JP3734563B2 - Electro-optic lens - Google Patents

Electro-optic lens Download PDF

Info

Publication number
JP3734563B2
JP3734563B2 JP09774496A JP9774496A JP3734563B2 JP 3734563 B2 JP3734563 B2 JP 3734563B2 JP 09774496 A JP09774496 A JP 09774496A JP 9774496 A JP9774496 A JP 9774496A JP 3734563 B2 JP3734563 B2 JP 3734563B2
Authority
JP
Japan
Prior art keywords
substrate
electro
optic
voltage
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09774496A
Other languages
Japanese (ja)
Other versions
JPH09258150A (en
Inventor
俊之 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP09774496A priority Critical patent/JP3734563B2/en
Publication of JPH09258150A publication Critical patent/JPH09258150A/en
Application granted granted Critical
Publication of JP3734563B2 publication Critical patent/JP3734563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電気光学効果を利用した電気光学レンズに関する。
【0002】
【従来の技術】
応用物理第63巻第1号(1994):分布屈折率型焦点可変EOレンズ(芝口他)には、直方体形状の(Pb,La)(Zr,Ti)O3 電気光学セラミック(PLZT電気光学セラミック)の光軸に平行な対向面に、光軸に沿ってストライブ状電極を形成した構造の分布屈折率型1次元電気光学レンズが開示されている。
【0003】
この電気光学レンズでは、対向するストライブ電極に電圧を印加すると、PLZT電気光学セラミック内部に電界が発生し、電気光学効果によって電界に応じた屈折率分布が生じる。そして、印加される電圧、PLZT電気光学セラミックのサイズ、及びストライブ電極の幅と長さを選択することによって、PLZT電気光学セラミックの内部に屈折率の二乗分布を設定し、レンズの焦点を変化させることが可能になる。
【0004】

この開示に係る電気光学レンズでは、横型電気光学効果を利用しているので、電界の方向と光軸(z軸)が直交しており、x軸方向とy軸方向の2次元で同時に焦点を変化させるには、x軸方向の焦点が可変な1次元電気光学レンズと、y軸方向の焦点が可変な1次元電気光学レンズとを2枚重ねて使用することが必要である。
【0005】
一方、特開平3−269516号公報には、電気光電効果を有する基板上で、焦点位置に対して負の寄与をする偶数フレネルゾーン上に、線状のITO(Indium Tin Oxide)の透明電極を多数設け、透明電極に印加する電圧を位相シフトがπとなるように選択して、この透明電極群を透過する光に対する負の寄与効果を正の寄与効果に転換する電気光学レンズが開示されている。
【0006】
【発明が解決しようとする課題】
応用物理第63巻第1号(1994)に開示の電気光学レンズでは、x軸方向とy軸方向の2次元で同時に焦点を変化させるには、1次元電気光学レンズを2枚重ねた構成を取る必要があり、レンズの移動機構と非点収差を除くための精密電圧制御機構とが付加されて全体が大型化し、電圧がレンズの面方向に印加されるので、レンズ面が大きくなると、高電圧を印加しなくてはならず機構が複雑なものとなる。
【0007】
また、特開平3−269516号公報に開示の電気光学レンズでは、透明電極が波長に対して無視できない有限な厚さを持つため、付随的な回折光や散乱光、フレア光が生じてレンズ効果が劣化することになる。また、この電気光学レンズでは、分布屈折型動作をさせても、各電極の電位は同電位で、屈折率の空間分布は階段状になり、このために回折や散乱が生じることにもなる。さらに、光源の波長と焦点距離とから、フレネルゾーンのピッチが設定されるので、連続的に焦点を可変させることはできず、2ステップ動作に限定されてしまう。
【0008】
本発明は、前述したようなこの種の電気光学レンズの現状に鑑みてなされたものであり、その目的は、全体が小型化され、回折光、散乱光、フレア光によるレンズ効果の劣化がなく、2次元焦点の焦点距離を連続可変な電気光学レンズを提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するために、請求項1記載の発明は、光の進行方向と印加される電界の方向とが一致する縦型の電気光学効果を利用した電気光学レンズであり、基板と、該基板の前記光の入射面及び該入射面の裏面にそれぞれ積層形成され、電圧の印加によって、前記基板内部に屈折率分布を与える電界を形成し、光軸に対して対称かつ中心部に電極が存在しないリング状の形状のパターン電極とを有し、前記基板が奇数次の縦型電気光学効果を示すことを特徴とするものである。
【0010】
同様に前記目的を達成するために、請求項2記載の発明は、請求項1記載の発明において、前記基板がシレナイト構造の複酸化物で形成されていることを特徴とするものである。
【0011】
また、同様に前記目的を達成するために、請求項3の発明は、請求項1又は2に記載の発明において、前記基板の表裏両面に形成される前記リング形状のパターン電極が光軸を中心に表裏同形状で各々4分割され、前記基板の表裏で同位置にある透明電極間に各々独立して電圧を印加可能にしたことを特徴とする。
【0012】
【発明の実施の形態】
[第1の実施の形態]
本発明の第1の実施の形態を、図1及び図2を参照して説明する。
図1は本実施の形態の構成を示す説明図、図2は本実施の形態の屈折率の分布を示す特性図である。
【0013】
図1は本実施の形態の構成を示し、同図(a)は正面図、同図(b)は側面図である。
本発明においては、縦型の電気光学効果を示す基板として、シレナイト構造複酸化物(Bi12SiO20,Bi12GeO20,Bi12TiO20など)、ADP,KDP,DADP,DKDP,α水晶、ZnS,ZnTe,Bi4 Ge3 12等の下記〔数1〕で示される結晶点群など中心対称性を持たない単結晶や多結晶の基板を使うことができる。
【0014】
【数1】

Figure 0003734563
【0015】
本実施の形態では、図1に示すように、サイズが15mm平方で厚みが1mmのシレナイト構造複酸化物の基板1の表裏両面に、内径6mm、外径12mmのリング状のITOからなる透明電極2が、基板1の中心に中心を一致させてそれぞれ積層形成されている。基板1としては、例えばBi12SiO20の単結晶のように、一次の電気光学効果が大きい高感度の電気光学結晶が使用される。
【0016】
本実施の形態では、基板1の表裏両面に形成されている透明電極2間に電圧を印加すると、基板1内には厚み方向(z軸方向)に電界が形成され、この電界は透明電極2の近傍で強く、基板1の中心近傍では、比較的弱くなり、基板1内には電気光学効果によって、電界分布に対応した屈折率分布が生じる。このようにして生じる透過光に対する屈折率分布は、z軸方向の電界強度の大きい透明電極2の直下では、透過光に対する屈折率が小さくなり、透明電極2が存在しない中心部分で屈折率の低下は少なく、全体として図2に示すように周辺部から光軸方向に屈折率が連続的に上昇する分布となる。
【0017】
このために、本実施の形態では、基板1の表裏両面の透明電極2間に電圧を印加すると、基板1内に凸レンズの屈折率分布が形成され、基板1を透過した光は、透明電極2に印加される電圧により定まる焦点距離の位置に集束する。
発明者等は、本実施の形態において、基板1の直前にアクロマートレンズを配置し、基板1の中心に光軸を一致させて、波長633nm、ビーム径1mmのHe−Neレーザを、アクロマートレンズを介して基板1に入射し、透過光をスポット径20μmで一点に集光させた。この場合の焦点位置の検出には、直径25μmのアパーチャを使用し、このアパーチャを、光軸上のレンズ焦点付近から前後に移動させ、透過光強度が最大になった時のアパーチャの位置から焦点距離を求めた。
そして、基板1の表裏両面の透明電極2間に1.6KVの電圧を印加すると、この状態から焦点位置が手前にほぼ1mm移動し、本実施の形態の電気光学レンズの基本動作が確認された。
【0018】
このように、本実施の形態によると、基板1の表裏両面に、基板1を透過する透過光の光軸を中心に、リング状の透明電極2がそれぞれ形成され、表裏両面の透明電極2間に所定の電圧が印加されて、基板1内に形成される電界によって、透過光に対する基板1の屈折率は、透明電極2が存在する位置で低下し、光軸方向に連続的に上昇する分布を取るので、透過光を、面積が大型化された一つのレンズによつて、透明電極2間に印加される電圧に応じて、二次元的に所定の焦点位置に、回折光や散乱光なしに集束することが可能になり、基板1として例えばBi12SiO20の単結晶のように、一次の電気光学効果が大きい高感度の電気光学結晶を使用することにより、低電圧で焦点距離を大きく変化させることが可能になると共に、凹レンズから凸レンズまで焦点を広範囲に変化させることが可能になる。
【0019】
[第2の実施の形態]
本発明の第2の実施の形態を、図3を参照して説明する。
図3は本実施の形態の構成を示す説明図である。
【0020】
図3は、本実施の形態の構成を示し、同図(a)は正面図、同図(b)は背面図であり、本実施の形態は、これらに示すように、すでに説明した第1の実施の形態に対して、基板1の裏面には、第1の実施の形態のリング状の透明電極2に代えて、正方形状の電極5が形成されている。
本実施の形態のその他の部分の構成は、すでに説明した第1の実施の形態と同一なので、重複する説明は行わない。
【0021】
本実施の形態では、電極5を透明電極2と同様に例えばITOなどの透明材質で作成すると、第1の実施の形態と同様の透過型の電気光学レンズが得られる。この場合の透過型の電気光学レンズの動作及び効果は、すでに説明した第1の実施の形態と同一である。
本実施の形態において、電極5にアルミニウム蒸着電極などの光反射材質を使用すると、入射光を、電気光学レンズによって、入射側に反射させて使用する反射型の電気光学レンズが得られる。
【0022】
このように、本実施の形態によると、第1の実施の形態で得られる効果に加えて、基板1の光の入射面の裏面に形成される電極5を光反射材質で形成することにより、入射光を、電気光学レンズによって、入射側に反射させて使用することが可能になる。
【0023】
[第3の実施の形態]
本発明の第3の実施の形態を、図4を参照して説明する。
図4は本実施の形態の構成を示す説明図である。
【0024】
図4は本実施の形態の構成を示し、同図(a)は正面図、同図(b)は背面図であり、本実施の形態では、図4に示すように、すでに説明した第1の実施の形態に対して、基板1の表裏両面に形成されるリング状の透明電極2Aが、光軸を中心に、x軸方向の透明電極2b1、2b2とy軸方向の透明電極2a1、2a2とに4分割され、基板1の表面の透明電極2b1と基板1の裏面の透明電極2b1との間に第1のx軸電圧が、基板1の表面の透明電極2b2と基板1の裏面の透明電極2b2との間に第2のx軸電圧がそれぞれ印加され、基板1の表面の透明電極2a1と基板1の裏面の透明電極2a1との間に第1のy軸電圧が、基板1の表面の透明電極2a2と基板1の裏面の透明電極2a2との間に第2のy軸電圧が、それぞれ印加されるように構成されている。
本実施の形態のその他の部分の構成は、すでに説明した第1の実施の形態と同一なので、重複する説明は行わない。
【0025】
本実施の形態では、第1のx軸電圧と第2のx軸電圧とを互いに等しく設定し、且つ第1のy電圧と第2のy電圧とを互いに等しく設定した状態では、入射光をx軸方向とy軸方向において、それぞれのx軸電圧或いはy軸電圧に基づいて、独立に焦点距離を変化させることが可能になる。
また、第1のx軸電圧と第2のx軸電圧を異ならせると、焦点位置をx軸方向に移動させ、第1のy軸電圧と第2のy軸電圧を異ならせると、焦点位置をy軸方向に移動させて光の偏向を行うことが可能になる。
【0026】
また、本実施の形態で、第1のx軸電圧、第2x軸電圧、第1のy軸電圧、第2のy軸電圧を全て等しく設定した場合の動作及び効果は、すでに説明した第1の実施の形態と同一になる。
【0027】
【発明の効果】
請求項1記載の発明によると、基板の光の入射面及び該入射面の裏面に、光軸に対して対称かつ中心部に電極が存在しないリング形状のパターン電極がそれぞれ積層形成され、光の進行方向と印加される電界の方向とが一致する縦型の電気光学効果が与えられ、電極に電圧を印加することによって、基板内部に光軸方向に屈折率が高まる滑らかな屈折率分布が形成されるので、一つのレンズによって二次元的に焦点距離を連続的に変化可能で、回折光や散乱光が発生せず、光学特性が優れ占有体積が低減された電気光学レンズが得られる。さらに、基板が奇数次の縦型電気光学効果を示すので、正負の電界印加によって、凹レンズ特性から凸レンズ特性にわたって、レンズの焦点距離を連続的に変化させることが可能になる。
【0028】
請求項2記載の発明は、請求項1記載の発明で得られる効果に加えて、基板がシレナイト構造の複酸化物で形成されているので、低電圧の印加でレンズの焦点距離を大きく変化させることが可能になる。
【0029】
また、請求項3記載の発明は、請求項1又は2に記載の発明で得られる効果に加えて、入射光をx軸方向とy軸方向において、それぞれのx軸電圧或いはy軸電圧に基づいて、独立に焦点距離を変化させることが可能になる。また、第1のx軸電圧と第2のx軸電圧を異ならせると、焦点位置をx軸方向に移動させ、第1のy軸電圧と第2のy軸電圧を異ならせると、焦点位置をy軸方向に移動させて光の偏向を行うことが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示す説明図である。
【図2】同実施の形態の屈折率の分布を示す特性図である。
【図3】本発明の第2の実施の形態の構成を示す説明図である。
【図4】本発明の第3の実施の形態の構成を示す説明図である。
【符号の説明】
1 基板
2 透明電極
2a1、2a2 透明電極
2b1、2b2 透明電極
5 電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electro-optic lens using an electro-optic effect.
[0002]
[Prior art]
Applied Physics Vol. 63 No. 1 (1994): A diffractive index type variable focus EO lens (Shibaguchi et al.) Has a (Pb, La) (Zr, Ti) O 3 electro-optic ceramic (PLZT electro-optic) with a rectangular parallelepiped shape. A distributed refractive index type one-dimensional electro-optic lens having a structure in which a stripe-like electrode is formed along an optical axis on an opposing surface parallel to the optical axis of (ceramic) is disclosed.
[0003]
In this electro-optic lens, when a voltage is applied to the opposing stripe electrodes, an electric field is generated inside the PLZT electro-optic ceramic, and a refractive index distribution corresponding to the electric field is generated by the electro-optic effect. Then, by selecting the applied voltage, the size of the PLZT electro-optic ceramic, and the width and length of the stripe electrode, a square distribution of the refractive index is set inside the PLZT electro-optic ceramic, and the focal point of the lens is changed. It becomes possible to make it.
[0004]

In the electro-optic lens according to this disclosure, since the horizontal electro-optic effect is used, the direction of the electric field and the optical axis (z-axis) are orthogonal to each other, and the focal point is simultaneously focused in two dimensions, the x-axis direction and the y-axis direction. In order to change, it is necessary to use two one-dimensional electro-optic lenses with variable x-axis focus and one-dimensional electro-optic lenses with variable y-axis focus.
[0005]
On the other hand, JP-A-3-269516 discloses a linear ITO (Indium Tin Oxide) transparent electrode on an even Fresnel zone that makes a negative contribution to the focal position on a substrate having an electric photoelectric effect. An electro-optic lens is disclosed that converts a negative contribution effect to light transmitted through the transparent electrode group into a positive contribution effect by selecting a voltage to be applied to the transparent electrode so that the phase shift is π. Yes.
[0006]
[Problems to be solved by the invention]
In the electro-optic lens disclosed in Applied Physics Vol. 63 No. 1 (1994), in order to simultaneously change the focus in two dimensions in the x-axis direction and the y-axis direction, a configuration in which two one-dimensional electro-optic lenses are stacked is used. The lens movement mechanism and the precision voltage control mechanism to remove astigmatism are added to increase the overall size, and the voltage is applied in the lens surface direction. The voltage must be applied and the mechanism becomes complicated.
[0007]
In addition, in the electro-optic lens disclosed in Japanese Patent Laid-Open No. 3-269516, the transparent electrode has a finite thickness that cannot be ignored with respect to the wavelength, so that incidental diffracted light, scattered light, and flare light are generated, resulting in a lens effect. Will deteriorate. Further, in this electro-optic lens, even if the distributed refraction type operation is performed, the potential of each electrode is the same potential, and the spatial distribution of the refractive index is stepped, which causes diffraction and scattering. Further, since the pitch of the Fresnel zone is set from the wavelength of the light source and the focal length, the focal point cannot be continuously varied, and the operation is limited to the two-step operation.
[0008]
The present invention has been made in view of the current state of this type of electro-optic lens as described above, and its purpose is to make the whole size smaller and to prevent deterioration of the lens effect due to diffracted light, scattered light, and flare light. An object of the present invention is to provide an electro-optic lens that can continuously change the focal length of a two-dimensional focal point.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is an electro-optic lens using a vertical electro-optic effect in which the traveling direction of light coincides with the direction of an applied electric field, the substrate, Each of the light incident surface and the back surface of the light incident surface of the substrate is laminated, and by applying a voltage, an electric field that gives a refractive index distribution is formed inside the substrate. A non-existent ring-shaped pattern electrode , wherein the substrate exhibits an odd-order vertical electro-optic effect .
[0010]
Similarly, in order to achieve the object, the invention described in claim 2 is characterized in that, in the invention described in claim 1, the substrate is formed of a double oxide having a sillenite structure.
[0011]
Further, in order to attain the aforementioned object, the invention of claim 3, the center in the invention described in claim 1 or 2, the pattern electrode of said ring shape formed on both surfaces of the substrate to the optical axis The front and back sides of the substrate are divided into four parts, and a voltage can be applied independently between the transparent electrodes at the same position on the front and back sides of the substrate.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an explanatory diagram showing the configuration of the present embodiment, and FIG. 2 is a characteristic diagram showing the refractive index distribution of the present embodiment.
[0013]
FIG. 1 shows a configuration of the present embodiment, where FIG. 1A is a front view and FIG. 1B is a side view.
In the present invention, as a substrate exhibiting a vertical electro-optic effect, a silenite structure double oxide (Bi 12 SiO 20 , Bi 12 GeO 20 , Bi 12 TiO 20, etc.), ADP, KDP, DADP, DKDP, α quartz, A single crystal or polycrystalline substrate having no central symmetry such as a crystal point group represented by the following [Equation 1] such as ZnS, ZnTe, Bi 4 Ge 3 O 12 can be used.
[0014]
[Expression 1]
Figure 0003734563
[0015]
In the present embodiment, as shown in FIG. 1, transparent electrodes made of ring-shaped ITO having an inner diameter of 6 mm and an outer diameter of 12 mm are provided on both front and back surfaces of a sillenite structure double oxide substrate 1 having a size of 15 mm square and a thickness of 1 mm. 2 are stacked so that the centers thereof coincide with the center of the substrate 1. As the substrate 1, for example, a highly sensitive electro-optic crystal having a large primary electro-optic effect, such as a single crystal of Bi 12 SiO 20 is used.
[0016]
In the present embodiment, when a voltage is applied between the transparent electrodes 2 formed on the front and back surfaces of the substrate 1, an electric field is formed in the thickness direction (z-axis direction) in the substrate 1. Near the center of the substrate 1 and relatively weak near the center of the substrate 1, and a refractive index distribution corresponding to the electric field distribution is generated in the substrate 1 due to the electro-optic effect. The refractive index distribution with respect to the transmitted light generated in this way has a refractive index with respect to the transmitted light that is directly below the transparent electrode 2 having a large electric field strength in the z-axis direction, and a lower refractive index in the central portion where the transparent electrode 2 does not exist. As a whole, as shown in FIG. 2, the refractive index continuously increases from the peripheral portion in the optical axis direction.
[0017]
Therefore, in this embodiment, when a voltage is applied between the transparent electrodes 2 on both the front and back surfaces of the substrate 1, a refractive index distribution of a convex lens is formed in the substrate 1, and the light transmitted through the substrate 1 is transmitted through the transparent electrode 2. Focusing is performed at a focal length determined by the voltage applied to.
In the present embodiment, the inventors have arranged an achromatic lens immediately before the substrate 1, aligned the optical axis with the center of the substrate 1, and used a He—Ne laser with a wavelength of 633 nm and a beam diameter of 1 mm as an achromatic lens. Then, the light was incident on the substrate 1 and the transmitted light was condensed at one spot with a spot diameter of 20 μm. In this case, an aperture having a diameter of 25 μm is used to detect the focal position, and this aperture is moved back and forth from the vicinity of the lens focal point on the optical axis, and the focal point is focused from the position of the aperture when the transmitted light intensity becomes maximum. The distance was determined.
Then, when a voltage of 1.6 KV was applied between the transparent electrodes 2 on both the front and back surfaces of the substrate 1, the focal position moved approximately 1 mm from this state, and the basic operation of the electro-optic lens of the present embodiment was confirmed. .
[0018]
As described above, according to the present embodiment, the ring-shaped transparent electrodes 2 are formed on both the front and back surfaces of the substrate 1 around the optical axis of the transmitted light that passes through the substrate 1. A distribution in which the refractive index of the substrate 1 with respect to transmitted light decreases at a position where the transparent electrode 2 exists and continuously increases in the optical axis direction due to an electric field formed in the substrate 1 when a predetermined voltage is applied to Therefore, the transmitted light is diffracted or scattered at a predetermined focal position two-dimensionally according to the voltage applied between the transparent electrodes 2 by one lens having a large area. By using a high-sensitivity electro-optic crystal having a large primary electro-optic effect, such as a Bi 12 SiO 20 single crystal, as the substrate 1, the focal length can be increased at a low voltage. It is possible to change and concave len The focal point can be changed over a wide range from the lens to the convex lens.
[0019]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG.
FIG. 3 is an explanatory diagram showing the configuration of the present embodiment.
[0020]
3A and 3B show the configuration of the present embodiment, where FIG. 3A is a front view and FIG. 3B is a rear view. As shown in FIG. In contrast to the second embodiment, a square electrode 5 is formed on the back surface of the substrate 1 instead of the ring-shaped transparent electrode 2 of the first embodiment.
Since the configuration of the other parts of the present embodiment is the same as that of the first embodiment already described, duplicate description will not be given.
[0021]
In the present embodiment, if the electrode 5 is made of a transparent material such as ITO like the transparent electrode 2, a transmission type electro-optic lens similar to that of the first embodiment can be obtained. The operation and effect of the transmission type electro-optic lens in this case are the same as those of the first embodiment already described.
In the present embodiment, when a light reflecting material such as an aluminum vapor deposition electrode is used for the electrode 5, a reflective electro-optic lens that is used by reflecting incident light to the incident side by the electro-optic lens can be obtained.
[0022]
Thus, according to the present embodiment, in addition to the effects obtained in the first embodiment, by forming the electrode 5 formed on the back surface of the light incident surface of the substrate 1 with a light reflecting material, Incident light can be reflected and used by the electro-optic lens.
[0023]
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIG.
FIG. 4 is an explanatory diagram showing the configuration of the present embodiment.
[0024]
FIG. 4 shows a configuration of the present embodiment, where FIG. 4A is a front view and FIG. 4B is a rear view. In the present embodiment, as shown in FIG. In contrast to the above embodiment, the ring-shaped transparent electrodes 2A formed on both the front and back surfaces of the substrate 1 have the x-axis direction transparent electrodes 2b1 and 2b2 and the y-axis direction transparent electrodes 2a1 and 2a2 around the optical axis. The first x-axis voltage is applied between the transparent electrode 2b1 on the surface of the substrate 1 and the transparent electrode 2b1 on the back surface of the substrate 1, and the transparent electrode 2b2 on the surface of the substrate 1 and the transparent surface on the back surface of the substrate 1 are transparent. A second x-axis voltage is applied between the electrode 2b2 and the first y-axis voltage between the transparent electrode 2a1 on the surface of the substrate 1 and the transparent electrode 2a1 on the back surface of the substrate 1, respectively. The second y-axis voltage is applied between the transparent electrode 2a2 and the transparent electrode 2a2 on the back surface of the substrate 1, respectively. It is configured to be.
Since the configuration of the other parts of the present embodiment is the same as that of the first embodiment already described, duplicate description will not be given.
[0025]
In the present embodiment, in the state where the first x-axis voltage and the second x-axis voltage are set equal to each other, and the first y voltage and the second y voltage are set equal to each other, the incident light is In the x-axis direction and the y-axis direction, the focal length can be changed independently based on the respective x-axis voltage or y-axis voltage.
Also, if the first x-axis voltage and the second x-axis voltage are different, the focal position is moved in the x-axis direction, and if the first y-axis voltage and the second y-axis voltage are different, the focal position Can be moved in the y-axis direction to deflect the light.
[0026]
In the present embodiment, the operation and effect when the first x-axis voltage, the second x-axis voltage, the first y-axis voltage, and the second y-axis voltage are all set equal to each other are the same as those described above. This is the same as the embodiment.
[0027]
【The invention's effect】
According to the first aspect of the present invention, ring-shaped pattern electrodes that are symmetrical with respect to the optical axis and do not have an electrode at the center are respectively laminated and formed on the light incident surface of the substrate and the back surface of the incident surface. A vertical electro-optic effect is provided in which the direction of travel and the direction of the applied electric field coincide, and by applying a voltage to the electrode, a smooth refractive index distribution is formed in the substrate, with a refractive index increasing in the direction of the optical axis. Therefore, an electro-optic lens can be obtained in which the focal length can be continuously changed two-dimensionally with one lens, no diffracted light or scattered light is generated, optical properties are excellent, and the occupied volume is reduced. Furthermore, since the substrate exhibits an odd-order vertical electro-optic effect, it is possible to continuously change the focal length of the lens from the concave lens characteristic to the convex lens characteristic by applying positive and negative electric fields.
[0028]
In the invention described in claim 2 , in addition to the effect obtained by the invention described in claim 1 , since the substrate is formed of a double oxide having a sillenite structure, the focal length of the lens is greatly changed by applying a low voltage. It becomes possible.
[0029]
Further, the invention described in claim 3 is based on the x-axis voltage or the y-axis voltage of the incident light in the x-axis direction and the y-axis direction in addition to the effect obtained by the invention described in claim 1 or 2. Thus, the focal length can be changed independently. Also, if the first x-axis voltage and the second x-axis voltage are different, the focal position is moved in the x-axis direction, and if the first y-axis voltage and the second y-axis voltage are different, the focal position Can be moved in the y-axis direction to deflect the light.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a first exemplary embodiment of the present invention.
FIG. 2 is a characteristic diagram showing a refractive index distribution according to the embodiment;
FIG. 3 is an explanatory diagram showing a configuration of a second exemplary embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a configuration of a third exemplary embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent electrode 2a1, 2a2 Transparent electrode 2b1, 2b2 Transparent electrode 5 Electrode

Claims (3)

光の進行方向と印加される電界の方向とが一致する縦型の電気光学効果を利用した電気光学レンズであり、
基板と、該基板の前記光の入射面及び該入射面の裏面にそれぞれ積層形成され、電圧の印加によって、前記基板内部に屈折率分布を与える電界を形成し、光軸に対して対称かつ中心部に電極が存在しない形状のパターン電極とを有し、前記基板が奇数次の縦型電気光学効果を示すことを特徴とする電気光学レンズ。
An electro-optic lens using a vertical electro-optic effect in which the traveling direction of light coincides with the direction of an applied electric field,
The substrate and the light incident surface of the substrate and the back surface of the light incident surface are respectively laminated, and by applying a voltage, an electric field giving a refractive index distribution is formed inside the substrate, and is symmetrical and centered with respect to the optical axis An electro-optic lens comprising: a pattern electrode having a shape in which no electrode is present at the portion , wherein the substrate exhibits an odd-order vertical electro-optic effect .
請求項1記載の電気光学レンズにおいて、前記基板がシレナイト構造の複酸化物で形成されていることを特徴とする電気光学レンズ。2. The electro-optic lens according to claim 1, wherein the substrate is formed of a double oxide having a sillenite structure . 請求項1又は2に記載の電気光学レンズにおいて、前記基板の表裏両面に形成される前記リング形状のパターン電極が光軸を中心に表裏同形状で各々4分割され、前記基板の表裏で同位置にある透明電極間に各々独立して電圧を印加可能にしたことを特徴とする電気光学レンズ。 3. The electro-optic lens according to claim 1, wherein the ring-shaped pattern electrodes formed on both the front and back surfaces of the substrate are each divided into four in the same shape on the front and back sides around the optical axis, and the same positions on the front and back surfaces of the substrate. An electro-optic lens characterized in that a voltage can be independently applied between the transparent electrodes .
JP09774496A 1996-03-26 1996-03-26 Electro-optic lens Expired - Fee Related JP3734563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09774496A JP3734563B2 (en) 1996-03-26 1996-03-26 Electro-optic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09774496A JP3734563B2 (en) 1996-03-26 1996-03-26 Electro-optic lens

Publications (2)

Publication Number Publication Date
JPH09258150A JPH09258150A (en) 1997-10-03
JP3734563B2 true JP3734563B2 (en) 2006-01-11

Family

ID=14200405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09774496A Expired - Fee Related JP3734563B2 (en) 1996-03-26 1996-03-26 Electro-optic lens

Country Status (1)

Country Link
JP (1) JP3734563B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945343B2 (en) * 2007-06-29 2012-06-06 パナソニック電工Sunx株式会社 Focal length adjustment device, laser processing device, laser displacement meter, and electro-optic element
CN101910914B (en) * 2007-12-28 2013-03-27 日本电信电话株式会社 Variable-focus lens
JP5069266B2 (en) * 2009-03-19 2012-11-07 日本電信電話株式会社 Variable focus lens
JP5411089B2 (en) * 2010-08-18 2014-02-12 日本電信電話株式会社 Variable focus lens

Also Published As

Publication number Publication date
JPH09258150A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
JP2002510400A (en) Optical integrated circuit
EP0476931B1 (en) Phase shift device and laser apparatus utilizing the same
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
JP3734563B2 (en) Electro-optic lens
JP2651148B2 (en) Variable focus optical system
US3728009A (en) Phase filter combination with lens optics
US11796740B2 (en) Optical device
US4866730A (en) Distributed feedback laser
JP4575748B2 (en) Light quantity distribution control element and optical apparatus using the same
JP3162235B2 (en) Optical element and manufacturing method thereof
JPH04123017A (en) Phase shift element and laser device using the same
US4792201A (en) Optical deflector device
JP3003348B2 (en) Optical lens and manufacturing method thereof
JPH0611741A (en) Optical device
JP3184889B2 (en) Optical element
JP3421996B2 (en) Optical element
WO2021090435A1 (en) Light deflection device
JPH0273321A (en) Soft focus method
JP2545524B2 (en) Space filtering lens system
US5139341A (en) Optical modulator
JPH0422484B2 (en)
JPS62271236A (en) Optical disk device
JP2582918B2 (en) Microscope objective lens
JPH0729524U (en) Variable focus lens and variable focus lens system
KR100280320B1 (en) Ccd potical system using a holographic optical element lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees