1), Silver zeolite: Y2 (Comparative Example 2), 2- ( 4′-thiazolyl) -benzimidazole: Y3 (Comparative Example 3), didecyldimethylammonium chloride: Y4 (Comparative Example 4), the heat loss starting temperature in air and the standard molding temperature of the thermoplastic resin The amount of weight loss when allowed to stand at 250 ° C. for 1 hour was measured using a thermal analyzer [THERMOFLEX TMA8140 manufactured by Rigaku Corporation]. The results are shown in Table 1.
[0028]
[Table 1]
Figure 0003734777
[0029]
<Antimicrobial evaluation of antibacterial agents for resins>
Examples 4-6, Comparative Examples 5-8
The antibacterial properties of the antibacterial agents X1, X2, and X3 of the present invention and the comparative antibacterial agents Y1 to Y4 were evaluated by a minimum inhibitory concentration (MIC) test. That is, the measurement was performed according to a dilution method (reference: edited by the University of Tokyo, Institute of Medical Science, Alumni Association, Microbiology) using Heart infusion broth (HIB) as a medium. X1, X2, Y1 to Y4 were each diluted with HIB to prepare a solution of 124.8 ppm to 0.98 ppm (antibacterial agent concentration). 50 μl of an overnight culture solution of the test strain Escherichia coli (medium: HIB bacterial count: 106 CFU / ml) was added and cultured overnight at 37 ° C. Then, the minimum growth inhibitory concentration which observes the presence or absence of proliferation of a test microbe and inhibits growth was calculated | required. The results are shown in Table 2.
From Table 2, it can be seen that the antibacterial agent for resin of the present invention (Examples 4 to 6) has excellent antibacterial properties equivalent to those of the conventional quaternary ammonium salt type antibacterial agent (Comparative Example 5).
[0030]
[Table 2]
Figure 0003734777
[0031]
<Heat-resistant yellowing of resin composition>
Examples 7-9, Comparative Examples 9-12
Each of antibacterial agents X1, X2, and X3 of the present invention and comparative antibacterial agents Y1 to Y4 and a polypropylene resin <trade name “J609H” manufactured by Grand Polymer Co., Ltd.> as a thermoplastic resin at a weight ratio of 10/90 in Henschel After blending for 3 minutes with a mixer, the mixture was melt-kneaded with a vented twin-screw extruder at 230 ° C., 100 rpm, and a residence time of 5 minutes to obtain each master batch. Next, the obtained master batch was diluted with a polypropylene resin so that the final content of each component shown in Table 3 was obtained, to obtain a resin composition.
For each resin composition obtained above and a resin to which an antibacterial agent is not added as a blank, an injection molding machine (manufactured by Nissei Plastic Industry) is used to create a molded piece of 100 mm × 100 mm × 2 mm under a cylinder temperature of 230 ° C. The hue was measured using a colorimetric color difference meter manufactured by Nippon Denshoku Industries Co., Ltd. The results are shown in Table 3.
[0032]
[Table 3]
Figure 0003734777
[0033]
<Antimicrobial evaluation of molded products>
Examples 10-12, Comparative Examples 13-16
The molded pieces obtained in Examples 7 to 9 and Comparative Examples 9 to 12 were evaluated for antibacterial properties by an antibacterial processed product-antibacterial test method / antibacterial effect (JIS Z2801) defined by Japanese Industrial Standards.
[0034]
A test bacterial solution prepared by preparing a test piece of 50 mm × 50 mm × 2 mm and diluting ordinary bouillon medium 500 times with sterilized purified water so that the number of bacteria becomes 2.5 × 10 5 to 10 × 10 5 cells / ml. 0.4 ml was dropped on the test piece, and the film was covered from above so as not to dry, and cultured at a temperature of 35 ± 1 ° C. and a relative humidity of 90% or more for 24 ± 1 hours. Thereafter, the test piece and the film were washed out with 10 ml of SCDLP medium, and the liquid was immediately subjected to viable count measurement to determine the viable count, and the antibacterial activity value R was determined according to the following formula. The results are shown in Table 4.
Antibacterial activity R = Log (viable bacterial count of blank / viable bacterial count of test piece)
Note: <10 is calculated as 10.
[The larger the antibacterial activity R, the higher the antibacterial activity]
[0035]
[Table 4]
Figure 0003734777
[0036]
【The invention's effect】
The antibacterial agent for resin of the present invention has excellent heat resistance and high antibacterial properties, and there is no decrease in antibacterial effect and resin strength due to heat history during heat kneading with resin or resin molding, molding It is extremely useful as an antibacterial agent for resins because it has the effect of suppressing coloring of the body.

Claims (6)

一般式(1)または(2)で表される4級アンモニウム塩からなり、遊離ハロゲン含量が100ppm以下で、かつ炭酸ジエステル含量が200ppm以下であることを特徴とする樹脂用抗菌剤。
1234+・X- (1)
65CH2(CH3)25+・X- (2)
(式中、R1、R2およびR3はそれぞれ同一または異なる、炭素数が1〜22の直鎖または分岐の脂肪族炭化水素基、R4およびR5は炭素数が8〜22の直鎖または分岐の脂肪族炭化水素基、X-は超強酸のアニオンを表す。)
An antibacterial agent for resin comprising a quaternary ammonium salt represented by the general formula (1) or (2), having a free halogen content of 100 ppm or less and a carbonic acid diester content of 200 ppm or less.
R 1 R 2 R 3 R 4 N + · X (1)
C 6 H 5 CH 2 (CH 3) 2 R 5 N + · X - (2)
(Wherein R 1 , R 2 and R 3 are the same or different and each represents a straight or branched aliphatic hydrocarbon group having 1 to 22 carbon atoms; R 4 and R 5 are straight chain groups having 8 to 22 carbon atoms; (Chain or branched aliphatic hydrocarbon group, X represents an anion of a super strong acid.)
超強酸がHammett酸度関数(−H0)12以上である請求項1記載の樹脂用抗菌剤。Resin antibacterial agent according to claim 1 superacid is Hammett acidity function (-H 0) 12 or more. 超強酸がプロトン酸とルイス酸との組み合わせである請求項1または2記載の樹脂用抗菌剤。The antibacterial agent for resin according to claim 1 or 2, wherein the super strong acid is a combination of a protonic acid and a Lewis acid. 請求項1〜3いずれか記載の樹脂用抗菌剤を熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる樹脂に含有させてなる抗菌性樹脂組成物。An antibacterial resin composition comprising the resin antibacterial agent according to any one of claims 1 to 3 contained in a resin selected from the group consisting of a thermoplastic resin and a thermosetting resin. さらに、顔料、核剤、可塑剤、安定剤、充填材、難燃剤、酸化防止剤、紫外線吸収剤および帯電防止剤から選ばれる添加剤を含有させてなる請求項4記載の抗菌性樹脂組成物。The antibacterial resin composition according to claim 4, further comprising an additive selected from a pigment, a nucleating agent, a plasticizer, a stabilizer, a filler, a flame retardant, an antioxidant, an ultraviolet absorber and an antistatic agent. . 請求項4または5記載の抗菌性樹脂組成物を成形してなる成形体。The molded object formed by shape | molding the antibacterial resin composition of Claim 4 or 5.
JP2002215065A 2001-07-24 2002-07-24 Antibacterial agent for resin Expired - Fee Related JP3734777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215065A JP3734777B2 (en) 2001-07-24 2002-07-24 Antibacterial agent for resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-222757 2001-07-24
JP2001222757 2001-07-24
JP2002215065A JP3734777B2 (en) 2001-07-24 2002-07-24 Antibacterial agent for resin

Publications (2)

Publication Number Publication Date
JP2003105128A JP2003105128A (en) 2003-04-09
JP3734777B2 true JP3734777B2 (en) 2006-01-11

Family

ID=26619162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215065A Expired - Fee Related JP3734777B2 (en) 2001-07-24 2002-07-24 Antibacterial agent for resin

Country Status (1)

Country Link
JP (1) JP3734777B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336374A (en) * 2004-05-28 2005-12-08 Sanyo Chem Ind Ltd Antibacterial adhesive
JP2006273738A (en) * 2005-03-29 2006-10-12 Sanyo Chem Ind Ltd Antibacterial agent for resin
JP5498198B2 (en) * 2010-02-23 2014-05-21 日華化学株式会社 Antibacterial agent for resin and resin molded body using the same
JP2013185017A (en) * 2012-03-06 2013-09-19 San Nopco Ltd Radiation curable coating composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105831A (en) * 1997-10-07 1999-04-20 Toray Ind Inc Antibacterial polyolefin film
JPH11279330A (en) * 1998-03-26 1999-10-12 Sanyo Chem Ind Ltd Antistatic agent for resin having high heat resistance and antistatic resin composition

Also Published As

Publication number Publication date
JP2003105128A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US9115259B2 (en) Filled poly vinyl chloride composition
KR20170130291A (en) Plasticizer, resin composition and method for preparing them
JP5498198B2 (en) Antibacterial agent for resin and resin molded body using the same
WO2016098496A1 (en) Plasticizer for halogen-based resin
WO2023134393A1 (en) Antibacterial complex, antibacterial polycarbonate material, preparation method therefor, and use thereof
JP5074001B2 (en) Antibacterial agent for resin and antibacterial resin composition
JP3734777B2 (en) Antibacterial agent for resin
CN105885288B (en) A kind of auxiliary heat stabilizer for polyvinyl chloride and preparation method thereof
US9862821B2 (en) Hydrolysis resistant compositions
JP6837732B2 (en) Antiviral molding material and its manufacturing method
US6187848B1 (en) Glass filled polyester compositions with improved color stability
JP4127516B2 (en) Antibacterial resin composition
JP2003183488A (en) Polylactic acid resin composition
JP2006273738A (en) Antibacterial agent for resin
CN114479403B (en) Flame-retardant antibacterial polymer alloy material and preparation method and application thereof
JP2017218516A (en) Antiviral agent, and antiviral synthetic resin composition having antiviral agent added thereto
KR20160075207A (en) Polymer resin composition having excellent flame retardancy
JP2007063410A (en) Antibacterial and antifungal resin composition
KR20160001309A (en) Biogradable polyester resin composition with an excellent heat resistance and article manufactured therefrom
JP6341358B2 (en) Antiviral polyvinyl chloride resin composition and antiviral polyvinyl chloride resin molding
JP2006083331A (en) Antibacterial agent composition
JP2012246454A (en) Antistatic agent for resin, antistatic kit for resin, and resin molded item using them
JP6403161B2 (en) Antibacterial / antifungal pyridine compound, antibacterial / antifungal resin composition, and resin molded product
JP2006321888A (en) Anti-trichophyton resin composition
JP3540532B2 (en) Antibacterial flame-retardant resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees