JP3733475B2 - Method for cleaning and sterilizing continuous-flow type electrolyzed water generating device, electrolyzed water generating device having mechanism for carrying out this method, and flow path switching valve device used therefor - Google Patents

Method for cleaning and sterilizing continuous-flow type electrolyzed water generating device, electrolyzed water generating device having mechanism for carrying out this method, and flow path switching valve device used therefor Download PDF

Info

Publication number
JP3733475B2
JP3733475B2 JP35691996A JP35691996A JP3733475B2 JP 3733475 B2 JP3733475 B2 JP 3733475B2 JP 35691996 A JP35691996 A JP 35691996A JP 35691996 A JP35691996 A JP 35691996A JP 3733475 B2 JP3733475 B2 JP 3733475B2
Authority
JP
Japan
Prior art keywords
water
water supply
chamber
cleaning
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35691996A
Other languages
Japanese (ja)
Other versions
JPH10174973A (en
Inventor
良弥 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeta Inc
Original Assignee
Veeta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeta Inc filed Critical Veeta Inc
Priority to JP35691996A priority Critical patent/JP3733475B2/en
Publication of JPH10174973A publication Critical patent/JPH10174973A/en
Application granted granted Critical
Publication of JP3733475B2 publication Critical patent/JP3733475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は給水管路に浄水器を介装した連続通水式電解水生成装置の洗浄・殺菌方法及びこの方法を実施する機構を備えた連続通水式電解水生成装置並びにこれに使用される流路切換弁装置に関する。
【0002】
【発明の技術背景】
水道水等の水を、必要に応じてミネラル等を添加しながら、電解してアルカリイオン水と酸性水に整水する連続通水式電解水生成装置は、長時間使用したのちは電解槽及び管路の洗浄・殺菌が必要になる。特に、陰極室や電解隔膜にはカルシウムなどの析出物が付着するため、定期的あるいは不定期に析出物を除去する必要がある。
【0003】
【発明が解決しようとする課題】
従来からこの種の電解水生成装置の洗浄は、電解整水操作を止めた状態で給水管からの水を電解槽に給水する事によって電解槽及び管路を洗浄していた。しかしながら、この方法は給水管に浄水器を介装した電解整水装置にあっては浄水器によって塩素が取り除かれた水で洗浄されることになるため、充分な殺菌効果を得ることができなかった。
【0004】
また、カルシウムなどの析出物を除去するための洗浄方法としては、通常の電解整水運転を止めて電解槽の電極極性を逆転する洗浄専用の逆電洗浄方式、あるいは、通常のアルカリイオン水生成運転中に電極の極性を一定時間毎に切換える逆電電解方式がある。
しかしながら、前者の洗浄専用の逆電洗浄方式は水を多く消費するため不経済であり、後者の逆電電解方式は、極性が逆転してもアルカリ水が常に同じ蛇口から得られるようにするために流路切換バルブやその連動作動機能が必要になるほか、陽極−陰極両用に使用でき、しかも、有害物質が溶出しない高価な電極(例えば白金メッキを施したチタン電極など)が必要になり、製品のコストが高くなる。さらに問題なのは、これらの方式は、いずれも、洗浄されるのは電解槽の陰極室とその排水管路だけであり、浄水器の下流側水回路全体を洗浄・殺菌することはできなかったことである。
【0005】
したがって、本発明の第1の目的は、水道水などの洗浄水、さらに好ましくは殺菌力の強い次亜塩素酸水で電解槽及びその周辺の管路を効率的に洗浄・殺菌することができる連続通水式電解水生成装置の洗浄・殺菌方法を提供することにある。
【0006】
本発明の第2の目的は、上記の洗浄・殺菌方法を実施する機構を備えた連続通水式電解水生成装置を提供することにある。
【0007】
本発明の第3の目的は、この装置の洗浄・殺菌操作に使用される洗浄時流路切換弁装置を提供することにある。
【0008】
【課題を解決するための手段】
上記第1の目的を達成するために、本願の請求項1の発明は、給水管路から供給される水を陰極室と陽極室を有する電解槽で電解し、電解によって生成されたアルカリ水と酸性水を一対の排水管路から各別に排出する連続通水式電解水生成装置の洗浄方法において、洗浄の際、給水管路から電解槽入口への給水を抑制して電解槽の一方の電極室の出口側から洗浄水を給水し、該一方の電極室を逆流させた供給水を、直接又は給水側の管路を介して、他方の電極室へ通水しながら該他方の電極室の排水管路から排水することを特徴とする。
【0009】
また、上記第1の目的を達成するために、本願の請求項2の発明は、陰極室と陽極室を有する電解槽の給水管路に、浄水器を介装し、浄水器の共通排水部から一対の給水支管を介して電解槽の陰極室と陽極室に独立に給水するとともに、給水された水をアルカリ水と酸性水に電解して一対の排水管路から各別に排出する連続通水式電解水生成装置の洗浄方法において、洗浄時に、給水管路から電解槽入口への給水を抑制して電解槽の一方の電極室の出口側から給水し、該一方の電極室を逆流させた供給水を、浄水器の共通排水部を経由する一対の給水支管を介して電解槽の他方の電極室へ通水しながら該他方の電極室の排水管路から排水することを特徴とする。
【0010】
さらに、上記第1の目的を達成するために、本願の請求項3の発明は、陰極室と陽極室を有する電解槽の給水管路を、各々の電解室に独立に連通する一対の給水管路に分岐するとともに、電解槽の陰極室に通ずる給水支管、又はその上流側の前記給水管路、もしくは前記給水管路と陰極室側給水支管に吸着浄水器と濾過浄水器を上流、下流の位置関係で介装し、電解槽の各電極室に給水された水をアルカリ水と酸性水に電解して一対の排水管路から排出する連続通水式電解水生成装置の洗浄方法において、洗浄時に、給水管路から電解槽入口への給水を抑制して電解槽の一方の電極室の出口側から給水し、該一方の電極室を逆流させた供給水を、前記濾過浄水器を経由させて電解槽の他方の電極室へ通水しながら該他方の電極室の排水管路から排水することを特徴とする
【0011】
上記いずれの場合も、請求項4に記載したように、電解槽の一方の排水管路から給水される側の電極室の電極を陽極にして電解槽を通る水を電解することにより、該陽極電極室に次亜塩素酸殺菌水を生成し、この次亜塩素酸殺菌水を洗浄水として通水する過程で前記洗浄水回路を洗浄・殺菌し、且つ、この次亜塩素酸殺菌水を陰極電極室に通す過程で中和して排出するのがさらに好ましい。
【0012】
上記第2の目的を達成するために、本願の請求項5の発明は、陰極室と陽極室に仕切った電解槽の一側に、浄水器を介装した給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、浄水器の共通排水部から電解槽の各々の電極室に各別に連通する一対の給水支管を設け、給水管路から電解槽入口への給水を抑制した状態で、電解槽の一方の電極室の出口側から水を給水したときに、給水された水が該一方の電極室を逆流し、浄水器の共通排水部を経由する一対の給水支管を通って電解槽の他方の電極室へ流れ、該他方の電極室の排水管路から排水されるようにしたことを特徴とする
【0013】
上記第2の目的を達成するために、本願の請求項6の発明は、陰極室と陽極室に仕切った電解槽の一側に、浄水器を介装した給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、浄水器の共通排水部から電解槽の各々の電極室に各別に接続された一対の給水支管と;浄水器上流側の給水管路から分岐され、前記電解槽のいずれか一方の電極室の出口側に連通するように配管された洗浄バイパスと;給水管路からの通水を前記電解槽の給水側と前記洗浄バイパス側へ択一的に開閉制御する第1の流路切換手段と;前記洗浄バイパスと、この洗浄バイパスが連通する電極室の排水管路出口側を択一的に開閉制御する第2の流路切換手段と;を具備することを特徴とする。
この場合に、前記第1の流路切換手段が前記第2の流路切換手段の一部または全部の機能を兼ねる構成にしてもよい。
【0014】
また、上記第2の目的を達成するために、本願の請求項8の発明は、陰極室と陽極室に仕切った電解槽の一側に、浄水器を介装した給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、浄水器の共通排水部から電解槽の各々の電極室に各別に接続された一対の給水支管と;浄水器上流側の給水管路と電解槽のいずれか一方の排水管路に関連して設けられ、洗浄時に給水管路からの通水を前記電解槽の一方の排水管路へ切り換える洗浄時流路切換手段と;を具備することを特徴とする。
【0015】
さらに、上記第2の目的を達成するために、本願の請求項9の発明は、連続通水式の電解水生成装置において、前記洗浄時流路切換弁装置が、給水管路からの水の一部を電解槽の前記一方の排水管路の電解槽側へ通水し、一部をこの排水管路の吐水口側へ通水する分配機構を備えていることを特徴とする。
【0016】
さらに、上記第2の目的を達成するために、本願の請求項10の発明は、陰極室と陽極室に仕切った電解槽の一側に給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、給水管路を電解槽の陰極室と陽極室に独立に連通する一対の給水支管に分岐し、陰極室に通ずる給水支管、又は前記給水管路と陰極室側給水支管、に吸着浄水器と濾過浄水器を上流、下流の位置関係で介装するとともに、吸着浄水器と濾過浄水器の間の給水支管と、陽極室に通ずる給水支管と、陽極室の排水管路の相互間に、洗浄時に、電解槽側のこれら2本の給水支管を給水管路側の給水支管から切り離して連通させ且つ給水管路に通ずる陽極室側給水支管と陽極室の排水管路を連通させる流路切換弁を設けたことを特徴とする。
【0017】
この場合、流路切換弁を洗浄側に切換えると原水の全量が電解槽に流れるので濾過浄水器での圧力抵抗と相俟って洗浄水給水路の水圧が上昇し、該電極室の圧力が上昇し隔膜を破損するおそれがある。これを防止するために、請求項11の発明は流路切換弁46の下流側の陽極室側給水管路15bと濾過浄水器の排出口の間に、該陽極室側給水管を流れる洗浄用酸性水の水圧が所定圧以上に上昇したときにこの洗浄用酸性水の一部を濾過浄水器内のミクロフイルタを迂回して排出口へ流す一方通行の迂回洗浄回路を設けたことを特徴とする。
【0018】
さらに、上記第2の目的を達成するために、本願の請求項12の発明は、陰極室と陽極室に仕切った電解槽の一側に給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、給水管路に吸着浄水器と濾過浄水器を上流、下流の位置関係で配置し、濾過浄水器の下流側給水管路を一対の給水支管に分岐して電解槽の各電極室に独立に連通させるとともに、陽極室に通ずる側の給水支管から前記濾過浄水器の給水側に、洗浄用管路を配管し、前記陽極室側給水支管と洗浄用管路の相互間に流路切換機構を設けたことを特徴とする。
【0019】
さらに、上記第2の目的を達成するために、本願の請求項13の発明は、前記装置において、陰極室に通ずる給水支管から水抜き管路を分岐させ、この水抜き管路と前記給水管路の相互間に、給水管路の給水時の水圧で水抜き管路を閉じ、給水停止時の水圧で水抜き管路を開く水抜きバルブを設けたことを特徴とする。
【0020】
本発明の上記装置は、さらに好ましくは、洗浄・殺菌時に、電解槽の出口側、すなわち、排水管路から洗浄水が給水される側の前記電極室の電極の極性を陽極に保持または切換えて電解槽での洗浄・殺菌電解を可能にする電気制御装置を具備している。
【0021】
本発明の上記装置はさらに、前記洗浄バイパスや前記洗浄時流路切換弁装置に、電解槽への流量絞り効果をもたらす流量絞り機構を設け、洗浄・殺菌電解中の電解水のpHを更に下げたり、次亜塩素酸濃度が高くなるようにしてもよい。
【0022】
上記第3の目的を達成するために、本願の請求項16の流路切換弁装置の発明は、給水管路が接続される給水入口と、浄水器への給水管路が接続される給水出口と、電解槽の一方の排水管路に連通する洗浄水出口と、電解槽の前記一方の排水管路の排水部へ接続される排水出口を有するバルブケーシングと;バルブケーシング内を移動して前記給水入口から給水出口への通水路と前記給水入口から洗浄水出口及び排水出口への通水路とを択一的に開成する弁体と;を具備し、該弁体は、給水入口から洗浄水出口及び排水出口への通水路が開成したときに、給水入口から導入される水の一部を排水出口へ排水し、残りの水を洗浄水出口から排出する絞り部を具備していることを特徴とする。
【0023】
【発明の実施の形態】
本発明は、給水管路から供給される水を陰極室と陽極室を有する電解槽で電解し、電解によって生成されたアルカリ水と酸性水を一対の排水管路から各別に排出する連続通水式電解水生成装置の洗浄・殺菌方法及びこの方法を実施するための構造を備えた連続通水式の電解水生成装置に関するもので、この方法の基本的な構成は、洗浄の際に、給水管路から電解槽入口への給水を抑制して電解槽の一方の電極室の排水管路から水道水などの洗浄水を給水し、該一方の電極室を逆流する洗浄水を、好ましくは電解により次亜塩素酸殺菌水に生成して、該一方の電極室から直接又は給水側の管路を介して他方の電極室へ通水しながら該他方の電極室の排水管路から排水するものである。
【0024】
洗浄水を一方の電極室から電解槽の給水側の管路を介して他方の電極室を通水する手段には、一方の電極室の給水支管から逆流させた洗浄水を、ミクロフイルタなどの濾過浄水器出口側の共通排水部を通して他方の電極室の給水支管に通水する方法と、一方の電極室の給水支管から逆流させた洗浄水を濾過浄水器の濾過材内部を通過させて他方の電極の給水支管に通水する方法に大別される。
【0025】
以下、図面を参照して本発明の実施の形態を更に詳細に説明する。
連続通水式電解水生成装置1は、対向配置した一対の電極2、3(図の実施例では陰極2と陽極3)間を電解用隔膜4で一対の電極室5、6(陰極室5と陽極室6)に仕切った有隔膜電解槽7を有し、この電解槽7の給水側に給水管路8を接続するとともに、電解槽7の排水側に陰極室5と陽極室6に各別(独立)に連通する一対の排水管路9、10を接続してなり、通常のアルカリイオン水生成運転においては、給水管路8から通水した水道水などの原水、あるいは必要に応じてミネラル分等を補給した水を電解槽7で電解し、陰極室5で生成されるアルカリイオン水を排水管路9から取水し、陽極室6に生成される酸性水を排水管路10からドレン11へ捨てるようになっている。
電解のON−OFF信号、即ち電極への電圧の印加は、例えば、給水管路8その他の通水路に介装した流量計25あるいはフロースイッチからの信号で制御してもよい。
【0026】
本発明の連続通水式電解水生成装置1は、活性炭、ミクロフィルター等を充填した浄水器12を給水管路8に介装するとともに、浄水器12の出口側共通排水部13から電解槽7の前記陰極室5と陽極室6に各別に連通する一対の給水支管14、15を配管し、浄水器12で浄化した水を電解槽7に供給して電解するようになっている。特に、本発明は、活性炭など、塩素を除去する濾過材を含む浄水器を使用する装置に有用である。
【0027】
本発明による連続通水式電解水生成装置の洗浄・殺菌方法は、電解水生成装置1の給水管路8から電解槽7の入口への給水を抑制し、例えば給水管路8からの水道水などの洗浄用の水を電解槽7の一方の電極室出口から給水し、この電極室を逆流させた供給水を、浄水器12の共通排水部13を経由する一対の給水支管14、15を介して電解槽7の他方の電極室へ通水しながら該他方の電極室の排水管路から排水し、これにより、浄水器12を経由しない水、すなわち、塩素が除去されていない殺菌力のある水を浄水器12の共通排水部13から下流側の給水支管14、15、電解槽7及び排水管路を通水させて洗浄・殺菌するものである。
【0028】
また、本発明による上記電解水生成装置の他の洗浄・殺菌方法は、電解水生成装置1の給水管路8から電解槽7の入口への給水を抑制し、給水管路8からの水を管路を通して電解槽7の一方の電極室出口から給水し、この電極室を逆流させた供給水を、浄水器12の共通排水部13を経由する一対の給水支管14、15を介して電解槽7の他方の電極室へ通水しながら該他方の電極室の排水管路から排水する洗浄水回路を開成するとともに、電解槽7の出口側から給水される電極室の電極を陽極にして電解槽を通る水を電解することにより、該陽極電極室に次亜塩素酸殺菌水を生成し、この次亜塩素酸殺菌水が前記洗浄水回路を通る過程で、浄水器12の共通排水部13から下流側の給水支管14、15、電解槽7及び排水管路を次亜塩素酸殺菌水で洗浄・殺菌し、且つ、この次亜塩素酸水を陰極電極室に通す過程で中和して排出するようにしたものである。
【0029】
洗浄・殺菌時の電解槽7への給水抑制は、浄水器12本体の濾過材を通った水が電解槽7内に通水されないようにするためである。従って、ここで云う「給水抑制」は、給水を完全に止める場合に限らず、電解槽7の前記一方の配水管路出口側からの水圧よりも浄水器12への給水圧を小さくする場合も含む。
【0030】
つぎに、上記の洗浄・殺菌方法を実施する機構を備えた連続通水式電解水生成装置の実施形態について説明する。
図1a乃至図3bは本発明による連続通水式電解水生成装置の一実施形態を示すものでこの電解水生成装置1は、浄水器12の上流側の給水管路8から洗浄バイパス16を分岐させ、この洗浄バイパス16を前記電解槽7の陰極室5又は陽極室6の出口側に連通するように配管してある。
図1a、図1bの実施例では、洗浄バイパス16を陰極室5の排水管路9に接続し、排水管路9の一部(接続部上流側)を介して陰極室5に連通するようにしてある。
【0031】
給水管路8と洗浄バイパス16には、一方が開いているときに他方が閉じるように、給水管路8からの水が前記電解槽7の給水側と洗浄バイパス16へ択一的に通水されるように開閉制御する第1の流路切換手段17が設けられている。図の実施例では、流路切換手段17として洗浄バイパス16の分岐点に設けた三方弁を例示しているが、これに限らず、分岐点下流側の給水管路8のバイパス分岐点下流側と洗浄バイパス16に一対の開閉弁装置を設け、交互に択一的に開閉するようにした流路切換手段でもよく、その他、電解槽7と洗浄バイパス16への通水を択一的に切換える流路切換機能であれば他のいかなる構成のものでもよい

【0032】
他方、洗浄バイパス16と排水管路9には、洗浄バイパス16から電極室5への給水回路と排水管路9からの排水回路を択一的に開閉制御する第2の流路切換手段18が設けられている。
【0033】
図1a乃至図3bの実施例の前記第2の流路切換手段18は、洗浄バイパス16と排水管路9の接続部に設けたチェックバルブで構成されており、通常はばね20bに付勢された弁体20aで洗浄バイパス16側の弁座を閉じるとともに 、排水管路9の排水路を開き、洗浄バイパス16に水が通水されると水圧で弁体20aをばね20bに抗して排水管路9の下流側弁座に押して付けることにより、洗浄バイパス16が開くとともに、排水管路9からの排水が阻止されるようになっている。
【0034】
但し、第2流路切換手段18は上記のようなチェックバルブに限らず、洗浄バイパス16と、該排水管路9のバイパス接続部下流側に設けた一対の、好ましくは電動開閉弁(図示せず)で構成してもよい。要するに、第2流路切換手段は、洗浄バイパス16から電解槽7の一方の電極室5への給水と、該電解槽7の排水管路9からの排水を択一的に行うことができる構成であればよいので、その他の構造、例えば排水管路9のバイパス接続部下流側のみに設けた開閉弁と前記第1の流路切換手段の組合せで同じ目的を達成することも可能であり、さらにはバイパス16を接続した排水管路出口先端を高い位置に設けた場合は第1流路切換手段で第2流路切換手段を兼用することもできる。
【0035】
上記の構成により、図1a、図1bの実施形態の電解水生成装置1は、洗浄に際し、給水管路8の第1流路切換手段17を洗浄バイパス16側に開き、排水管路9側の第2流路切換手段18を洗浄バイパス16側に開くと、給水管路8の水は矢印のように洗浄バイパス16を介して電解槽7の一方の電極室5の排水側から導入され 、電極室5→給水支管14→浄水器12の共通排水部13→給水支管15→他方の電極室6→他方の排水管路10を経由する洗浄・殺菌用水回路(以下、洗浄水回路)に沿って流れる。この洗浄・殺菌用水回路を流れる水は浄水器12の下流側給水管路8から洗浄バイパス16を介して供給される水、すなわち、浄水器12によって塩素等が取り除かれていない水であるから、前記電極室5、給水支管14、浄水器12の共通排水部13、給水支管15及び他方の電極室6は塩素の殺菌力を保持している水によって洗浄・殺菌されることになる。
【0036】
図2a乃至図3bは本発明の他の実施形態を示すもので、この電解水生成装置1は、図1の電解水生成装置1に、さらに、洗浄バイパス16からの水が給水される側の電極室の電極の極性を陽極に保持または切換えて洗浄殺菌電解を可能にする電気制御装置19を付加的に設けたものである。なお、各々の符号は図1と同じ部材を示している。
【0037】
先ず、図2a、図2bの装置は、図2bに示すように、前記第1流路切換手段17と第2流路切換手段18により、給水管路が前記洗浄バイパス16を介して電解槽7の一方の電極室5に連通させた状態で、洗浄バイパス16からの水が給水される側の電極室5の電極の極性を陽極に保持または切換えて電解することにより、該電極室5に次亜塩素酸水を発生させるようになっている。
【0038】
すなわち、この電気制御装置19は、図2a、図2bのように洗浄バイパス16からの水が陰極室5の出口側から導入されるようにしている場合は、図2のように、洗浄・殺菌電解時に陰極室5の電極2を陽極に転換し、逆に、洗浄バイパス16からの水が陽極室6の出口側から導入されるようにした場合(図は省略)は陽極室6の電極を陽極に保持するように電気回路が構成されている。
電極2の陽極保持又は陽極転換は洗浄バイパス16の通水と連動するスイッチ等で操作されるようにしてもよく、また、洗浄バイパス16の通水の前又は後で他のスイッチで操作するようにしてもよい。
【0039】
かくして、通常の電解水生成時は、図2aのように給水管路8から電解槽7の給水側へ給水され電解槽7でアルカリ水と酸性水に電解され、一対の排水管路9
、10から別々に排出される。
【0040】
他方、洗浄時は、図2bのように給水管路8の第1流路切換手段17を洗浄バイパス16側に開き、排水管路9側の第2流路切換手段18を洗浄バイパス16側に開くと、給水管路8の水は矢印のように洗浄バイパス16を介して電解槽7の一方の電極室5の排水側から導入され、電極室5→給水支管15→浄水器12の共通排水部13→給水支管14→他方の電極室6→他方の排水管路10を経由する洗浄・殺菌用水回路(以下、洗浄水回路)が開成されるとともに、洗浄バイパス16からの水が給水される電極室5の電極極性が陽極に切換えられて電解電圧が印加される。
【0041】
従って、洗浄バイパス16から電極室5に給水された水は、陽極室に切換わった電極室5で電解整水される。ここで整水された水は酸性水であるため電極室5及び電解隔膜4に付着しているカルシウムなどの析出物を溶かし、洗浄を行うとともに、水に含まれている塩素イオンの作用により次亜塩素酸を多く含む殺菌水になり、電極室5の殺菌がなされる。特に、洗浄・殺菌時に電解される水は、浄水器12の上流側から供給される水、すなわち、塩素が除かれていない水であるため、陽極室に生成される電解水は、浄水器12を通した水を電解したときに比較して次亜塩素酸が多く発生する。
【0042】
電極室5の給水側から排出された次亜塩素酸殺菌水は給水支管14、浄水器12の共通排水部13及び給水支管15を通る過程でこれを洗浄・殺菌するとともに、陰極室に切換わった電極室6での電解により中和され、排水管路10から排出される。
【0043】
かくして、通常の電解整水時に陰極室であった電解槽7の電極室が酸性水で洗浄されるとともに、ここで生成される次亜塩素酸殺菌水で電解槽内及びその周辺の管路が殺菌される。
【0044】
洗浄時の電解槽7の次亜塩素酸濃度を高くするために、洗浄バイパス16に絞り弁20等の給水量を抑制する手段を設け、給水量を少なくしてゆっくり電解するようにしてもよい。同じ目的で洗浄バイパス16を給水管よりも細くしてもよく、さらには、通常のアルカリイオン水生成電解時よりも、洗浄・殺菌電解時の電解電流を多くしてもよい。
【0045】
水道水などの原水には洗浄・殺菌電解時に次亜塩素酸を発生させるための塩素イオンが含まれているが、次亜塩素酸濃度を高めるために、必要により、洗浄バイパス16に塩化ナトリウムなどの塩化物塩の添加手段を設けてもよい。
【0046】
また、陰極室5に連通する給水支管14にカルシウム等を供給するためのミネラル補給筒22を設ける場合に、電極の極性が逆転してもミネラルが常に陰極室側に供給されるように、給水支管14、15に流路切換装置23が設けられている。尚、図は省略したが、陽極室6に通ずる給水支管15にも陽極室6に必要な薬液を添加するための薬液添加筒を設けてもよい。
【0047】
次に、図3a、図3bの実施態様は、電解槽7の電極2、3に陰極・陽極両用に耐用できる電極、例えば、チタン材に白金、イリジウム等の白金属メッキを施した電極を用い、所定時間毎に電極の極性を変換して通常の電解を行う場合を示している。この種の装置では、極性が逆転しても、アルカリイオン水が常に同じ取水口から排出されるように排水管路9、10に流路切換装置21が設けられている。
【0048】
図3a、図3bの実施態様は、洗浄・殺菌電解の際に、図3bのように、洗浄バイパス16から排水管路9を介して電解槽7の電極室5に給水された水が流路切換装置23を介して給水支管15に流れるとともに、給水支管14から流路切換装置23を介して電極室6へ給水されて排水管路10から排水される洗浄水回路が形成され、電極室5の電極2を陽極に転換して洗浄電解が行われるようにしたものである。
【0049】
図1a乃至図2aの実施態様は、いずれも洗浄バイパス16を陰極室5の排水管路9に接続しているが、図3aのように陽極室6の排水管路10に接続してもよい。この場合に、図3aの極性をそのままにして陽極室6で生成した次亜塩素酸殺菌水を給水支管14、15を通して陰極室5に通水して排水管路9から排水するようにしてもよいが、好ましくは、通常電解時の陰極室5内で洗浄・殺菌電解の次亜塩素酸殺菌水が生成されるようにするため、図3bのように、洗浄バイパス16からの給水を流路切換装置21を介して電極室5へ切換えるとともに、電極室6から排水される水を流路切換装置21を介して排水管路9から排水されるように洗浄水回路を形成し、電極室5の電極2を陽極に転換して洗浄電解が行われるようにするのが望ましい。
尚、洗浄バイパス16を排水管路10に接続した場合は洗浄電解時にアルカリ水排水管路9の先端までが次亜塩素酸殺菌水で洗浄・殺菌される利点がある。
【0050】
図の実施例では、いずれも、洗浄バイパス16を排水管路9または10を介して電解槽7の電極室5または6の出口側に連通させるようにしているが、電極室5または6の出口側に直接連通させるようにしてもよい。
【0051】
図4a乃至図5bは本発明による連続通水式電解水生成装置の他の実施形態を示すもので、図1a乃至図3bの実施形態は、浄水器12の上流側の給水管路8から電解槽7の一方の出口へ給水するために洗浄バイパス16を設けているのに対し、図4a乃至図5bの装置1は、電解槽7のいずれか一方の排水管路9又は10を利用し、給水管路8とこの排水管路9又は10に関連して洗浄時流路切換弁装置26を設け、この洗浄時流路弁装置26を切り換えて給水管路8から電解槽7のいずれか一方の電極室の出口側に給水されるようになっている。
【0052】
すなわち、図4a、図4bの実施例は、電解槽7のアルカリ水排水管路9と浄水器12の上流側給水管路8に関連させて前記洗浄時流路切換弁装置26を設けている。
この構成では、通常電解時は図4aのように、給水管路8からの水は浄水器12、給水支管14、15を介して電解槽7に給水され、アルカリ水と酸性水に電解され、アルカリ水はアルカリ水排水管路9を通して排出されるとともに、酸性水は酸性水排水管路10からドレン11へ排出される。
他方、洗浄・殺菌の際は、洗浄時流路切換弁装置26の流路をアルカリ水排水管路9に切り換えると、給水管路8からの水はアルカリ水排水管路9を逆流して電解槽7の電極室5側の出口から給水され、電極室5から給水支管14を逆流して浄水器12へ流れるとともに、浄水器12の共通排水部13から給水支管15を通って電解槽7の電極室6へ導入されて酸性水排水管路10からドレン11へ排水される洗浄水回路が開成される。かくして、給水管路8からの水が浄水器12を迂回して上記洗浄水回路を通ることにより、該回路が塩素を含んだ水によって洗浄・殺菌される。
【0053】
図5a、図5bの実施形態は、これとは逆に、電解槽7の酸性水排水管路10と浄水器12の上流側給水管路8に関連させて前記洗浄時流路切換弁装置26を設けている。
この構成では、洗浄・殺菌の際は、図5aの状態から図5bのように洗浄時流路切換弁装置26の流路を酸性水排水管路10に切り換えると、給水管路8からの水は酸性水排水管路10を逆流して電解槽7の電極室6側の出口から給水され、電極室6から給水支管15を逆流して浄水器12へ流れるとともに、浄水器12の共通排水部13から給水支管14を通って電解槽7の電極室5へ導入されてアルカリ水排水管路9から排水蛇口へ排水される洗浄水回路が開成される。かくして、給水管路8からの水が上記洗浄水回路を通ることにより、該回路が塩素を含んだ水によって洗浄・殺菌される。
【0054】
図6及び図7は本発明による電解水生成装置のさらに他の実施形態を示すもので、このものは、浄水器12の上流側の給水管路8と、電解槽7の排水管路9又は10に関連して設けられる前記洗浄時流路切換弁装置26が、排水管路9又は10(図6、図7の場合はアルカリ水排水管路9)に給水される水の一部を該排水管路9又は10の電解槽7側へ通水するとともに、残りの水をこの排水管路9又は10の吐水口側へ通水する分配機構44を備えている。
この分配機構44は、好ましくは図6のように、排水管路吐水口側への通水路に絞り部45を設け、これにより、電解槽7側への通水が保証され、且つ、必要量以上の水が吐水口から無駄に排出されないようにする。
【0055】
すなわち、水道水は塩素を含み、それ自体が殺菌力をもつものであが、排水管路9又は10に給水される水道水等の洗浄用水の全部を電解槽7側へ通水してしまうと、この排水管路の内、洗浄時流路切換弁装置26よりも下流側の排水管路は全く洗浄・殺菌されないのに対し、図6、図7のように、水道水の一部が洗浄時流路切換弁装置26よりも下流側の排水管路へながれるようにすることにより、排水管路の吐水口までが水道水などの洗浄用水で洗浄・殺菌されるようになる。
【0056】
なお、洗浄時流路切換弁装置26として、図6では切換弁を使用し、図7では分岐水栓を使用しているが、前記洗浄用水の給水分配機構44はそのいずれにも適用できるものである。
【0057】
図4a乃至図7の装置において,図1a乃至図3bの装置と同じ参照記号は同じ機能を有する部材を示している。例えば、洗浄水回路の水に次亜塩素酸を発生させて殺菌する場合は、洗浄・殺菌時に、電解槽7の出口側から給水される側の電極室の電極を陽極に保持又は切り換えて洗浄・殺菌用の電解がなされるように前記と同様の電気制御装置19を設ける。
【0058】
また、図5a、図5bのように、一対の排水管路9、10に流路切換装置21を設けると共に、給水支管14、15にも流路切換装置23を設けてもよい。これら流路切換装置21、23の機能は図2a乃至図3bのものと同様であるので説明は省略する。
【0059】
さらに、前記電気制御装置19を設けた装置の場合は、洗浄水回路の給水量を制限して洗浄時の電解槽7の次亜塩素酸濃度を高くするために、前記洗浄時流路切換弁装置26は、給水管路8を電解槽7の前記一方の排水管路へ接続する通水路にオリフイス、流量絞り弁、その他流量絞り効果をもたらす流量絞り機構27を設けるのが望ましい。
【0060】
図1a乃至図3bにおける第1流路切換手段17及び第2流路切換手段18の切り換え操作、図4a乃至図7における洗浄時流路切換弁装置26の切換操作並びに、洗浄電解の操作は手動でも電動でもよい。例えば、通常の電解整水をしていない夜間等に手動またはタイマ等の自動手段で上記洗浄電解による洗浄・殺菌が行われるようにしてもよいし、通常の電解整水時間を積算して設定積算値に達したときに自動的に洗浄電解がなされるようにしたり、あるいは、洗浄電解の警告をしたりするようにしてもよい。
【0061】
図2a乃至図7の実施形態は洗浄・殺菌の時だけ電極の極性を切り換えればよいので、通常電解の陰極にステンレスなどの比較的安価な電極材料を使用できるが、ステンレス電極を陽極に切り換えて洗浄・殺菌電解をした場合は、次亜塩素酸の発生が少ないので、洗浄・殺菌電解時に次亜塩素酸の発生を多くしたいときは、洗浄・殺菌電解時に陽極となる電極の材料はチタン材に白金属メッキを施したもの、例えば、チタン材に白金とイリジウムをコーティングしたものを用いるのが望ましい。
【0062】
洗浄・殺菌電解による洗浄・殺菌は予め設定した所定の時間行われるようにし、洗浄・殺菌中は表示灯などで警告されるようにする。
【0063】
さらには、洗浄電解による殺菌・制菌を行った後は通常電解として使用する前の所定時間、水を通水して次亜塩素酸殺菌水を排水するとともに、この間は警告をしたり、排水流路をドレン側に切換えて、アルカリ水取水口から吐水されないようにするしてもよい。
【0064】
以上の説明は、本発明の実施形態を例示したものでこれに限定されるものではない。
例えば、洗浄・殺菌時に水が給水される管路にミクロフイルタや次亜塩素酸発生器を介装してもよい。
また、浄水器12はフイルタあるいはミクロフイルタを内蔵しているものにかぎらず、浄水器12とフイルタあるいはミクロフイルタが別体になっていてもよい。
【0065】
図8a乃至図8dは図6、図7の装置に使用される洗浄時流路切換弁装置26の好ましい実施形態を示すもので、この洗浄時流路切換弁装置26は、中空管状のバルブケーシング28の一側に、浄水器12への給水出口29を形成するとともに、他側に、電解槽7の一方の排水管路排水部に連通する排水出口30を形成してあり、このバルブケーシング28の前記給水出口29と排水出口30の間に給水入口31を設けてある。また、バルブケーシング28の前記排水出口30と給水入口31の間に、電解槽7の一方の排水管路に接続される洗浄水出口32が設けられている。
【0066】
バルブケーシング28の中空内部通水路には、給水入口31と前記給水出口29の間に弁座33が設けられており、また、給水入口31と前記洗浄水出口32の間に別の弁座34が設けられている。
【0067】
弁座33、34の間に弁体35が配設されており、この弁体35はバルブケーシング28の外部から軸方向に液密且つ摺動自在に挿入された操作ロッド36に固定されている。また、操作ロッド36はバルブケーシング28の外部に突出させた先端部をモータなどの駆動装置37に連結して往復移動されるようになっており、操作ロッド36の往復ストロークにより、弁座33と弁座34を選択的に開閉するように組付けられている。
【0068】
弁体35はその先端側に、給水入口31から洗浄水出口32及び排水出口30への通水路が開成したときに、給水入口31から導入される水の一部を排水出口30へ排水し、残りの水を洗浄水出口32から排水する流量絞り部38を一体に備えている。
【0069】
図8a乃至図8dの流量絞り部38は、バルブケーシング28の内壁面に当接して排水出口30への通水路を閉鎖する閉鎖部材39を前部外周に形成した先端開口の筒体40を有し、この筒体40の後部外周に洗浄水出口32への通水路を形成する切欠き板41を形成するとともに、この切欠き板41の後方から中空内部へ貫通して筒体40の内部を介して排水出口30と連通する通水孔42を形成した構成になっている。
なお、バルブケーシング28の排水出口30の後方には排水出口30側への排水を許容し、排水出口30側からの水の逆流を規制する可撓性材料の逆止弁43が配設されている。
【0070】
かくして、図6aのようにアルカリ水を生成する通常電解時は、給水入口31から導入された水は給水出口29から浄水器へ給水される。
他方、洗浄・殺菌時に図6cの状態に弁体35が移動すると、給水入口31から導入された水の一部は絞り部材38の通水孔42を通って排水出口30から排出され、残りが絞り部材38の切欠き板41を通って洗浄水出口32から排出される。従って、洗浄殺菌時に洗浄水出口32から電解槽7の一方の電極室へ給水される流量は絞り部材38によって減量されたものになる。
【0071】
図9a、図9bは本発明のさらに他の実施形態を示すもので、この連続通水式電解水生成装置1は、給水管路8を電解槽7の陰極室5と陽極室6に独立に連通する一対の給水支管14、15に分岐し、陰極室5に通ずる給水支管14に活性炭などの吸着浄水器12aを介装するとともに、その下流側にミクロフイルタなどの濾過浄水器12bを介装してある。図は省略したが、上記の変形例として、給水管路8に吸着浄水器12aを設け、陰極室側給水支管14に濾過浄水器12bを設けた構成でもよい。このような電解水生成装置において、前記吸着浄水器12aと濾過浄水器12bの間の管路と、前記陽極室6側の給水支管15と、前記陽極室6の排水管路10の相互間に、洗浄時に、電解槽7側のこれら2本の給水支管14b、15bを給水管路8側の給水支管14a、15aから切り離して連通させ、且つ、給水管路8に通ずる陽極室側給水支管15aと陽極室側排水管路10を連通させる流路切換弁46が設けられている。
【0072】
上記構成により、通常の電解水生成運転時は、図9aに示すように、給水管8の給水支管14から供給された原水は、吸着浄水器12a、流路切換弁46の通常電解時流路、濾過浄水器12b、薬液添加筒22を通って電解槽7の陰極室5に給水されるとともに、給水支管15から供給された原水は流路切換弁46の通常電解時流路を通って電解槽7の陽極室6に給水される。
かくして、電解電圧の印加により陰極室5にアルカリ水が生成されて排水管路9から排出されるとともに、陽極室6には酸性水が生成され、排水管路10から流路切換弁46の通常電解時流路を通してドレン11へ排出される。
【0073】
洗浄に際しては、図9bのように、流路切換弁46を洗浄回路側に切換えると、電解槽7の陰極室5に接続されている給水管路14bと陽極室6に接続されている給水管路15bが流路切換弁46の切換通路を介して、給水管路8側の給水支管14a、15aからそれぞれ切り離されて相互に連通する。
他方、給水管路8側の給水支管15aと陽極室6側の排水管路10は流路切換弁46の切換通路を介して連通する。
【0074】
かくして、流路切換弁46を上記の洗浄回路側に切換えると給水管路8から給水支管15a→流路切換弁46→排水管路10→陽極室6→給水支管15b→流路切換弁46→給水支管14b→濾過浄水器12b→陰極室5→排水管路9への洗浄回路が開閉され、この洗浄回路に給水管路8から水(洗浄水)を給水することにより電解槽7、濾過浄水器12bを含む洗浄回路全体が洗浄される。
【0075】
また、この洗浄時に、(必要に応じて塩化ナトリウムなどの塩化物塩を洗浄水に添加して)電解槽7の電極2、3に電解電圧を印加すると陽極室6で次亜塩素酸水が生成され、前記洗浄回路の陽極室6及びその下流側洗浄回路は次亜塩素酸水で洗浄・殺菌される。
【0076】
尚、特に次亜塩素酸水を生成して殺菌する場合は洗浄水の流量を絞り、陽極室6で充分な濃度の次亜塩素酸水が生成させるのが有利である。このため、図9bの実施例では流路切換弁46の給水支管15aと排水管路10を連通させる流路に絞り弁24を設けている。
さらに、図9bのように洗浄時の給水流量の一部を洗浄水として使用し、一部をドレンへ排水するようにしてもよい。この場合は、ドレンへの排水路47に絞り弁48を設ける。
【0077】
図9cは、図9a及び図9bの装置にさらに改良を加えたもので、この実施例は、流路切換弁46から陽極室6に接続されている給水管路15bと濾過浄水器12bの排出口63の間に、洗浄時に該陽極室側給水管路15bの水圧が所定圧以上に上昇したときに、この給水管路15bを流れる洗浄用電解酸性水の一部を濾過浄水器12bのミクロフイルタ64を迂回して排出口63に流す一方通行の迂回洗浄回路65を設けたものである。
【0078】
給水管路15bは、図9b、図9cのように流路切換弁46を洗浄回路に切換えたときに、濾過浄水器12bへの給水路となるものであるが、流路切換弁46を洗浄回路に切換えると陰極室5への原水給水が停止され、原水給水の全量もしくはほとんどが電解槽3の陽極室6を逆流して給水管路15bへ流れ、給水管路15bの水圧が上昇する。他方、濾過浄水器12は通常のアルカリ水生成電解時には原水の一部が流入し他は陽極室6へ給水されるようになっているので洗浄時に水圧が上昇した排水管路10の洗浄水の全量が濾過浄水器12bに流入するとミクロフイルタ64の抵抗で陽極室6の水圧が上昇し、隔膜4が破損するおそれがある。特に、ミクロフイルタ64に目詰りが生ずるとこの傾向が高まる。
迂回洗浄回路65はこれを防止するための圧力抜き回路であり、洗浄回路を開成して電解槽7及びその先の給水管路15bの水圧が上昇すると洗浄水の一部が迂回洗浄水回路65からばね66に付勢されている逆止弁67を開いて濾過浄水器12bへ流れ、該浄水器12bのミクロフイルタ64を迂回して排出口63へ流れる。従って、電解槽7の隔膜4には過度の水圧がかからず、しかも、濾過浄水器12bの排出側及びその下流側水回路は洗浄用酸性水(次亜塩素酸水)の全量で洗浄される。
【0079】
図10a、図10bは流路切換弁46の一例を示すもので、図10aは流路切換弁46の前記の通常電解時の水回路を示し、図10bは洗浄時の水回路を示している。この実施例ではバルブケーシング49の給水支管15a及び排水管路10への各通口と弁体50の位置関係で前記絞り弁24、48の機能を果すようにしてある。
【0080】
図11a、図11bは本発明のさらに別の実施形態を示すもので、この連続通水式電解水生成装置は給水管路8に吸着浄水器12aと濾過浄水器12bを上流、下流の位置関係で配置し、濾過浄水器12bの下流側給水管路8を陰極室5への給水支管14と陽極室への給水支管15に分岐して電解槽7への各電極室5、6に独立に連通させるとともに、陽極室6に通じる給水支管15から前記濾過浄水器12bの給水側に洗浄用管路51を配管し、前記の陽極室側給水支管15と洗浄管路51の相互間に給水支管15と洗浄管路51を選択的に開閉させる、例えば三方弁などの流路切換機構52を設けたものである。
【0081】
この装置は流路切換機構52を給水支管15側に開くと図11aのように通常の電解水生成の水回路が形成され、他方、流路切換機構52を洗浄管路51側に開くと、図11bに示すように、陽極室6に通ずる給水支管15と陰極室5側の給水支管14が洗浄管路51と濾過浄水器12aを通して連通し、排水管路10から陽極室6→洗浄管路51→濾過浄水器12b→給水管路8→給水支管14→陰極室5→排水管路9に至る洗浄回路が形成される。
かくして、この洗浄回路に洗浄水を前記の方向に通水することにより洗浄がなされるとともに、このとき電解電圧を印加すると陽極室6に次亜塩素酸殺菌水が生成され、洗浄回路の洗浄・殺菌がなされる。
【0082】
尚、図9a、図9bの装置に示すように、陰極室5に通ずる給水支管14bから水抜き管路53を分岐させ、この水抜き管路53と前記給水管路8の相互間に、給水管路8の給水時の水圧で水抜き管路53を閉じ、給水停止時の水圧で水抜き管路53を開く水抜きバルブ54を設け、給水管路8の開閉弁55を開いて給水したときは水抜きバルブ54が閉じ、給水を停止させると水抜きバルブが開き、装置内の残水が排水されるようにしてある。
この水抜き機構は、給水を止め、電解槽7の電極室5、6の極性を転換して電解槽の水を抜きながら逆電洗浄をする際に使用するもので、図は省略してあるが、このような水抜き機構は本発明の他の装置にも同様に設けることができる。
【0083】
図12a、図12bは前記水抜きバルブ54の一例を示すもので、バルブケーシング56内を、ダイアフラム57によって給水管路8側のチヤンバ58と水抜き管路53側チヤンバ59に仕切るとともに、水抜き管路側チヤンバ59に、好ましくは弁座孔60’を有する弁座60を形成し、ダイアフラム57にこの弁座孔60’を開閉する弁体61を取付け、ばね62によりダイアフラム57を給水管路側チヤンバ58に付勢させた構造になっている。
【0084】
上記の構成により、給水管路8に水を通水すると、チヤンバ58の水圧上昇によりダイアフラム57及び弁体61がチヤンバ59側に押され、弁体61によって水抜き管路53の弁座孔60’が閉じられる。従って、通常の電解運転中は水抜き管路53が閉じた状態で電解槽7に給水され、電解水の生成が行われる。
他方、給水管路8への給水を停止すると、図12bのようにチヤンバ58の圧力が減少し、ばね62の復元力によりダイアフラム57がチヤンバ58側に押し戻され、これに伴って弁体61が弁座孔60’を開く。かくして水抜き管路53が開成され、電解水生成装置の水抜きがなされる。
尚、図の実施例では弁座孔60’に所定の長さLを持たせ、これにより、給水管路8からの給水を停止してから水抜き管路53が開くまでに所定の間がとれるようにしてある。この構成により、電解槽の水を抜きながら逆電洗浄を行う際に、電解槽7に水が残っている時間を長くし、逆電洗浄時間を充分にとることができる。
【0085】
図は省略してあるが、図11a乃至図12bの実施例の電解水生成装置が、所定時間毎に電極の極性を転換して電解水を生成する逆電式の電解水生成装置である場合は、図1aと同様に、洗浄時には排水管路から洗浄水を給水する側の電極室を陽極側に切換える電気制御装置19を設ける。
【0086】
【効果】
本発明は、吸着浄水器を迂回した水、すなわち、塩素が除去されていない水を電解槽の一方の電極室から導入し、一方の給水支管−浄水器の共通排水部または内部−他方の給水支管−他方の電極室−の順に通水して排出するので浄水器の下流側水回路全体を塩素を含む水で洗浄・殺菌することができる。
【0087】
また、電解洗浄の際に、電解槽の一方の電極室の出口側から給水した水を該電極室の電極を陽極にして電解することにより、該電極室に酸性水が生成され、電極室の電極や電解膜に付着していたカルシウム等の析出物が洗浄される。
また、この時に陽極室に生成される電解生成水は殺菌力の強い次亜塩素酸を多く含む殺菌水であり、この水が給水管路等の周辺通水路及び他方の電極室を通って排水されることにより、電解槽及びその周辺管路(洗浄水回路)特に、ミネラル補給時に外気に触れやすく、且つ、浄水器によって塩素が除去されて雑菌が繁殖しやすくなっている給水支管が前記次亜塩素酸殺菌水で殺菌・制菌される。従って、従来の装置に比較して洗浄・殺菌効果が著しく向上するとともに、一連の作用で洗浄と殺菌・制菌が同時になされる。
【0088】
洗浄・殺菌電解時の陽極室で生成された酸性水が陰極室に導入されることにより、陰極室の水は中和され、中性に近い水になる。従って、従来のように、単なる逆電洗浄では、電極室の一方の水が酸性になっても他方の電極室の水がアルカリ性であるため隔膜表面の酸性水は中和されてしまいカルシウム等の溶解力が低下してしまったが、本発明ではアルカリ水が中和されるのでこの問題が合理的に解消される。
【0089】
また、これを反面から見ると、陽極室で生成された次亜塩素酸水は陰極室を通る過程で中和されて排水されるので害がなく排水周辺の金属器具を腐食させない

【0090】
従来のいわゆる逆電電解は、陰極・陽極両用のチタン白金メッキ電極などの高価な電極を必要とし、また、給・排水管路の流路切換弁が必要であったが、本発明は陰極をステンレスとし、陽極をフェライト等とする通常電解時の安価な電極で洗浄電解をすることができ、コストダウンをはかることができる。
【0091】
洗浄時流路切換弁装置に分配機構を設けたことにより、洗浄水を給水する排水管路はその吐水口まで塩素を含む水道水で洗浄されるようになる。
【0092】
陽極室側給水管路から濾過浄水器の排出口へミクロフイルタを通さない迂回洗浄水回路を設けることによって電解槽の隔膜の破損が防止される。
【図面の簡単な説明】
【図1a】 本発明の一実施形態を示す連続式電解水生成装置の通常電解状態図
【図1b】 図1aの装置の洗浄電解状態図
【図2a】 本発明の他の実施形態を示す連続式電解水生成装置の通常電解状態図
【図2b】 図2aの装置の洗浄電解状態図
【図3a】 本発明の他の実施形態を示す連続式電解水生成装置の通常電解状態図
【図3b】 図3aの装置の洗浄電解状態図
【図4a】 本発明の他の実施形態を示す連続式電解水生成装置の通常電解状態図
【図4b】 図4aの装置の洗浄電解状態図
【図5a】 本発明の他の実施形態を示す連続式電解水生成装置の通常電解状態図
【図5b】 図5aの装置の洗浄電解状態図
【図6】 本発明の他の実施形態を示す連続式電解水生成装置の洗浄電解状態図
【図7】 本発明の他の実施形態を示す連続式電解水生成装置の洗浄電解状態図
【図8a】 洗浄時流路切換弁装置の縦断面図
【図8b】 図8aのA−A線断面図
【図8c】 洗浄時流路切換弁装置の縦断面図
【図8d】 図8cのB−B線断面図
【図9a】 本発明の他の実施形態を示す電解水生成装置の通常電解状態図
【図9b】 図9aの装置の洗浄電解状態図
【図9c】 本発明の他の実施形態を示す電解水生成装置の洗浄電解状態図
【図10a】 流路切換弁の一例を示す通常電解時水回路図
【図10b】 図10aの流路切換弁の洗浄時水回路図
【図11a】 本発明の他の実施形態を示す電解水生成装置の通常電解状態図
【図11b】 図11aの装置の洗浄電解状態図
【図12a】 給水時の水抜きバルブ作動図
【図12b】 給水停止時の水抜きバルブ作動図
【符号の説明】
1…電解水生成装置、
2…陰極、
3…陽極、
4…電解用隔膜、
5…陰極室、
6…陽極室、
7…電解槽、
8…給水管路、
9、10…排水管路、
11…ドレン、
12…浄水器、
13…共通排水部、
14、15…給水支管、
16…洗浄バイパス、
17…第1流路切換手段、
18…第2流路切換手段、
19…電気制御装置、
20a…弁体、
20b…ばね、
21、23…流路切換手段、
22…薬液添加筒、
24、27…絞り弁、
25…流量計、
26…洗浄時流路切換弁装置、
28…バルブケーシング、
29…給水出口、
30…排水出口、
31…給水入口、
32…洗浄水出口、
33、34…弁座、
35…弁体、
36…操作ロッド、
37…駆動装置、
38…流量絞り部材、
39…閉鎖部材、
40…筒体、
41…切欠き板、
42…通水孔、
43…逆止弁、
44…分配機構、
45…絞り部、
46…流路切換弁、
47…排水路、
48…絞り弁、
49…バルブケーシング、
50…弁体、
51…洗浄管路、
52…流路切換機構、
53…水抜き管路、
54…水抜きバルブ、
55…開閉弁、
56…バルブケーシング、
57…ダイアフラム、
58…給水管路側チヤンバ、
59…水抜き管路側チヤンバ、
60…弁座、
60’…弁座孔、
61…弁体、
62…ばね、
63…排出口
64…ミクロフイルタ
[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention relates to a method for cleaning and sterilizing a continuous water electrolyzed water generating device having a water purifier interposed in a water supply pipe, a continuous water electrolyzed water generating device equipped with a mechanism for carrying out this method, and a method used therein. The present invention relates to a flow path switching valve device.
[0002]
BACKGROUND OF THE INVENTION
A continuous-flow type electrolyzed water generator that electrolyzes water such as tap water and adjusts it to alkaline ionized water and acidic water while adding minerals as necessary. It is necessary to clean and sterilize the pipeline. In particular, since deposits such as calcium adhere to the cathode chamber and the electrolytic diaphragm, it is necessary to remove the deposits regularly or irregularly.
[0003]
[Problems to be solved by the invention]
Conventionally, in this type of electrolyzed water generating apparatus, the electrolytic cell and the pipeline are cleaned by supplying water from the water supply pipe to the electrolytic cell in a state where the electrolytic water conditioning operation is stopped. However, this method cannot be sufficiently sterilized because it is washed with water from which chlorine has been removed by the water purifier in an electrolytic water conditioning apparatus having a water purifier in the water supply pipe. It was.
[0004]
In addition, as a cleaning method for removing precipitates such as calcium, the reverse electrolytic cleaning method exclusively for cleaning that stops the normal electrolytic water conditioning operation and reverses the electrode polarity of the electrolytic cell, or the generation of normal alkaline ionized water There is a reverse electrolysis system in which the polarity of the electrode is switched at regular intervals during operation.
However, the former reverse electric cleaning method dedicated to cleaning is uneconomical because it consumes a lot of water, and the latter reverse electric electrolysis method is to ensure that alkaline water is always obtained from the same faucet even if the polarity is reversed. In addition to the need for a channel switching valve and its interlocking operation function, an expensive electrode that can be used for both anode and cathode and does not elute harmful substances (for example, a titanium electrode plated with platinum) is required. Product cost increases. What is more problematic is that all of these methods only cleaned the cathode chamber of the electrolytic cell and its drain line, and could not clean and sterilize the entire downstream water circuit of the water purifier. It is.
[0005]
Therefore, the first object of the present invention is to efficiently clean and sterilize the electrolyzer and its surrounding pipelines with cleaning water such as tap water, more preferably hypochlorous acid water with strong sterilizing power. It is providing the washing | cleaning and sterilization method of a continuous flow type electrolyzed water generating apparatus.
[0006]
A second object of the present invention is to provide a continuous water electrolyzed water generating apparatus having a mechanism for performing the above-described cleaning / sterilizing method.
[0007]
A third object of the present invention is to provide a cleaning flow path switching valve device used for the cleaning / sterilization operation of this device.
[0008]
[Means for Solving the Problems]
In order to achieve the first object, the invention according to claim 1 of the present application is that electrolysis of water supplied from a water supply pipe in an electrolytic cell having a cathode chamber and an anode chamber, and alkaline water generated by electrolysis, In the washing method of the continuous water-flow type electrolyzed water generating apparatus that discharges acidic water separately from a pair of drainage pipes, one electrode of the electrolyzer is controlled by suppressing water supply from the water supply pipe line to the electrolytic cell inlet at the time of washing. The cleaning water is supplied from the outlet side of the chamber, and the supply water that has flowed backward through the one electrode chamber is passed through the other electrode chamber directly or via the water supply side pipe line. It is characterized by draining from the drain pipe.
[0009]
In order to achieve the first object, the invention according to claim 2 of the present application is characterized in that a water purifier is interposed in a water supply pipe line of an electrolytic cell having a cathode chamber and an anode chamber, and a common drainage portion of the water purifier. Water is supplied independently to the cathode chamber and anode chamber of the electrolytic cell through a pair of water supply branch pipes, and the water is electrolyzed into alkaline water and acidic water and discharged separately from the pair of drainage pipes. In the cleaning method of the electrolytic water generator, water supply from the water supply line to the electrolytic cell inlet was suppressed and water was supplied from the outlet side of one electrode chamber of the electrolytic cell, and the one electrode chamber was made to flow backward. The supply water is drained from the drain line of the other electrode chamber while passing water to the other electrode chamber of the electrolytic cell through a pair of water supply branches passing through the common drainage section of the water purifier.
[0010]
Furthermore, in order to achieve the first object, the invention according to claim 3 of the present application provides a pair of water supply pipes for independently communicating water supply pipes of an electrolytic cell having a cathode chamber and an anode chamber to each of the electrolysis chambers. The water supply branch pipe that branches to the cathode chamber and leads to the cathode chamber of the electrolytic cell, or the water supply pipe line on the upstream side thereof, or the adsorption water purifier and the filtration water purifier on the water supply pipe line and the cathode chamber side water supply branch pipe are arranged upstream and downstream. In the cleaning method of the continuous water-flow type electrolyzed water generator, which is interposed in a positional relationship and electrolyzes water supplied to each electrode chamber of the electrolytic cell into alkaline water and acidic water and discharges it from a pair of drainage pipes. Sometimes, water supply from the water supply line to the electrolytic cell inlet is suppressed and water is supplied from the outlet side of one electrode chamber of the electrolytic cell, and the supply water that has flowed backward through the one electrode chamber is passed through the filtration water purifier. While passing water through the other electrode chamber of the electrolytic cell, And characterized in that the drainage
[0011]
In any of the above cases, as described in claim 4, the electrode in the electrode chamber on the side fed from one drain pipe of the electrolytic cell is used as an anode to electrolyze water passing through the electrolytic cell, thereby Hypochlorous acid sterilized water is generated in the electrode chamber, and the cleaning water circuit is cleaned and sterilized in the course of passing this hypochlorous acid sterilized water as cleaning water, and the hypochlorous acid sterilized water is used as the cathode. It is more preferable to neutralize and discharge in the process of passing through the electrode chamber.
[0012]
In order to achieve the second object, the invention of claim 5 of the present application has a water supply pipe line interposing a water purifier on one side of an electrolytic cell partitioned into a cathode chamber and an anode chamber, and the other side. A pair of drain lines communicating with the cathode chamber and the anode chamber separately, and electrolyzing water supplied from the water supply pipe into alkaline ionized water and acidic water and discharging the water from the pair of drain pipes In the flow-through type electrolyzed water generating device, a state is provided in which a pair of water supply branch pipes communicating with each electrode chamber of the electrolytic cell from the common drainage part of the water purifier is provided, and water supply from the water supply line to the electrolytic cell inlet is suppressed Then, when water is supplied from the outlet side of one electrode chamber of the electrolytic cell, the supplied water flows back through the one electrode chamber and passes through a pair of water supply branch pipes passing through the common drainage part of the water purifier. To flow to the other electrode chamber of the electrolytic cell and drain from the drain pipe of the other electrode chamber Characterized in that was
[0013]
In order to achieve the second object, the invention of claim 6 of the present application has a water supply pipe line interposing a water purifier on one side of an electrolytic cell partitioned into a cathode chamber and an anode chamber, and the other side. A pair of drain lines communicating with the cathode chamber and the anode chamber separately, and electrolyzing water supplied from the water supply pipe into alkaline ionized water and acidic water and discharging the water from the pair of drain pipes In the flow-through type electrolyzed water generating device, a pair of water supply branches connected to each electrode chamber of the electrolyzer from a common drainage part of the water purifier; and a branch from a water supply pipe upstream of the water purifier; A cleaning bypass piped to communicate with the outlet side of one of the electrode chambers of the tank; and water supply from the water supply pipe is selectively opened and closed to the water supply side and the cleaning bypass side of the electrolytic tank. A first flow path switching means; the cleaning bypass and the cleaning bypass communicating with each other; Characterized by comprising a; a second flow path switching means for alternatively opening and closing control that the electrode chamber drainage pipe outlet side.
In this case, the first flow path switching unit may function as part or all of the second flow path switching unit.
[0014]
Moreover, in order to achieve the second object, the invention of claim 8 of the present application has a water supply pipe line interposing a water purifier on one side of an electrolytic cell partitioned into a cathode chamber and an anode chamber, The other side has a pair of drain pipes communicating with the cathode chamber and the anode chamber, respectively, and water supplied from the water supply pipe is electrolyzed into alkaline ionized water and acidic water and discharged from the pair of drain pipes. A pair of water supply branches connected to each electrode chamber of the electrolyzer from the common drainage section of the water purifier; a water supply pipe upstream of the water purifier and the electrolyzer A cleaning flow path switching means that is provided in relation to any one of the drain pipes and switches water flow from the water supply pipe to one drain pipe of the electrolytic cell during cleaning. .
[0015]
Furthermore, in order to achieve the second object, the invention according to claim 9 of the present application is the continuous water flow type electrolyzed water generating device, wherein the cleaning-time flow path switching valve device includes a water supply line. It is characterized by having a distribution mechanism that allows water to flow to the electrolytic tank side of the one drainage pipe of the electrolytic tank, and partly to the outlet side of the drainage pipe.
[0016]
Furthermore, in order to achieve the second object, the invention of claim 10 of the present application has a water supply conduit on one side of an electrolytic cell partitioned into a cathode chamber and an anode chamber, and the cathode chamber on the other side. Continuous water-flow type electrolysis having a pair of drainage pipes communicating with the anode chamber separately, electrolyzing water supplied from the water supply pipes into alkaline ionized water and acidic water and discharging them from the pair of drainage pipes In the water generating device, the water supply pipe is branched into a pair of water supply branches that communicate independently with the cathode chamber and the anode chamber of the electrolytic cell, and the water supply branch that communicates with the cathode chamber, or the water supply pipe and the cathode chamber side water supply branch. The adsorption water purifier and the filtration water purifier are arranged in the upstream and downstream positional relationship, and the water supply branch between the adsorption water purifier and the filtration water purifier, the water supply branch leading to the anode chamber, and the drain pipe of the anode chamber are mutually connected. In the meantime, at the time of cleaning, these two water supply branches on the electrolytic cell side are connected to the water supply line side. Characterized in that a communicated allowed and communicated to passage change-over valve the drain line of the anode chamber side water supply branch pipe and an anode chamber communicating with the water supply conduit separately from the branch pipe.
[0017]
In this case, when the flow path switching valve is switched to the washing side, the entire amount of raw water flows to the electrolytic cell, so that the water pressure in the washing water supply channel rises together with the pressure resistance in the filtration water purifier, and the pressure in the electrode chamber is reduced. There is a risk of rising and damaging the diaphragm. In order to prevent this, the invention of claim 11 is for cleaning that flows through the anode chamber side water supply pipe between the anode chamber side water supply pipe 15b downstream of the flow path switching valve 46 and the discharge port of the filtration water purifier. It is characterized in that a one-way bypass cleaning circuit is provided in which a part of the acidic water for washing flows through the microfilter in the filter water purifier to the discharge port when the pressure of the acidic water rises above a predetermined pressure. To do.
[0018]
Furthermore, in order to achieve the second object, the invention of claim 12 of the present application has a water supply conduit on one side of the electrolytic cell partitioned into the cathode chamber and the anode chamber, and the cathode chamber on the other side. Continuous water-flow type electrolysis having a pair of drainage pipes communicating with the anode chamber separately, electrolyzing water supplied from the water supply pipes into alkaline ionized water and acidic water and discharging them from the pair of drainage pipes In the water generation device, an adsorption water purifier and a filtration water purifier are arranged upstream and downstream in the water supply line, and the downstream water supply line of the filtration water purifier is branched into a pair of water supply branches to each electrode of the electrolytic cell. A cleaning pipe is connected to the water supply side of the filtration water purifier from a water supply branch on the side communicating with the anode chamber to the water supply side of the filtration water purifier, and flows between the anode chamber side water supply branch and the cleaning pipe. A path switching mechanism is provided.
[0019]
Furthermore, in order to achieve the second object, according to the invention of claim 13 of the present application, in the apparatus, a water drain pipe is branched from a water feed branch pipe communicating with the cathode chamber, and the water drain pipe and the water pipe A water drain valve is provided between the paths, which closes the drain pipe with the water pressure when the water supply pipe is supplied and opens the drain pipe with the water pressure when the water supply is stopped.
[0020]
More preferably, the apparatus of the present invention holds or switches the polarity of the electrode of the electrode chamber on the outlet side of the electrolytic cell, that is, the side where the cleaning water is supplied from the drain pipe, to the anode during cleaning and sterilization. It is equipped with an electric control device that enables cleaning and sterilization electrolysis in an electrolytic cell.
[0021]
The apparatus of the present invention is further provided with a flow restricting mechanism that provides a flow restricting effect to the electrolytic cell in the washing bypass or the flow switching valve device at the time of washing to further lower the pH of the electrolyzed water during washing / sterilization electrolysis. The hypochlorous acid concentration may be increased.
[0022]
In order to achieve the third object, the invention of the flow path switching valve device according to claim 16 of the present application is characterized in that a water supply inlet to which a water supply pipe is connected and a water supply outlet to which a water supply pipe to a water purifier is connected. A washing water outlet communicating with one drainage pipe of the electrolytic cell; a valve casing having a drainage outlet connected to a drainage part of the one drainage pipe of the electrolytic tank; And a valve body that selectively opens a water passage from the water supply inlet to the water supply outlet and a water passage from the water supply inlet to the wash water outlet and the drain outlet. When a water passage to the outlet and the drain outlet is opened, it is equipped with a throttle that drains a part of the water introduced from the water supply inlet to the drain outlet and discharges the remaining water from the washing water outlet. Features.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention electrolyzes water supplied from a water supply pipeline in an electrolytic cell having a cathode chamber and an anode chamber, and continuously discharges alkaline water and acidic water generated by electrolysis from a pair of drainage pipelines. The present invention relates to a method for cleaning and sterilizing an electrolyzed water generating device and a continuous water electrolyzed water generating device having a structure for carrying out this method. The basic structure of this method is to supply water during cleaning. Supplying cleaning water such as tap water from the drain pipe of one electrode chamber of the electrolytic cell while suppressing water supply from the conduit to the electrolytic cell inlet, and washing water that flows back through the one electrode chamber is preferably electrolyzed. Generated in the hypochlorous acid sterilized water by the water, and drained from the drain line of the other electrode chamber while passing water from the one electrode chamber directly or through the water supply side pipe to the other electrode chamber It is.
[0024]
In the means for passing the washing water from one electrode chamber through the water supply side conduit of the electrolytic cell, the washing water that has flowed back from the water supply branch of the one electrode chamber is used as a microfilter or the like. A method of passing water through the common drainage section on the outlet side of the filtration water purifier to the water supply branch of the other electrode chamber, and passing the cleaning water flowing back from the water supply branch of one electrode chamber through the inside of the filter medium of the filtration water purifier It is divided roughly into the method of passing water through the water supply branch of the electrode.
[0025]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
The continuous water electrolyzed water generating apparatus 1 includes a pair of electrode chambers 5 and 6 (cathode chambers 5) with a diaphragm 4 for electrolysis between a pair of opposed electrodes 2 and 3 (in the illustrated embodiment, a cathode 2 and an anode 3). And an anode chamber 6) having a diaphragm membrane electrolytic cell 7, a water supply line 8 connected to the water supply side of the electrolytic cell 7, and a cathode chamber 5 and an anode chamber 6 on the drain side of the electrolytic cell 7. A pair of drainage pipes 9 and 10 communicating with each other (independent) are connected, and in normal alkaline ionized water generation operation, raw water such as tap water passed from the water supply pipe 8, or as necessary. Water supplemented with minerals and the like is electrolyzed in the electrolytic cell 7, alkaline ionized water generated in the cathode chamber 5 is taken from the drain pipe 9, and acidic water generated in the anode chamber 6 is drained from the drain pipe 10. 11 is thrown away.
The electrolysis ON-OFF signal, that is, the application of a voltage to the electrode may be controlled by a signal from the flow meter 25 or the flow switch interposed in the water supply pipe 8 or other water passage, for example.
[0026]
The continuous water electrolyzed water generating device 1 according to the present invention includes a water purifier 12 filled with activated carbon, a microfilter, and the like interposed in a water supply pipe 8, and from the outlet side common drainage portion 13 of the water purifier 12 to the electrolytic cell 7. A pair of water supply branch pipes 14 and 15 communicating with the cathode chamber 5 and the anode chamber 6 are separately provided, and the water purified by the water purifier 12 is supplied to the electrolytic cell 7 for electrolysis. In particular, the present invention is useful for an apparatus that uses a water purifier including a filter medium that removes chlorine, such as activated carbon.
[0027]
The method for cleaning and sterilizing a continuous water electrolyzed water generating device according to the present invention suppresses water supply from the water supply line 8 of the electrolyzed water generating device 1 to the inlet of the electrolytic cell 7, for example, tap water from the water supply line 8. For example, a pair of water supply branch pipes 14 and 15 passing through the common drainage portion 13 of the water purifier 12 are supplied to the water for cleaning such as from the outlet of one electrode chamber of the electrolytic cell 7 and the reverse flow of the electrode chamber is performed. The water is drained from the drain pipe of the other electrode chamber while passing the water through the other electrode chamber of the electrolytic cell 7, and thus, the water that does not pass through the water purifier 12, that is, the sterilizing power of which chlorine is not removed. A certain amount of water is washed and sterilized by passing water from the common drainage section 13 of the water purifier 12 to the downstream water supply branch pipes 14 and 15, the electrolytic bath 7 and the drainage pipe.
[0028]
In addition, another method for cleaning and sterilizing the electrolyzed water generating apparatus according to the present invention suppresses water supply from the water supply line 8 of the electrolyzed water generating apparatus 1 to the inlet of the electrolysis tank 7, and supplies water from the water supply line 8. Water is supplied from the outlet of one electrode chamber of the electrolytic cell 7 through the pipe line, and the supplied water that has flowed backward through the electrode chamber is supplied to the electrolytic cell via a pair of water supply branch pipes 14 and 15 passing through the common drainage part 13 of the water purifier 12. 7, a washing water circuit for draining water from the drain pipe of the other electrode chamber while opening water to the other electrode chamber of the other electrode chamber 7 is opened, and electrolysis is performed using the electrode in the electrode chamber supplied from the outlet side of the electrolytic cell 7 as an anode. By electrolyzing the water passing through the tank, hypochlorous acid sterilized water is generated in the anode electrode chamber, and in the process that the hypochlorous acid sterilized water passes through the washing water circuit, the common drain part 13 of the water purifier 12 is used. Hypochlorous acid in the water supply branch pipes 14 and 15, the electrolytic cell 7, and the drain pipe on the downstream side Washed and sterilizing with bacteriostatic water, and is obtained by to discharge and neutralization in the process of passing the hypochlorous acid solution in the cathode electrode compartment.
[0029]
The suppression of water supply to the electrolytic cell 7 at the time of washing and sterilization is to prevent water that has passed through the filter medium of the water purifier 12 body from flowing into the electrolytic cell 7. Therefore, the “water supply suppression” referred to here is not limited to completely stopping the water supply, but may be a case where the water supply pressure to the water purifier 12 is made smaller than the water pressure from the one water distribution pipe outlet side of the electrolytic cell 7. Including.
[0030]
Next, an embodiment of the continuous water electrolyzed water generating apparatus provided with a mechanism for performing the above-described cleaning / sterilizing method will be described.
FIGS. 1 a to 3 b show an embodiment of a continuous water electrolyzed water generating device according to the present invention. This electrolyzed water generating device 1 branches a washing bypass 16 from a water supply pipe 8 upstream of a water purifier 12. The cleaning bypass 16 is piped so as to communicate with the cathode chamber 5 or the anode chamber 6 of the electrolytic cell 7.
In the embodiment of FIGS. 1a and 1b, the cleaning bypass 16 is connected to the drain line 9 of the cathode chamber 5, and communicates with the cathode chamber 5 through a part of the drain line 9 (upstream of the connecting portion). It is.
[0031]
The water from the water supply line 8 is selectively passed to the water supply side of the electrolytic cell 7 and the cleaning bypass 16 so that when the one is open, the other is closed. Thus, first flow path switching means 17 is provided for controlling opening and closing. In the illustrated embodiment, a three-way valve provided at the branch point of the cleaning bypass 16 is illustrated as the flow path switching means 17, but is not limited to this, and the bypass branch point downstream of the water supply pipe line 8 on the downstream side of the branch point. Further, a flow path switching means provided with a pair of on-off valve devices in the cleaning bypass 16 and alternately opening and closing may be used, or the water flow to the electrolytic cell 7 and the cleaning bypass 16 is switched alternatively. Any other configuration may be used as long as it is a channel switching function.
.
[0032]
On the other hand, the cleaning bypass 16 and the drain pipe 9 are provided with second flow path switching means 18 that selectively opens and closes the water supply circuit from the cleaning bypass 16 to the electrode chamber 5 and the drain circuit from the drain pipe 9. Is provided.
[0033]
The second flow path switching means 18 in the embodiment of FIGS. 1a to 3b is composed of a check valve provided at the connecting portion between the cleaning bypass 16 and the drain pipe 9 and is normally biased by a spring 20b. When the valve seat 20a closes the valve seat on the side of the cleaning bypass 16 and opens the drainage passage 9 and when water is passed through the cleaning bypass 16, the valve body 20a is drained against the spring 20b by water pressure. By pressing against the downstream valve seat of the conduit 9, the cleaning bypass 16 is opened and drainage from the drain conduit 9 is prevented.
[0034]
However, the second flow path switching means 18 is not limited to the check valve as described above, but a pair of preferably on-off valves (not shown) provided on the downstream side of the bypass connection portion of the cleaning bypass 16 and the drain pipe 9. May be configured. In short, the second flow path switching means can selectively perform water supply from the washing bypass 16 to one electrode chamber 5 of the electrolytic cell 7 and drainage from the drain line 9 of the electrolytic cell 7. Therefore, it is also possible to achieve the same purpose with a combination of other structures, for example, an on-off valve provided only on the downstream side of the bypass connection portion of the drain pipe 9 and the first flow path switching means, Furthermore, when the drain pipe outlet end connected to the bypass 16 is provided at a high position, the first flow path switching means can also serve as the second flow path switching means.
[0035]
With the above configuration, the electrolyzed water generating device 1 according to the embodiment of FIGS. 1a and 1b opens the first flow path switching means 17 of the water supply line 8 to the cleaning bypass 16 side during the cleaning, When the second flow path switching means 18 is opened to the cleaning bypass 16 side, the water in the water supply pipe 8 is introduced from the drain side of one electrode chamber 5 of the electrolytic cell 7 through the cleaning bypass 16 as indicated by the arrow. Along with a cleaning / sterilizing water circuit (hereinafter referred to as a cleaning water circuit) passing through the chamber 5 → the water supply branch 14 → the common drain part 13 of the water purifier 12 → the water supply branch 15 → the other electrode chamber 6 → the other drain pipe 10 Flowing. Since the water flowing through the washing / sterilizing water circuit is water supplied from the downstream water supply pipe 8 of the water purifier 12 through the washing bypass 16, that is, water from which chlorine or the like has not been removed by the water purifier 12, The electrode chamber 5, the water supply branch 14, the common drainage 13 of the water purifier 12, the water supply branch 15 and the other electrode chamber 6 are cleaned and sterilized with water holding the sterilizing power of chlorine.
[0036]
FIGS. 2a to 3b show another embodiment of the present invention. This electrolyzed water generating apparatus 1 is provided on the side where water from the cleaning bypass 16 is further supplied to the electrolyzed water generating apparatus 1 of FIG. An electric control device 19 is additionally provided to enable cleaning and sterilization electrolysis by maintaining or switching the polarity of the electrode in the electrode chamber to the anode. In addition, each code | symbol has shown the same member as FIG.
[0037]
First, as shown in FIG. 2b, the apparatus shown in FIGS. 2a and 2b is configured such that the water supply pipe line is connected to the electrolytic cell 7 via the cleaning bypass 16 by the first flow path switching means 17 and the second flow path switching means 18. In the state where the electrode chamber 5 is in communication with the electrode chamber 5, the polarity of the electrode in the electrode chamber 5 on the side to which water from the cleaning bypass 16 is supplied is maintained or switched to the anode to perform electrolysis. Chlorite water is generated.
[0038]
That is, the electric control device 19 performs cleaning and sterilization as shown in FIG. 2 when water from the cleaning bypass 16 is introduced from the outlet side of the cathode chamber 5 as shown in FIGS. 2a and 2b. When the electrode 2 in the cathode chamber 5 is converted to an anode during electrolysis and, conversely, water from the cleaning bypass 16 is introduced from the outlet side of the anode chamber 6 (not shown), the electrode in the anode chamber 6 is replaced. An electrical circuit is configured to be held on the anode.
The anode holding or anodic conversion of the electrode 2 may be operated by a switch or the like interlocked with the water flow of the cleaning bypass 16, and may be operated by another switch before or after the water flow of the cleaning bypass 16. It may be.
[0039]
Thus, during normal electrolyzed water generation, water is supplied from the water supply line 8 to the water supply side of the electrolyzer 7 as shown in FIG. 2a, and is electrolyzed into alkaline water and acidic water in the electrolyzer 7, and a pair of drain lines 9
10 are discharged separately.
[0040]
On the other hand, at the time of cleaning, as shown in FIG. 2b, the first flow path switching means 17 of the water supply line 8 is opened to the cleaning bypass 16 side, and the second flow path switching means 18 on the drain line 9 side is set to the cleaning bypass 16 side. When opened, the water in the water supply line 8 is introduced from the drain side of one electrode chamber 5 of the electrolytic cell 7 through the washing bypass 16 as indicated by the arrow, and the common drainage of the electrode chamber 5 → the water supply branch 15 → the water purifier 12. A water circuit for cleaning and sterilization (hereinafter referred to as a “cleaning water circuit”) that passes through the section 13 → the water supply branch pipe 14 → the other electrode chamber 6 → the other drain pipe 10 is opened, and water from the cleaning bypass 16 is supplied. The electrode polarity of the electrode chamber 5 is switched to the anode and an electrolysis voltage is applied.
[0041]
Therefore, the water supplied to the electrode chamber 5 from the cleaning bypass 16 is electrolytically regulated in the electrode chamber 5 switched to the anode chamber. Since the conditioned water is acidic water, precipitates such as calcium adhering to the electrode chamber 5 and the electrolytic diaphragm 4 are dissolved and washed, and the following action is performed by the action of chlorine ions contained in the water. The sterilized water contains a large amount of chlorous acid, and the electrode chamber 5 is sterilized. In particular, the water electrolyzed at the time of cleaning / sterilization is water supplied from the upstream side of the water purifier 12, that is, water from which chlorine is not removed. More hypochlorous acid is generated than when water is passed through.
[0042]
Hypochlorous acid sterilized water discharged from the water supply side of the electrode chamber 5 is washed and sterilized while passing through the water supply branch 14, the common drainage portion 13 of the water purifier 12 and the water supply branch 15, and is switched to the cathode chamber. The electrode chamber 6 is neutralized by electrolysis and discharged from the drain pipe 10.
[0043]
Thus, the electrode chamber of the electrolytic cell 7 which was the cathode chamber at the time of normal electrolytic conditioning is washed with acidic water, and the pipe line in and around the electrolytic cell is formed with hypochlorous acid sterilizing water generated here. Sterilized.
[0044]
In order to increase the concentration of hypochlorous acid in the electrolytic cell 7 at the time of cleaning, the cleaning bypass 16 may be provided with means for suppressing the amount of water supply such as the throttle valve 20 so that the amount of water supplied is reduced and electrolysis is performed slowly. . For the same purpose, the cleaning bypass 16 may be made thinner than the water supply pipe, and moreover, the electrolytic current during cleaning / sterilization electrolysis may be increased as compared with normal alkaline ion water generation electrolysis.
[0045]
Raw water such as tap water contains chlorine ions for generating hypochlorous acid during washing and sterilization electrolysis, but in order to increase the concentration of hypochlorous acid, the washing bypass 16 may contain sodium chloride or the like as necessary. There may be provided means for adding the chloride salt.
[0046]
Further, when the mineral supply cylinder 22 for supplying calcium or the like is provided in the water supply branch pipe 14 communicating with the cathode chamber 5, the water supply is performed so that the mineral is always supplied to the cathode chamber side even if the polarity of the electrode is reversed. A flow path switching device 23 is provided in the branch pipes 14 and 15. Although not shown, a chemical solution addition cylinder for adding a chemical solution necessary for the anode chamber 6 may also be provided in the water supply branch 15 connected to the anode chamber 6.
[0047]
Next, the embodiment of FIGS. 3a and 3b uses electrodes 2 and 3 of the electrolytic cell 7 that can be used for both cathode and anode, for example, electrodes in which a white metal plating such as platinum or iridium is applied to a titanium material. This shows a case where normal electrolysis is performed by changing the polarity of the electrode every predetermined time. In this type of apparatus, the flow path switching device 21 is provided in the drain lines 9 and 10 so that the alkaline ionized water is always discharged from the same water intake port even if the polarity is reversed.
[0048]
In the embodiment of FIGS. 3a and 3b, the water supplied from the cleaning bypass 16 to the electrode chamber 5 of the electrolytic cell 7 through the drain pipe 9 is used as a flow path during cleaning / sterilization electrolysis as shown in FIG. 3b. A washing water circuit is formed which flows into the water supply branch 15 via the switching device 23 and is supplied from the water supply branch 14 to the electrode chamber 6 via the flow path switching device 23 and drained from the drain pipe 10. The electrode 2 is converted to an anode so that washing electrolysis is performed.
[0049]
In all the embodiments of FIGS. 1a to 2a, the cleaning bypass 16 is connected to the drain line 9 of the cathode chamber 5, but it may be connected to the drain line 10 of the anode chamber 6 as shown in FIG. 3a. . In this case, the hypochlorous acid sterilized water generated in the anode chamber 6 is passed through the water supply branch pipes 14 and 15 to the cathode chamber 5 and drained from the drain pipe 9 with the polarity of FIG. Preferably, however, in order to generate hypochlorous acid sterilized water for cleaning and sterilization electrolysis in the cathode chamber 5 during normal electrolysis, water supplied from the cleaning bypass 16 is flowed as shown in FIG. 3b. A switch is made to the electrode chamber 5 via the switching device 21 and a washing water circuit is formed so that water drained from the electrode chamber 6 is drained from the drain pipe 9 via the channel switching device 21. It is desirable to convert the electrode 2 into an anode so that cleaning electrolysis is performed.
When the washing bypass 16 is connected to the drain pipe 10, there is an advantage that the alkaline water drain pipe 9 is cleaned and sterilized with hypochlorous acid sterilizing water at the time of washing electrolysis.
[0050]
In each of the illustrated embodiments, the cleaning bypass 16 is communicated with the outlet side of the electrode chamber 5 or 6 of the electrolytic cell 7 via the drain line 9 or 10, but the outlet of the electrode chamber 5 or 6 is used. You may make it connect directly to the side.
[0051]
4a to 5b show another embodiment of the continuous water electrolyzed water generating device according to the present invention. The embodiment of FIGS. 1a to 3b performs electrolysis from the water supply line 8 on the upstream side of the water purifier 12. While the cleaning bypass 16 is provided to supply water to one outlet of the tank 7, the apparatus 1 of FIGS. 4 a to 5 b uses one of the drain lines 9 or 10 of the electrolytic tank 7, A cleaning flow path switching valve device 26 is provided in association with the water supply pipe line 8 and the drainage pipe line 9 or 10, and the cleaning flow path valve apparatus 26 is switched to supply either one of the electrodes of the electrolytic cell 7 from the water supply pipe line 8. Water is supplied to the exit side of the chamber.
[0052]
That is, in the embodiment shown in FIGS. 4 a and 4 b, the washing flow path switching valve device 26 is provided in association with the alkaline water drain line 9 of the electrolytic cell 7 and the upstream water supply line 8 of the water purifier 12.
In this configuration, during normal electrolysis, as shown in FIG. 4a, water from the water supply line 8 is supplied to the electrolytic cell 7 through the water purifier 12 and the water supply branch pipes 14 and 15, and is electrolyzed into alkaline water and acidic water. The alkaline water is discharged through the alkaline water drain pipe 9 and the acidic water is discharged from the acidic water drain pipe 10 to the drain 11.
On the other hand, at the time of cleaning / sterilization, if the flow path of the cleaning flow path switching valve device 26 is switched to the alkaline water drain pipe 9, the water from the water supply pipe 8 flows back through the alkaline water drain 9 and the electrolytic cell. 7 is supplied from the outlet on the electrode chamber 5 side, flows back from the electrode chamber 5 through the water supply branch 14 to the water purifier 12, and passes through the water supply branch 15 from the common drain 13 of the water purifier 12 to the electrode of the electrolytic cell 7. A washing water circuit that is introduced into the chamber 6 and drains from the acidic water drain pipe 10 to the drain 11 is opened. Thus, when the water from the water supply pipe 8 bypasses the water purifier 12 and passes through the washing water circuit, the circuit is washed and sterilized by the water containing chlorine.
[0053]
5a and 5b, conversely, the washing-time flow path switching valve device 26 is associated with the acidic water drain pipe 10 of the electrolytic cell 7 and the upstream water supply pipe 8 of the water purifier 12. Provided.
In this configuration, at the time of cleaning / sterilization, if the flow path of the cleaning flow path switching valve device 26 is switched from the state of FIG. 5a to the acidic water drain pipe line 10 as shown in FIG. The acid water drain pipe 10 flows backward and water is supplied from the outlet on the electrode chamber 6 side of the electrolytic cell 7, flows back from the electrode chamber 6 through the water supply branch pipe 15 and flows to the water purifier 12, and the common drain section 13 of the water purifier 12. Then, a washing water circuit is opened which is introduced into the electrode chamber 5 of the electrolytic cell 7 through the water supply branch pipe 14 and drained from the alkaline water drain pipe 9 to the drain faucet. Thus, when the water from the water supply pipe 8 passes through the washing water circuit, the circuit is washed and sterilized by the water containing chlorine.
[0054]
6 and 7 show still another embodiment of the electrolyzed water generating apparatus according to the present invention, which includes a water supply line 8 upstream of the water purifier 12 and a drain line 9 of the electrolyzer 7 or 10 is connected to the drainage pipe 9 or 10 (in the case of FIGS. 6 and 7, the alkaline water drainage pipe 9). A distribution mechanism 44 is provided for passing water to the electrolytic tank 7 side of the pipe line 9 or 10 and for passing the remaining water to the water outlet side of the drain pipe line 9 or 10.
As shown in FIG. 6, the distribution mechanism 44 is preferably provided with a throttle portion 45 in the water passage to the drain pipe outlet, thereby ensuring water passage to the electrolytic cell 7 side and a necessary amount. The above water should not be drained from the spout.
[0055]
That is, tap water contains chlorine and has sterilizing power itself, but all of the cleaning water such as tap water supplied to the drain line 9 or 10 is passed to the electrolytic cell 7 side. Of these drainage pipes, the drainage pipe downstream of the washing flow path switching valve device 26 is not washed or sterilized at all, whereas a part of tap water is washed as shown in FIGS. By making it flow to the drain pipe downstream of the hour channel switching valve device 26, the water outlet of the drain pipe is cleaned and sterilized with cleaning water such as tap water.
[0056]
As the cleaning flow path switching valve device 26, a switching valve is used in FIG. 6 and a branch faucet is used in FIG. 7, but the water supply / distribution mechanism 44 for cleaning water can be applied to any of them. is there.
[0057]
In the apparatus of FIGS. 4a to 7, the same reference symbols as those of the apparatus of FIGS. 1a to 3b denote members having the same functions. For example, when hypochlorous acid is generated in the water of the washing water circuit and sterilized, the electrode in the electrode chamber supplied with water from the outlet side of the electrolytic cell 7 is held or switched to the anode during washing and sterilization. An electric control device 19 similar to the above is provided so that sterilization electrolysis is performed.
[0058]
Further, as shown in FIGS. 5 a and 5 b, the flow path switching device 21 may be provided in the pair of drain pipes 9 and 10, and the flow path switching device 23 may be provided in the water supply branch pipes 14 and 15. Since the functions of these flow path switching devices 21 and 23 are the same as those of FIGS. 2a to 3b, the description thereof is omitted.
[0059]
Further, in the case of the device provided with the electric control device 19, in order to increase the hypochlorous acid concentration of the electrolytic cell 7 at the time of washing by limiting the amount of water supplied to the washing water circuit, the washing flow path switching valve device. 26, it is desirable to provide an orifice, a flow restrictor, and a flow restrictor 27 for providing a flow restricting effect in a water passage connecting the water supply conduit 8 to the one drain conduit of the electrolytic cell 7.
[0060]
The switching operation of the first flow path switching means 17 and the second flow path switching means 18 in FIGS. 1a to 3b, the switching operation of the cleaning flow path switching valve device 26 and the cleaning electrolysis operation in FIGS. Electricity may be used. For example, cleaning and sterilization by the above washing electrolysis may be performed manually or by automatic means such as a timer at night when normal electrolytic water conditioning is not performed, or the normal electrolytic water conditioning time is integrated and set Cleaning electrolysis may be automatically performed when the integrated value is reached, or a warning for cleaning electrolysis may be issued.
[0061]
The embodiment of FIGS. 2a to 7 only needs to switch the polarity of the electrode only during cleaning and sterilization, so that a relatively inexpensive electrode material such as stainless steel can be used for the normal electrolysis cathode, but the stainless electrode is switched to the anode. When cleaning and sterilization electrolysis is performed, hypochlorous acid is less generated. Therefore, if you want to increase the generation of hypochlorous acid during cleaning and sterilization electrolysis, the electrode material that serves as the anode during cleaning and sterilization electrolysis is titanium. It is desirable to use a material in which a white metal plating is applied to the material, for example, a titanium material coated with platinum and iridium.
[0062]
Cleaning and sterilization by cleaning and sterilization electrolysis are performed for a predetermined time set in advance, and an alarm lamp or the like is warned during cleaning and sterilization.
[0063]
Furthermore, after sterilization and sterilization by washing electrolysis, water is passed for a predetermined time before using as normal electrolysis, and hypochlorous acid sterilized water is drained. The flow path may be switched to the drain side so that water is not discharged from the alkaline water intake.
[0064]
The above description exemplifies the embodiment of the present invention and is not limited to this.
For example, a microfilter or a hypochlorous acid generator may be interposed in a pipeline through which water is supplied during cleaning and sterilization.
Moreover, the water purifier 12 is not limited to the one having a built-in filter or microfilter, and the water purifier 12 and the filter or microfilter may be separated.
[0065]
FIGS. 8 a to 8 d show a preferred embodiment of the cleaning flow path switching valve device 26 used in the apparatus of FIGS. 6 and 7, and this cleaning flow path switching valve device 26 includes a hollow tubular valve casing 28. A water supply outlet 29 to the water purifier 12 is formed on one side, and a drain outlet 30 communicating with one drain pipe drainage part of the electrolytic cell 7 is formed on the other side. A water supply inlet 31 is provided between the water supply outlet 29 and the drain outlet 30. Further, between the drain outlet 30 of the valve casing 28 and the water supply inlet 31, a washing water outlet 32 connected to one drain pipe of the electrolytic cell 7 is provided.
[0066]
A valve seat 33 is provided between the water supply inlet 31 and the water supply outlet 29 in the hollow internal water passage of the valve casing 28, and another valve seat 34 is provided between the water supply inlet 31 and the wash water outlet 32. Is provided.
[0067]
A valve body 35 is disposed between the valve seats 33 and 34, and the valve body 35 is fixed to an operation rod 36 that is inserted from the outside of the valve casing 28 in a liquid-tight and slidable manner in the axial direction. . Further, the operating rod 36 is reciprocated by connecting a tip end projecting to the outside of the valve casing 28 to a driving device 37 such as a motor. The valve seat 34 is assembled so as to selectively open and close.
[0068]
The valve body 35 drains a part of the water introduced from the water supply inlet 31 to the drainage outlet 30 when the water passage from the water supply inlet 31 to the washing water outlet 32 and the drainage outlet 30 is opened at the tip side thereof, A flow restrictor 38 for draining the remaining water from the washing water outlet 32 is integrally provided.
[0069]
The flow restrictor 38 shown in FIGS. 8a to 8d has a cylindrical body 40 with a front end opening in which a closing member 39 is formed on the outer periphery of the front part to contact the inner wall surface of the valve casing 28 and close the water passage to the drain outlet 30. In addition, a notch plate 41 that forms a water passage to the washing water outlet 32 is formed on the outer periphery of the rear portion of the cylindrical body 40, and the interior of the cylindrical body 40 is penetrated from the rear of the notched plate 41 to the hollow interior. Thus, a water passage hole 42 communicating with the drain outlet 30 is formed.
A flexible check valve 43 is provided behind the drain outlet 30 of the valve casing 28 to allow drainage to the drain outlet 30 side and restrict the backflow of water from the drain outlet 30 side. Yes.
[0070]
Thus, at the time of normal electrolysis for generating alkaline water as shown in FIG. 6a, water introduced from the water supply inlet 31 is supplied from the water supply outlet 29 to the water purifier.
On the other hand, when the valve body 35 moves to the state shown in FIG. 6c during cleaning and sterilization, a part of the water introduced from the water supply inlet 31 is discharged from the drain outlet 30 through the water passage hole 42 of the throttle member 38, and the rest The water is discharged from the washing water outlet 32 through the notch plate 41 of the throttle member 38. Therefore, the flow rate of water supplied from the cleaning water outlet 32 to one electrode chamber of the electrolytic cell 7 during cleaning sterilization is reduced by the throttle member 38.
[0071]
FIGS. 9a and 9b show still another embodiment of the present invention. In this continuous water electrolyzed water generating apparatus 1, the water supply line 8 is connected to the cathode chamber 5 and the anode chamber 6 of the electrolytic cell 7 independently. The water supply branch 14 branched to a pair of water supply branch pipes 14 and 15 communicating with the cathode chamber 5 is provided with an adsorption water purifier 12a such as activated carbon, and a filter water purifier 12b such as a microfilter is provided downstream thereof. It is. Although not shown in the drawing, as a modification of the above, a configuration in which an adsorption water purifier 12a is provided in the water supply line 8 and a filtration water purifier 12b is provided in the cathode chamber side water supply branch 14 may be adopted. In such an electrolyzed water generating apparatus, the pipe between the adsorption water purifier 12a and the filtration water purifier 12b, the water supply branch 15 on the anode chamber 6 side, and the drain pipe 10 in the anode chamber 6 are mutually connected. At the time of cleaning, the two water supply branches 14b and 15b on the electrolytic cell 7 side are separated from the water supply branches 14a and 15a on the water supply pipe line 8 and communicated with each other, and the anode chamber side water supply pipe 15a connected to the water supply pipe 8 is connected. And a flow path switching valve 46 for communicating the anode chamber side drain pipe 10 with each other.
[0072]
With the above configuration, during normal electrolyzed water generation operation, as shown in FIG. 9 a, the raw water supplied from the water supply branch 14 of the water supply pipe 8 is a normal electrolysis flow path of the adsorption water purifier 12 a and the flow path switching valve 46, Water is supplied to the cathode chamber 5 of the electrolytic cell 7 through the filtration water purifier 12 b and the chemical solution addition cylinder 22, and the raw water supplied from the water supply branch 15 passes through the normal electrolysis channel of the channel switching valve 46 to pass through the electrolytic cell 7. The anode chamber 6 is supplied with water.
Thus, alkaline water is generated in the cathode chamber 5 by application of the electrolysis voltage and discharged from the drain pipe 9, and acid water is generated in the anode chamber 6, and the normal flow of the flow path switching valve 46 from the drain pipe 10. It is discharged to the drain 11 through the flow path during electrolysis.
[0073]
9b, when the flow path switching valve 46 is switched to the cleaning circuit side as shown in FIG. 9b, the water supply pipe 14b connected to the cathode chamber 5 of the electrolytic cell 7 and the water supply pipe connected to the anode chamber 6 are used. The passage 15b is disconnected from the water supply branch pipes 14a and 15a on the water supply pipe line 8 side through the switching passage of the flow path switching valve 46 and communicates with each other.
On the other hand, the water supply branch 15 a on the side of the water supply pipe 8 and the drain pipe 10 on the side of the anode chamber 6 communicate with each other via the switching passage of the flow path switching valve 46.
[0074]
Thus, when the flow path switching valve 46 is switched to the washing circuit side, the water supply pipe 8 to the water supply branch 15a → the flow path switching valve 46 → the drain pipe 10 → the anode chamber 6 → the water supply branch 15b → the flow path switching valve 46 → The washing circuit to the water supply branch pipe 14b → filtered water purifier 12b → cathode chamber 5 → drainage line 9 is opened and closed. By supplying water (washing water) from the water supply line 8 to the washing circuit, the electrolytic cell 7 and the filtered purified water are supplied. The entire cleaning circuit including the vessel 12b is cleaned.
[0075]
Further, during this cleaning, when an electrolytic voltage is applied to the electrodes 2 and 3 of the electrolytic cell 7 (adding a chloride salt such as sodium chloride to the cleaning water as necessary), hypochlorous acid water is generated in the anode chamber 6. The anode chamber 6 of the cleaning circuit and the downstream cleaning circuit are cleaned and sterilized with hypochlorous acid water.
[0076]
In particular, when hypochlorous acid water is generated and sterilized, it is advantageous to reduce the flow rate of the washing water and to generate hypochlorous acid water having a sufficient concentration in the anode chamber 6. For this reason, in the embodiment of FIG. 9 b, the throttle valve 24 is provided in the flow path connecting the water supply branch 15 a of the flow path switching valve 46 and the drain pipe 10.
Furthermore, as shown in FIG. 9b, a part of the water supply flow rate at the time of cleaning may be used as cleaning water, and a part may be drained into the drain. In this case, a throttle valve 48 is provided in the drainage channel 47 to the drain.
[0077]
FIG. 9c is a further improvement of the apparatus of FIGS. 9a and 9b. In this embodiment, the water supply line 15b connected to the anode chamber 6 from the flow path switching valve 46 and the drainage of the filter water purifier 12b are shown. When the water pressure in the anode chamber side water supply line 15b rises above a predetermined pressure during the cleaning between the outlets 63, a part of the electrolytic acid water for washing flowing through the water supply line 15b is filtered by the microfilter 12b. A one-way detour cleaning circuit 65 that bypasses the filter 64 and flows to the discharge port 63 is provided.
[0078]
The water supply line 15b becomes a water supply path to the filtration water purifier 12b when the flow path switching valve 46 is switched to the cleaning circuit as shown in FIGS. 9b and 9c. When the circuit is switched, the raw water supply to the cathode chamber 5 is stopped, and the whole or most of the raw water supply water flows backward through the anode chamber 6 of the electrolytic cell 3 to the water supply line 15b, and the water pressure in the water supply line 15b increases. On the other hand, in the filtration water purifier 12, a part of the raw water flows during normal alkaline water generation electrolysis, and the other water is supplied to the anode chamber 6, so that the washing water of the drain pipe 10 whose water pressure has increased during washing. When the entire amount flows into the filter water purifier 12b, the water pressure in the anode chamber 6 increases due to the resistance of the microfilter 64, and the diaphragm 4 may be damaged. In particular, this tendency increases when the microfilter 64 is clogged.
The detour cleaning circuit 65 is a pressure relief circuit for preventing this, and when the cleaning circuit is opened and the water pressure in the electrolytic cell 7 and the water supply line 15b ahead increases, a part of the cleaning water is bypassed. Then, the check valve 67 biased by the spring 66 is opened to flow to the filtered water purifier 12b, and the microfilter 64 of the water purifier 12b is bypassed to flow to the discharge port 63. Therefore, an excessive water pressure is not applied to the diaphragm 4 of the electrolytic cell 7, and the discharge side and the downstream side water circuit of the filter water purifier 12b are washed with the entire amount of acidic water for washing (hypochlorous acid water). The
[0079]
10a and 10b show an example of the flow path switching valve 46. FIG. 10a shows the water circuit during the normal electrolysis of the flow path switching valve 46, and FIG. 10b shows the water circuit during cleaning. . In this embodiment, the function of the throttle valves 24 and 48 is achieved by the positional relationship between the valve body 50 and the respective outlets of the valve casing 49 to the water supply branch pipe 15a and the drain pipe 10.
[0080]
FIGS. 11a and 11b show still another embodiment of the present invention. In this continuous water electrolyzed water generating device, the upstream and downstream positional relationship of the adsorption water purifier 12a and the filtered water purifier 12b in the water supply line 8 is shown. The downstream water supply pipe 8 of the filter water purifier 12b is branched into a water supply branch 14 to the cathode chamber 5 and a water supply branch 15 to the anode chamber, and the electrode chambers 5 and 6 to the electrolytic cell 7 are independently provided to the electrode chambers 5 and 6. A cleaning pipe 51 is connected to the water supply side of the filtration water purifier 12 b from the water supply branch 15 communicating with the anode chamber 6, and the water supply branch pipe is interposed between the anode chamber side water supply branch 15 and the cleaning pipe 51. For example, a flow path switching mechanism 52 such as a three-way valve is provided to selectively open and close 15 and the cleaning pipe line 51.
[0081]
In this apparatus, when the flow path switching mechanism 52 is opened to the water supply branch 15 side, an ordinary electrolyzed water generation water circuit is formed as shown in FIG. 11a. On the other hand, when the flow path switching mechanism 52 is opened to the cleaning pipeline 51 side, As shown in FIG. 11b, the water supply branch 15 connected to the anode chamber 6 and the water supply branch 14 on the cathode chamber 5 side communicate with each other through the cleaning pipe 51 and the filtration water purifier 12a, and from the drain pipe 10 to the anode chamber 6 → the cleaning pipe. A cleaning circuit is formed from 51 → filter water purifier 12b → water supply line 8 → water supply branch pipe 14 → cathode chamber 5 → drain line 9.
Thus, cleaning is performed by passing cleaning water through the cleaning circuit in the above-described direction. At this time, when an electrolysis voltage is applied, hypochlorous acid sterilizing water is generated in the anode chamber 6, and cleaning / cleaning of the cleaning circuit is performed. Sterilized.
[0082]
9a and 9b, a water drain line 53 is branched from a water supply branch pipe 14b communicating with the cathode chamber 5, and a water supply line is provided between the water drain line 53 and the water supply line 8. The drainage pipe 53 is closed by the water pressure at the time of water supply in the pipe 8, the water drain valve 54 is opened to open the drainage pipe 53 by the water pressure at the time of water supply stop, and the on-off valve 55 of the water supply pipe 8 is opened to supply water. When the water drain valve 54 is closed and the water supply is stopped, the water drain valve opens and the remaining water in the apparatus is drained.
This water draining mechanism is used when the water supply is stopped and the reverse polarity washing is performed while draining the water in the electrolytic cell by changing the polarity of the electrode chambers 5 and 6 of the electrolytic cell 7, and the illustration is omitted. However, such a water draining mechanism can be similarly provided in other apparatuses of the present invention.
[0083]
12a and 12b show an example of the drain valve 54. The inside of the valve casing 56 is partitioned by a diaphragm 57 into a chamber 58 on the water supply line 8 side and a chamber 59 on the water drain line 53 side. A valve seat 60 having a valve seat hole 60 ′ is preferably formed in the pipe side chamber 59, and a valve body 61 for opening and closing the valve seat hole 60 ′ is attached to the diaphragm 57, and the diaphragm 57 is attached to the water supply pipe side chamber by a spring 62. The structure is biased to 58.
[0084]
With the above configuration, when water is passed through the water supply pipe 8, the diaphragm 57 and the valve body 61 are pushed toward the chamber 59 due to the increase in water pressure of the chamber 58, and the valve seat 61 opens the valve seat hole 60 of the water drain pipe 53. 'Is closed. Accordingly, during normal electrolysis operation, water is supplied to the electrolytic cell 7 with the drainage pipe 53 closed, and electrolyzed water is generated.
On the other hand, when the water supply to the water supply pipe 8 is stopped, the pressure of the chamber 58 is decreased as shown in FIG. 12B, and the diaphragm 57 is pushed back to the chamber 58 side by the restoring force of the spring 62. Open the valve seat hole 60 '. Thus, the drainage pipe line 53 is opened, and the electrolyzed water generating device is drained.
In the embodiment shown in the figure, the valve seat hole 60 'has a predetermined length L, so that there is a predetermined interval between the stop of water supply from the water supply line 8 and the opening of the water drain line 53. It can be taken. With this configuration, when performing reverse electric cleaning while draining water from the electrolytic cell, the time during which water remains in the electrolytic cell 7 can be lengthened and sufficient reverse electric cleaning time can be taken.
[0085]
Although illustration is omitted, when the electrolyzed water generating apparatus of the embodiment of FIGS. 11a to 12b is a reverse electrolyzed electrolyzed water generating apparatus that generates electrolyzed water by changing the polarity of the electrodes every predetermined time. As in FIG. 1a, an electric control device 19 is provided for switching the electrode chamber on the side for supplying cleaning water from the drain pipe to the anode side during cleaning.
[0086]
【effect】
The present invention introduces water that bypasses the adsorption water purifier, that is, water from which chlorine has not been removed, from one electrode chamber of the electrolytic cell, and supplies one water supply branch to the common drainage part of the water purifier or the inside to the other water supply. Since water is discharged through the branch pipe-the other electrode chamber in this order, the entire downstream water circuit of the water purifier can be washed and sterilized with water containing chlorine.
[0087]
Also, during the electrolytic cleaning, water supplied from the outlet side of one electrode chamber of the electrolytic cell is electrolyzed using the electrode in the electrode chamber as an anode, so that acidic water is generated in the electrode chamber. Deposits such as calcium adhering to the electrode and the electrolytic membrane are washed.
The electrolytically generated water generated in the anode chamber at this time is sterilized water containing a large amount of hypochlorous acid having a strong sterilizing power, and this water is drained through a peripheral water channel such as a water supply pipe and the other electrode chamber. As a result, the electrolytic water tank and its surrounding pipe line (washing water circuit), in particular, the water supply branch pipe that is easy to touch the outside air during mineral replenishment and that is easy to propagate germs by removing chlorine by the water purifier. Sterilized and sterilized with chlorous acid sterilized water. Therefore, the cleaning and sterilizing effect is remarkably improved as compared with the conventional apparatus, and the cleaning, sterilization and sterilization are simultaneously performed by a series of actions.
[0088]
By introducing acidic water generated in the anode chamber at the time of washing and sterilization electrolysis into the cathode chamber, the water in the cathode chamber is neutralized and becomes nearly neutral water. Therefore, as in the conventional case, in the case of mere reverse electric cleaning, even if one of the water in the electrode chamber becomes acidic, the water in the other electrode chamber is alkaline, so the acidic water on the surface of the diaphragm is neutralized and calcium or the like Although the dissolving power has decreased, in the present invention, the alkaline water is neutralized, so this problem can be solved reasonably.
[0089]
Also, when viewed from the other side, hypochlorous acid water generated in the anode chamber is neutralized and drained in the process of passing through the cathode chamber, so there is no harm and does not corrode metal equipment around the drainage.
.
[0090]
Conventional so-called reverse electrolysis requires an expensive electrode such as a titanium / platinum-plated electrode for both cathode and anode, and a flow switching valve for a water supply / drainage pipe is required. Washing electrolysis can be performed with an inexpensive electrode that is made of stainless steel and the anode is made of ferrite or the like, and can be reduced in cost.
[0091]
By providing the distribution mechanism in the flow path switching valve device at the time of cleaning, the drain pipe for supplying the cleaning water is cleaned with tap water containing chlorine up to the water outlet.
[0092]
By providing a bypass washing water circuit that does not allow the microfilter to pass from the anode chamber side water supply pipe to the discharge port of the filtration water purifier, damage to the diaphragm of the electrolytic cell is prevented.
[Brief description of the drawings]
FIG. 1a is a diagram showing a normal electrolysis state of a continuous electrolyzed water generating apparatus according to an embodiment of the present invention.
FIG. 1b is a cleaning electrolysis state diagram of the apparatus of FIG. 1a.
FIG. 2a is a normal electrolysis state diagram of a continuous electrolyzed water generating apparatus showing another embodiment of the present invention.
FIG. 2b is a cleaning electrolysis state diagram of the apparatus of FIG. 2a.
FIG. 3a is a normal electrolysis state diagram of a continuous electrolyzed water generating apparatus showing another embodiment of the present invention.
FIG. 3b is a cleaning electrolysis state diagram of the apparatus of FIG. 3a.
FIG. 4a is a diagram of a normal electrolysis state of a continuous electrolyzed water generating device showing another embodiment of the present invention.
FIG. 4b shows a cleaning electrolysis state diagram of the apparatus of FIG. 4a.
FIG. 5a is a normal electrolysis state diagram of a continuous electrolyzed water generating apparatus showing another embodiment of the present invention.
FIG. 5b is a cleaning electrolysis state diagram of the apparatus of FIG. 5a.
FIG. 6 is a cleaning electrolysis state diagram of a continuous electrolyzed water generating apparatus showing another embodiment of the present invention.
FIG. 7 is a cleaning electrolysis state diagram of a continuous electrolyzed water generating device showing another embodiment of the present invention.
FIG. 8a is a longitudinal sectional view of the flow path switching valve device during cleaning.
8b is a cross-sectional view taken along line AA in FIG. 8a.
FIG. 8c is a longitudinal sectional view of the flow path switching valve device during cleaning.
8d is a cross-sectional view taken along line BB in FIG. 8c.
FIG. 9a is a normal electrolysis state diagram of an electrolyzed water generating device showing another embodiment of the present invention.
FIG. 9b is a cleaning electrolysis state diagram of the apparatus of FIG. 9a.
FIG. 9c is a cleaning electrolysis state diagram of the electrolyzed water generating device showing another embodiment of the present invention.
FIG. 10a is a normal electrolysis water circuit diagram showing an example of a flow path switching valve.
FIG. 10b is a water circuit diagram for cleaning the flow path switching valve of FIG. 10a.
FIG. 11a is a normal electrolysis state diagram of an electrolyzed water generating device showing another embodiment of the present invention.
FIG. 11b is a cleaning electrolysis state diagram of the apparatus of FIG. 11a.
[Fig. 12a] Operation diagram of drain valve during water supply
Fig. 12b Operation diagram of drain valve when water supply is stopped
[Explanation of symbols]
1 ... Electrolyzed water generator,
2 ... Cathode,
3 ... Anode,
4 ... diaphragm for electrolysis,
5 ... Cathode chamber,
6 ... anode chamber,
7 ... electrolytic cell,
8 ... Water supply pipeline,
9, 10 ... drainage pipes,
11 ... Drain,
12 ... Water purifier,
13 ... Common drainage section,
14, 15 ... water supply branch,
16: Cleaning bypass,
17 ... 1st flow-path switching means,
18 ... second flow path switching means,
19 ... Electric control device,
20a ... valve body,
20b ... spring,
21, 23... Channel switching means,
22 ... Chemical solution addition cylinder,
24, 27 ... throttle valve,
25 ... Flow meter,
26: Flow switching valve device for cleaning,
28 ... valve casing,
29 ... Water supply outlet,
30 ... Drain outlet,
31 ... Water supply entrance,
32 ... Wash water outlet,
33, 34 ... valve seats,
35 ... Valve,
36 ... the operating rod,
37 ... Drive device,
38 ... Flow restrictor,
39 ... Closing member,
40 ... Cylinder,
41 ... Notched plate,
42 ... water hole,
43. Check valve,
44 ... distribution mechanism,
45 ... The aperture part,
46 ... flow path switching valve,
47 ... Drainage channel,
48 ... Throttle valve,
49 ... valve casing,
50 ... Valve,
51. Cleaning line,
52 ... Channel switching mechanism,
53 ... Drain line,
54 ... Drain valve,
55 ... Open / close valve,
56 ... valve casing,
57 ... Diaphragm,
58 ... Chiyamba on the water supply line side,
59 ... Cyanba on the drainage pipe side,
60 ... valve seat,
60 '... valve seat hole,
61… Valve,
62 ... spring,
63 ... Discharge port
64 ... Microfilter

Claims (16)

給水管路から供給される水を陰極室と陽極室を有する電解槽で電解し、電解によって生成されたアルカリ水と酸性水を一対の排水管路から各別に排出する連続通水式電解水生成装置の洗浄方法において、洗浄の際、給水管路から電解槽入口への給水を抑制して電解槽の一方の電極室の出口側から洗浄水を給水し、該一方の電極室を逆流させた供給水を、直接又は給水側の管路を介して、他方の電極室へ通水しながら該他方の電極室の排水管路から排水することを特徴とする連続通水式電解水生成装置の洗浄方法Continuously flowing electrolyzed water generation that electrolyzes water supplied from a water supply pipe in an electrolytic cell having a cathode chamber and an anode chamber, and discharges alkaline water and acidic water generated by electrolysis separately from a pair of drainage pipes In the cleaning method of the apparatus, at the time of cleaning, water supply from the water supply line to the electrolytic cell inlet is suppressed, and cleaning water is supplied from the outlet side of one electrode chamber of the electrolytic cell, and the one electrode chamber is caused to flow backward. A continuous water-based electrolyzed water generating device characterized in that water is discharged from a drain pipe of the other electrode chamber while supplying water directly or through a pipe on the water supply side to the other electrode chamber. Cleaning method 陰極室と陽極室を有する電解槽の給水管路に、浄水器を介装し、浄水器の共通排水部から一対の給水支管を介して電解槽の陰極室と陽極室に独立に給水するとともに、給水された水をアルカリ水と酸性水に電解して一対の排水管路から各別に排出する連続通水式電解水生成装置の洗浄方法において、洗浄時に給水管路から電解槽入口への給水を抑制して電解槽の一方の電極室の出口側から給水し、該一方の電極室を逆流させた供給水を、浄水器の共通排水部を経由する一対の給水支管を介して電解槽の他方の電極室へ通水しながら該他方の電極室の排水管路から排水することを特徴とする連続通水式電解水生成装置の洗浄方法A water purifier is provided in the water supply line of the electrolytic cell having the cathode chamber and the anode chamber, and water is independently supplied to the cathode chamber and the anode chamber of the electrolytic cell through a pair of water supply branches from the common drainage part of the water purifier. In the cleaning method of the continuous water electrolyzed water generator that electrolyzes the supplied water into alkaline water and acidic water and discharges them separately from a pair of drainage pipes, the water supply from the water supply pipe to the electrolytic cell inlet at the time of cleaning Water is supplied from the outlet side of one of the electrode chambers of the electrolytic cell, and the supply water that has flowed back through the one electrode chamber is supplied to the electrolytic cell via a pair of water supply branches that pass through the common drainage section of the water purifier. A method for cleaning a continuous water flow type electrolyzed water generating device, wherein water is drained from a drain pipe of the other electrode chamber while water is passed to the other electrode chamber. 陰極室と陽極室を有する電解槽の給水管路を、各々の電解室に独立に連通する一対の給水支管に分岐するとともに、電解槽の陰極室に通ずる給水支管、又はその上流側の前記給水管路、もしくは前記給水管路と陰極室側給水支管に、吸着浄水器と濾過浄水器を上流、下流の位置関係で介装し、電解槽の各電極室に給水された水をアルカリ水と酸性水に電解して一対の排水管路から各別に排出する連続通水式電解水生成装置の洗浄方法において、洗浄時に、給水管路から電解槽入口への給水を抑制して電解槽の一方の電極室の出口側から給水し、該一方の電極室を逆流させた供給水を、前記濾過浄水器を経由させて電解槽の他方の電極室へ通水しながら該他方の電極室の排水管路から排水することを特徴とする連続通水式電解水生成装置の洗浄方法The water supply conduit of the electrolytic cell having the cathode chamber and the anode chamber is branched into a pair of water supply branches that communicate independently with each electrolytic chamber, and the water supply branch connected to the cathode chamber of the electrolytic cell, or the water supply upstream thereof Adsorption water purifier and filtration water purifier are placed upstream or downstream in the pipe or the water supply pipe and the cathode chamber side water supply branch, and the water supplied to each electrode chamber of the electrolytic cell is mixed with alkaline water. In the cleaning method of the continuous water electrolyzed water generator that electrolyzes acid water and discharges it separately from a pair of drainage pipes, at the time of cleaning, water supply from the water supply pipe line to the electrolytic cell inlet is suppressed, The water supplied from the outlet side of the electrode chamber of the first electrode chamber was drained from the other electrode chamber while water supplied to the other electrode chamber of the electrolytic cell was passed through the filtration water purifier. Cleaning a continuous-flow electrolyzed water generator characterized by draining from a pipeline Act 電解槽の一方の排水管路から給水される側の電極室の電極を陽極にして電解槽を通る水を電解することにより、該陽極電極室に次亜塩素酸殺菌水を生成し、この次亜塩素酸殺菌水を洗浄水として通水することをさらに特徴とする請求項1、2又は3記載の連続通水式電解水生成装置の洗浄・殺菌方法By electrolyzing water passing through the electrolytic cell with the electrode of the electrode chamber on the side fed from one drain pipe of the electrolytic cell as an anode, hypochlorous acid sterilized water is generated in the anode electrode chamber. The method for cleaning and sterilizing a continuous water-passing electrolyzed water generating device according to claim 1, 2 or 3, further comprising passing chlorous acid sterilizing water as cleaning water. 陰極室と陽極室に仕切った電解槽の一側に、浄水器を介装した給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、浄水器の共通排水部から電解槽の各々の電極室に各別に連通する一対の給水支管を設け、給水管路から電解槽入口への給水を抑制した状態で、電解槽の一方の電極室の出口側から水を給水したときに、給水された水が該一方の電極室を逆流し、浄水器の共通排水部を経由する一対の給水支管を通って電解槽の他方の電極室へ流れ、該他方の電極室の排水管路から排水されるようにしたことを特徴とする連続通水式電解水生成装置One side of the electrolytic cell partitioned into the cathode chamber and the anode chamber has a water supply pipe line interposing a water purifier, and has a pair of drain pipes communicating with the cathode chamber and the anode chamber on the other side. In the continuous water electrolyzed water generator that electrolyzes water supplied from the water supply pipe into alkaline ionized water and acidic water and discharges the water from the pair of drain pipes, Each electrode chamber is provided with a pair of water supply branch pipes that communicate with each other, and when water is supplied from the outlet side of one electrode chamber of the electrolytic cell while water supply from the water supply line to the electrolytic cell inlet is suppressed, The supplied water flows backward in the one electrode chamber, flows through a pair of water supply branches passing through the common drainage section of the water purifier, and flows into the other electrode chamber of the electrolytic cell, and from the drain line of the other electrode chamber Continuous-flow type electrolyzed water generator characterized by being drained 陰極室と陽極室に仕切った電解槽の一側に、浄水器を介装した給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、浄水器の共通排水部から電解槽の各々の電極室に各別に接続された一対の給水支管と;浄水器上流側の給水管路から分岐され、前記電解槽のいずれか一方の電極室の出口側に連通するように配管された洗浄バイパスと;給水管路からの通水を前記電解槽の給水側と前記洗浄バイパス側へ択一的に開閉制御する第1の流路切換手段と;前記洗浄バイパスと、この洗浄バイパスが連通する電極室の排水管路出口側を択一的に開閉制御する第2の流路切換手段と;を具備することを特徴とする連続通水式電解水生成装置One side of the electrolytic cell partitioned into the cathode chamber and the anode chamber has a water supply pipe line interposing a water purifier, and has a pair of drain pipes communicating with the cathode chamber and the anode chamber on the other side. In the continuous water electrolyzed water generator that electrolyzes water supplied from the water supply line into alkaline ionized water and acidic water and discharges the water from the pair of drainage pipes, A pair of water supply branch pipes connected to each electrode chamber separately; a wash branched from the water supply pipe line upstream of the water purifier and connected to the outlet side of one electrode chamber of the electrolytic cell A bypass; first flow path switching means for selectively opening and closing water from the water supply pipe to the water supply side and the washing bypass side of the electrolytic cell; and the washing bypass and the washing bypass communicate with each other Second flow for selectively opening / closing the drain outlet of the electrode chamber Flow-through electrolytic water generation apparatus, characterized by comprising; and switching means 第1の流路切換手段が第2の流路切換手段の一部または全部の機能を兼ねる構成になっている請求項6記載の連続通水式電解水生成装置7. The continuous water electrolyzed water generating device according to claim 6, wherein the first flow path switching means has a part or all of the functions of the second flow path switching means. 陰極室と陽極室に仕切った電解槽の一側に、浄水器を介装した給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、浄水器の共通排水部から電解槽の各々の電極室に各別に接続された一対の給水支管と;浄水器上流側の給水管路と電解槽のいずれか一方の排水管路に関連して設けられ、洗浄時に給水管路からの通水を前記電解槽の一方の排水管路へ切り換える洗浄時流路切換弁装置と;を具備することを特徴とする連続通水式電解水生成装置One side of the electrolytic cell partitioned into the cathode chamber and the anode chamber has a water supply pipe line interposing a water purifier, and has a pair of drain pipes communicating with the cathode chamber and the anode chamber on the other side. In the continuous water electrolyzed water generator that electrolyzes water supplied from the water supply pipe into alkaline ionized water and acidic water and discharges the water from the pair of drain pipes, A pair of water supply pipes connected to each electrode chamber; and a water supply pipe on the upstream side of the water purifier and a drain pipe on either side of the electrolyzer. A continuous flow type electrolyzed water generating device, comprising: 洗浄時流路切換弁装置が、給水管路からの水の一部を電解槽の前記一方の排水管路の電解槽側へ通水し、一部をこの排水管路の吐水口側へ通水する分配機構を備えていることを特徴とする請求項8記載の連続通水式電解水生成装置The washing flow path switching valve device passes a part of the water from the water supply pipe to the electrolytic tank side of the one drainage pipe of the electrolytic tank, and a part of the water to the outlet side of the drainage pipe The continuous water-flow type electrolyzed water generating apparatus according to claim 8, further comprising a distribution mechanism for 陰極室と陽極室に仕切った電解槽の一側に給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、給水管路を電解槽の陰極室と陽極室に独立に連通する一対の給水支管に分岐し、陰極室に通ずる給水支管、又は前記給水管路と陰極室側給水支管に、吸着浄水器と濾過浄水器を上流、下流の位置関係で介装するとともに、吸着浄水器と濾過浄水器の間の給水支管と、陽極室に通ずる給水支管と、陽極室の排水管路の相互間に、洗浄時に、電解槽側のこれら2本の給水支管を給水管路側の給水支管から切り離して連通させ且つ給水管路に通ずる陽極室側給水支管と陽極室の排水管路を連通させる流路切換弁を設けたことを特徴とする連続通水式電解水生成装置In addition to having a water supply line on one side of the electrolytic cell partitioned into a cathode chamber and an anode chamber, the other side has a pair of drain lines that communicate with the cathode chamber and the anode chamber, and is supplied from the water supply line. In the continuous-flow type electrolyzed water generating apparatus that electrolyzes water to be alkaline ionized water and acidic water and discharges the water from the pair of drainage pipes, the water supply pipes are independently communicated with the cathode chamber and the anode chamber of the electrolytic cell. An adsorption water purifier and a filtration water purifier are placed upstream and downstream in the water supply branch pipe branched into a pair of water supply branch pipes and connected to the cathode chamber, or the water supply pipe line and the cathode chamber side water supply branch pipe. The two water supply branches on the electrolytic cell side are supplied to the water supply pipe side during cleaning between the water supply branch pipe between the water purifier and the filtration water purifier, the water supply branch pipe connected to the anode chamber, and the drain pipe of the anode chamber. An anode chamber side water supply branch pipe that is disconnected from the branch pipe and communicated with the water supply pipe line; Flow-through electrolytic water generation apparatus, characterized in that a communicated to passage change-over valve the drain line of the electrode chamber 流路切換弁46の下流側の陽極室側給水管路15bと濾過浄水器の排出口の間に、該陽極室側給水管を流れる洗浄用酸性水の水圧が所定圧以上に上昇したときにこの洗浄用酸性水の一部を濾過浄水器内のミクロフイルタを迂回して排出口へ流す一方通行の迂回洗浄回路を設けたことを特徴とする請求項10記載の連続通水式電解水生成装置When the water pressure of the acidic water for washing flowing through the anode chamber side water supply pipe rises above a predetermined pressure between the anode chamber side water supply line 15b downstream of the flow path switching valve 46 and the discharge port of the filtration water purifier. 11. A continuous water-passing electrolyzed water generator according to claim 10, wherein a one-way bypass cleaning circuit is provided in which a part of the acidic water for cleaning flows to a discharge port by bypassing a microfilter in the filtration water purifier. apparatus 陰極室と陽極室に仕切った電解槽の一側に給水管路を有するとともに、他側に前記陰極室と陽極室に各別に連通する一対の排水管路を有し、給水管路から供給される水をアルカリイオン水と酸性水に電解して前記一対の排水管路から排出する連続通水式の電解水生成装置において、給水管路に吸着浄水器と濾過浄水器を上流、下流の位置関係で配置し、濾過浄水器の下流側給水管路を一対の給水支管に分岐して電解槽の各電極室に独立に連通させるとともに、陽極室に通ずる側の給水支管から前記濾過浄水器の給水側に、洗浄用管路を配管し、前記陽極室側給水支管と洗浄用管路の相互間に流路切換機構を設けたことを特徴とする連続通水式電解水生成装置In addition to having a water supply line on one side of the electrolytic cell partitioned into a cathode chamber and an anode chamber, the other side has a pair of drain lines that communicate with the cathode chamber and the anode chamber, and is supplied from the water supply line. In the continuous-flow type electrolyzed water generator that electrolyzes the water to be alkaline ionized water and acidic water and discharges it from the pair of drainage pipes, the upstream and downstream positions of the adsorption water purifier and the filtration water purifier in the water supply pipe line The downstream water supply pipe line of the filtration water purifier is branched into a pair of water supply branch pipes so as to communicate independently with each electrode chamber of the electrolytic cell, and from the water supply branch pipe on the side communicating with the anode chamber, A continuous water-flow type electrolyzed water generating device characterized in that a cleaning pipe is provided on the water supply side, and a flow path switching mechanism is provided between the anode chamber side water supply branch pipe and the cleaning pipe. 陰極室に通ずる給水支管から水抜き管路を分岐させ、この水抜き管路と前記給水管路の相互間に、給水管路の給水時の水圧で水抜き管路を閉じ、給水停止時の水圧で水抜き管路を開く水抜きバルブを設けたことを特徴とする請求項5、6、7、8、9、10、11又は12記載の連続通水式電解水生成装置A drainage pipe is branched from the water supply branch that leads to the cathode chamber, and the drainage pipe is closed between the drainage pipe and the water supply pipe by the water pressure at the time of water supply in the water supply pipe. 13. The continuous water electrolyzed water generating apparatus according to claim 5, further comprising a water drain valve that opens a water drain line by water pressure. 洗浄・殺菌時に、排水管路から洗浄水給水がされる側の前記電極室の電極を陽極に保持または切換えて洗浄・殺菌電解を可能にする電気制御装置を具備することを特徴とする請求項5、6、7、8、9、10、11、12又は13記載の連続通水式電解水生成装置An electric control device is provided that enables cleaning and sterilization electrolysis by holding or switching an electrode of the electrode chamber on the side where cleaning water is supplied from a drain pipe to an anode during cleaning and sterilization. 5,6,7,8,9,10,11,12 or 13 continuous water electrolyzed water generator 洗浄・殺菌時に、電解槽の出口側から給水される側の前記電極室の電極を陽極に保持または切換えて洗浄・殺菌電解を可能にする電気制御装置を具備するとともに、前記洗浄バイパス又は洗浄時流路切換弁装置に流量絞り機構を設けた請求項5、6、7、8、9、10、11、12、13又は14記載の連続通水式電解水生成装置An electric control device that enables cleaning and sterilization electrolysis by holding or switching the electrode of the electrode chamber on the side supplied with water from the outlet side of the electrolytic cell to the anode during cleaning and sterilization, and the cleaning bypass or cleaning flow The continuous water-flow type electrolyzed water generating device according to claim 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, wherein the flow switching valve device is provided. 給水管路が接続される給水入口と、浄水器への給水管路が接続される給水出口と、電解槽の一方の排水管路に接続される洗浄水出口と、電解槽の前記一方の排水管路の排水部へ接続される排水出口を有するバルブケーシングと;バルブケーシング内を移動して前記給水入口から給水出口への通水路と前記給水入口から洗浄水出口及び排水出口への通水路とを択一的に開成する弁体と;を具備し、該弁体は、給水入口から洗浄水出口及び排水出口への通水路が開成したときに、給水入口から導入される水の一部を排水出口へ排水し、残りの水を洗浄水出口から排出する流量絞り部を具備していることを特徴とする、請求項8又は9記載の電解水生成装置に使用する流路切換弁装置A water supply inlet to which the water supply pipe is connected, a water supply outlet to which the water supply pipe to the water purifier is connected, a wash water outlet to be connected to one drain pipe of the electrolytic cell, and the one drainage of the electrolytic cell A valve casing having a drain outlet connected to a drainage section of a pipe; a water passage from the water supply inlet to the water supply outlet by moving in the valve casing; and a water passage from the water supply inlet to the wash water outlet and the drain outlet A valve body that selectively opens a part of the water introduced from the water supply inlet when the water passage from the water supply inlet to the washing water outlet and the drain outlet is opened. The flow path switching valve device used in the electrolyzed water generating device according to claim 8 or 9, further comprising a flow restrictor for draining to the drain outlet and discharging remaining water from the flush water outlet.
JP35691996A 1996-02-27 1996-12-26 Method for cleaning and sterilizing continuous-flow type electrolyzed water generating device, electrolyzed water generating device having mechanism for carrying out this method, and flow path switching valve device used therefor Expired - Fee Related JP3733475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35691996A JP3733475B2 (en) 1996-02-27 1996-12-26 Method for cleaning and sterilizing continuous-flow type electrolyzed water generating device, electrolyzed water generating device having mechanism for carrying out this method, and flow path switching valve device used therefor

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP6539496 1996-02-27
JP10472696 1996-04-02
JP12903296 1996-04-25
JP8-129032 1996-10-18
JP29744996 1996-10-18
JP8-297449 1996-10-18
JP8-104726 1996-10-18
JP8-65394 1996-10-18
JP35691996A JP3733475B2 (en) 1996-02-27 1996-12-26 Method for cleaning and sterilizing continuous-flow type electrolyzed water generating device, electrolyzed water generating device having mechanism for carrying out this method, and flow path switching valve device used therefor

Publications (2)

Publication Number Publication Date
JPH10174973A JPH10174973A (en) 1998-06-30
JP3733475B2 true JP3733475B2 (en) 2006-01-11

Family

ID=27523905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35691996A Expired - Fee Related JP3733475B2 (en) 1996-02-27 1996-12-26 Method for cleaning and sterilizing continuous-flow type electrolyzed water generating device, electrolyzed water generating device having mechanism for carrying out this method, and flow path switching valve device used therefor

Country Status (1)

Country Link
JP (1) JP3733475B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590668B2 (en) * 1999-12-21 2010-12-01 パナソニック株式会社 Water reformer
JP3574968B2 (en) * 2000-09-19 2004-10-06 テクノエクセル株式会社 Continuous electrolyzed water generator
JP2003136059A (en) * 2001-08-24 2003-05-13 Hoshizaki Electric Co Ltd Electrolytic water maker
KR102054288B1 (en) * 2013-04-01 2019-12-11 웅진코웨이 주식회사 Electro deionization type water sterilizing purifier and Sterilizing method for electro deionization type water purifier
JP6885776B2 (en) * 2017-04-26 2021-06-16 株式会社日本トリム Electrolyzed water generator
JP6764209B1 (en) * 2020-02-28 2020-09-30 株式会社アクト Generator
CN113045136A (en) * 2021-03-25 2021-06-29 中建环能科技股份有限公司 Salt-containing wastewater treatment system and treatment process
CN113003892A (en) * 2021-03-25 2021-06-22 中建环能科技股份有限公司 Coking wastewater treatment system and treatment process

Also Published As

Publication number Publication date
JPH10174973A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
KR101734194B1 (en) Sterilizing method for water treatment apparatus
US10159939B2 (en) Reverse osmosis system
US5944978A (en) Cleaning method of an electrolyzed water forming apparatus and an electrolyzed water forming apparatus having mechanism for conducting the method
KR101662874B1 (en) Electrolyzed water generator
JP3733475B2 (en) Method for cleaning and sterilizing continuous-flow type electrolyzed water generating device, electrolyzed water generating device having mechanism for carrying out this method, and flow path switching valve device used therefor
KR20090025747A (en) A water purifier having an electrolytic sterilization device
KR101544377B1 (en) Sterile Water Producing Apparatus And Bidet Having The Same
JP3513208B2 (en) Electrolytic ionic water generator
JP3106193B2 (en) Electrolyzed water generator
JP3733476B2 (en) Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method
CN114163030A (en) Control method of water purification system and water purification system
JP3791158B2 (en) Water purification equipment
JP3359661B2 (en) Method for cleaning / sterilizing a continuous electrolytic water regulator and an electrolytic water regulator provided with a mechanism for performing the method
KR20050005910A (en) Self-washing method and equipment of ionic-water generator
JP3559324B2 (en) Water conditioner
KR100367892B1 (en) Electrolytic Ion Water Generator
KR100459977B1 (en) Continuous electrolytic water generating device equipped with a method of cleaning the continuous electrolytic water generating device and a mechanism for implementing the method.
JPH1071393A (en) Method for washing and sterilizing continuous water supply type electrolytic water making apparatus and continuous water supply type electrolytic fresh water generating apparatus equipped with mechanism executing this method
JP3772282B2 (en) Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method
JP3752941B2 (en) Electrolyzed water generator
JP3835176B2 (en) Electrolyzed water generator
JP3714031B2 (en) Bath water quality modifier
JPH09262585A (en) Sterilizing and bacteriostatic method of continuous electrolytic water making apparatus and apparatus therefor
JP3465611B2 (en) Sterilizer and bath tub water circulation purifier equipped with sterilizer
JPH10235359A (en) Sterilizing and washing of continuous electrolytic water-making apparatus, and continuous electrolytic water making apparatus equipped with washing mechanism for the execution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees