JP3733452B2 - Waste disposal method - Google Patents

Waste disposal method Download PDF

Info

Publication number
JP3733452B2
JP3733452B2 JP2000198647A JP2000198647A JP3733452B2 JP 3733452 B2 JP3733452 B2 JP 3733452B2 JP 2000198647 A JP2000198647 A JP 2000198647A JP 2000198647 A JP2000198647 A JP 2000198647A JP 3733452 B2 JP3733452 B2 JP 3733452B2
Authority
JP
Japan
Prior art keywords
liquid
filtrate
waste
sulfuric acid
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000198647A
Other languages
Japanese (ja)
Other versions
JP2001179215A (en
Inventor
剛章 大神
務 鈴木
雅也 井田
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000198647A priority Critical patent/JP3733452B2/en
Publication of JP2001179215A publication Critical patent/JP2001179215A/en
Application granted granted Critical
Publication of JP3733452B2 publication Critical patent/JP3733452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物中に残留する鉛や銅などを分離除去する廃棄物の処理方法に関し、特に廃棄物から銅や鉛、亜鉛などを除去して無害化する際に、処理が容易であって除去効果に優れ、さらにその固形分をセメント原料として使用できる廃棄物の処理方法に関する。
【0002】
【従来技術とその問題点】
一般の産業廃棄物や生活廃棄物およびその焼却灰は、従来から大部分が埋め立て処理されているが、処分場を設けるのは次第に難しくなっており、その有効な処理対策が求められている。また、これらの廃棄物には銅や鉛などの金属が数%程度含まれており、これらの廃棄物をそのまま埋立処理すると鉛などの重金属が流出して環境汚染を引き起こす問題があり、これらの金属を出来るだけ分離除去することが求められる。
【0003】
従来、この廃棄物処理方法として、廃棄物を硫酸で処理して銅などの重金属を浸出させ、さらにこの浸出液に水硫化ソーダ等を加えて液中の金属を硫化物に転じて沈殿させ回収する処理方法が提案されている。しかし、この従来の処理方法では処理後の固形分がセメント原料に適さないものになると云う問題がある。すなわち、廃棄物にはカルシウム分が多く含まれているが、このカルシウム分は硫酸処理によって石膏に転化する。この石膏を含む固形分をセメント原料として用いるとセメントに硫酸根を過剰に持ち込むことになりセメント原料として適当ではない。また廃棄物に含まれる鉛は硫酸処理の際に硫酸鉛に転じて固形分に残留するので鉛含有量が高くなり、この点からもセメント原料化が難しい。
【0004】
また、廃棄物にセレンが含有されている場合、含有されている重金属を硫化物に転じて分離する従来の処理方法ではセレンは濾液中に溶存したまま排液処理されるので排液処理の負担が大きくなると云う問題がある。
【0005】
本発明は、従来の廃棄物処理における上記問題を解決したものであり、廃棄物に残留する銅や鉛、亜鉛、あるいはセレンなどを簡単に分離除去し、しかも除去効率が高く、さらに処理後の固形分をセメント原料として有効に利用できる処理方法を提供するものである。
【0006】
【課題を解決するための手段】
すなわち、本発明は(1)廃棄物を硫酸浸出スラリーとして該廃棄物に含まれる銅および亜鉛を液中に溶出させる硫酸浸出工程、この硫酸浸出スラリーの固形分を分離してアルカリ浸出することにより固形分中の鉛を液中に溶出させるアルカリ浸出工程、このアルカリ浸出スラリーを固液分離した濾液と上記硫酸浸出スラリーの濾液とを混合し、濾液のpHを銅、亜鉛および鉛の共沈領域に調整することによりこれらの金属を共沈させて固液分離する混合沈殿工程からなる処理系を有することを特徴とする廃棄物の処理方法に関する。
【0007】
本発明の処理方法は、好ましくは、(2)混合沈殿工程において、混合した濾液のpHを9〜12に調整することにより、液中の金属を水酸化物ないし硫酸塩として沈殿させて除去する廃棄物処理方法である。
【0008】
さらに本発明は(3)硫酸浸出工程において廃棄物に含まれる銅および亜鉛を液中に溶出させると共に廃棄物中のカルシウムを石膏に転じて固形分に残し、さらにアルカリ浸出工程において鉛を液中に溶出させると共に固形分に含まれる石膏を水酸化カルシウムに転じ、これをセメント原料として回収する上記(1)または(2)に記載する廃棄物処理方法、(4)混合沈澱工程において、濾液に含まれる微量のセレンを銅、亜鉛および鉛と共に共沈させて固液分離する上記(1)、(2)または(3)の廃棄物処理方法を含む。
【0009】
【発明の実施の形態】
以下、本発明を実施形態に基づいて具体的に説明する。本発明に係る処理方法の概略を図1のフロー図に示す。図示するように、本発明の処理方法は、廃棄物を硫酸浸出して該廃棄物に含まれる銅および亜鉛を液中に溶出させる硫酸浸出工程、この硫酸浸出スラリーの固形分を分離してアルカリ浸出することにより固形分中の鉛を液中に溶出させるアルカリ浸出工程、このアルカリ浸出スラリーを固液分離した濾液と上記硫酸浸出スラリーの濾液とを混合し、濾液に含まれる銅、亜鉛および鉛の共沈領域に濾液のpHを調整することにより液中の金属を沈殿させて分離する混合沈殿工程からなる処理系を有する。
【0010】
本発明の処理方法における廃棄物は各種の生活廃棄物、例えば都市ゴミや下水汚泥の焼却灰やその溶融スラグ飛灰、あるいはエコセメントの製造の際に発生する飛灰(エコダスト)などを含む。これらの廃棄物中に水溶性の塩素化合物が含まれる場合には、予め水を加えてスラリーとし、固液分離することにより廃棄物中の塩素分を除去すると良い。なお、銅や鉛、亜鉛などの溶出を抑えて塩素分を選択的に溶出させるには、この水洗(水浸出)スラリーのpHを8.5〜13、好ましくはpH9〜12に調整するとよい。この脱水(脱塩)ケーキをその50wt%以上の水量でさらに洗浄して残留塩素を低減すると良い。
【0011】
この脱水ケーキを解砕して硫酸浸出工程に送る。一方、脱水ケーキと分離した液分を排水処理工程に導き、硫酸第一鉄等を添加して液中に含まれる微量のクロムやセレンを還元し、水酸化鉄の沈澱と共に共沈させて分離する。さらに、必要に応じて高分子凝集剤を加えて沈澱物を凝集させ濾過性を高めて固液分離し、液分のCODが高い場合には次亜塩素酸ソーダ等を添加してCODを低減した後に排水する。
【0012】
( ) 硫酸浸出工程
上記廃棄物またはそのスラリーの固形分に硫酸を加えて硫酸浸出スラリーとする。硫酸浸出スラリーの固液比は400g/l以下が適当であり、pHは4以下が好ましい。廃棄物に含まれる銅や亜鉛の化合物は硫酸によって分解し、銅イオンや亜鉛イオンとなって液中に溶出する。一方、カルシウムや鉛の化合物は大部分が不溶性の硫酸塩(硫酸鉛、石膏)を形成し、固形分中に残留する。従って、この硫酸浸出スラリーを固液分離することにより廃棄物から銅、亜鉛を分離することができる。また、廃棄物に微量のセレンが含まれる場合、このセレンの一部も硫酸浸出によって溶出される。
【0013】
( ) アルカリ浸出工程
上記硫酸浸出スラリーを固液分離し、その固形分にアルカリ溶液を加えてアルカリ浸出スラリーとする。アルカリ浸出スラリーの固液比は200g/l以下が適当であり、100g/l以下が好ましい。また、スラリーの液性はpH13.5以上が適当である。このアルカリ処理によって硫酸鉛は分解して液中に溶出し、石膏は水酸化カルシウムに変化する。鉛の溶出率はスラリーのpHの上昇と共に増加し、pH12.5付近では20%程度であるが、pH13.5以上でほぼ70%以上に達する。なお、スラリーのpHが13.5未満の場合には石膏が殆ど分解されずに残留する。pH13.5以上の領域では石膏の大部分が水酸化カルシウムに変化する。また、廃棄物中にセレンが微量含まれている場合、このセレンの一部もアルカリ浸出によって溶出する。アルカリ浸出に用いるアルカリ溶液は苛性ソーダ、苛性カリなどが適当である。アルカリ濃度は、上記pHを維持できる範囲であれば良い。
【0014】
このアルカリ浸出スラリーを固液分離して固形分を回収する。鉛は溶出して濾液に含まれるので、この固形分には鉛が殆ど含まれておらず、銅や鉛、亜鉛も予め除去されており、また固形分中のカルシウムは殆ど全て水酸化カルシウムに変化しているので、回収した固形分はセメント原料として使用することができる。なお、最初の硫酸浸出に代えて塩酸浸出を行うと廃棄物中のカルシウムが濾液に溶出するので、塩酸浸出スラリーの固形分をセメント原料として利用することができない。
【0015】
( ) 混合沈殿工程
上記硫酸浸出スラリーの濾液とアルカリ浸出スラリーの濾液を混合し、この濾液に含まれる銅、亜鉛および鉛の共沈領域に濾液のpHを調整することにより液中の金属を沈殿させて除去する。図2のグラフに示すように、液中のCu2+,Zn2+,Pb2+,Fe2+は何れもpH5以下の酸性域において溶解度が高く、pHが5から次第に大きくなるに従って溶解度が大幅に低下し、pH7以上の領域ではCu2+,Pb2+の溶解度が概ね10-5mol/l以下となり、pH9以上になるとZn2+,Fe2+の溶解度が概ね10-5mol/l以下となる。なお、Pb2+およびZn2+はpH12以上の領域で溶解度が10-5mol/lより高くなるが、pH12未満では溶解度がこれより低い。従って、混合濾液のpHを9以上〜12未満に調整し、好ましくはpH9.5〜11.5に調整することによって銅、鉛、亜鉛を同時に沈殿させて液中から除去することができる。液中の銅と亜鉛は水酸化物に転じて沈殿し、鉛は硫酸浸出濾液に含まれる硫酸根と反応し硫酸鉛に転じて沈殿する。なお、混合濾液のpHが9未満では銅、鉛および亜鉛の溶解度が高くなり、またpHが12以上になると鉛および亜鉛の溶解度が高くなるので、これらの除去率が低下する。また、液中に微量のセレンが溶存している場合、このpH域でセレンは銅、鉛および亜鉛と一緒に共沈する。
【0016】
この混合濾液のpHは硫酸浸出濾液とアルカリ浸出濾液の混合液量を調整することにより上記pH域に設定することができる。このpH調整によって液中の銅や鉛、亜鉛およびセレン等を効率よく同時に沈殿できるので、従来使用されていた水硫化ソーダなどの沈殿剤を用いる必要がない。
【0017】
この混合濾液を固液分離することにより、最終的に廃棄物から上記金属類を除去することができる。この沈殿物を除去した濾液には銅や鉛、亜鉛等が含まれていないので、最初の水洗工程の用水として再利用することができる。
【0018】
【実施例】
以下、本発明の処理方法を実施例により具体的に示す。なお、これらの実施例は本発明を限定するものではない。
【0019】
〔実施例1〕
スラグ飛灰(成分wt%:Ca:7.3、Si:3.5、Na:19.1、K:13.9、Cl:25.2、S:6.3、Pb:2.1、Cu:2.3、Zn:6.0)を本発明の方法に従って以下のように処理した。まず、この飛灰に固液比300g/lとなるように水を加えて撹拌した後に固液分離して水溶性塩素化合物を除去した。この固形分にスラリーのpHが3以下になるように硫酸と水を加えて固液比250g/lのスラリーとし、銅と亜鉛を溶出させた。この硫酸浸出スラリーを固液分離して固形分と濾液を得た。この固形分をX線回折装置により分析してカルシウムの大部分が石膏に転じていることを確認した。次に、この硫酸浸出の固形分に1mol/lの苛性ソーダ溶液を固液比100g/lとなるように加えてアルカリ浸出スラリーとし、鉛を溶出させた。これを固液分離して固形分と濾液を得た。この固形分をX線回折装置により分析したところ固形分中の石膏がほぼ全て水酸化カルシウムに転じていることを確認した。なお、この固形分中の水酸化カルシウム量は70wt%であった。
次に、硫酸浸出の濾液とアルカリ浸出の濾液を混合し、各々の液量を調整して表1に示すpHの混合液を得た。この各pHの混合液について、沈殿生成後に固液分離し、その濾液の銅、亜鉛および鉛の濃度をICP発光分析法により測定した。なお、予め混合前の硫酸浸出濾液とアルカリ浸出濾液の金属濃度を同様に測定した。これらの結果を表1にまとめて示した。また、混合液の固液分離によって回収した固形分に含まれる金属分の濃度(水酸化物換算)を表2に示した。
表1に示すように、硫酸浸出濾液には多量の銅と亜鉛が溶存しており、またアルカリ浸出濾液には多量の鉛が溶存しているが、これらの液を混合し、pH9〜12に調整して固液分離した濾液の金属濃度は大幅に減少しており、高い除去効果を示した。因みに、pH9〜11の場合、銅、亜鉛、鉛の濃度は何れも0.1〜0.5ppmの水準である。
【0020】
【表1】

Figure 0003733452
【0021】
【表2】
Figure 0003733452
【0022】
〔実施例2〕
セレンを含有する飛灰に、固液比600g/lになるように水を加え、攪拌して水性スラリーにし、これを固液分離して可溶性塩類を除去した。この脱水ケーキを解砕してpH3以下になるように水と硫酸を加え、固液比375g/lの硫酸スラリーとした。これを固液分離し、その固形分に1.5mol/lの苛性ソーダ水溶液を固液比100g/lになるように添加し、アルカリ浸出スラリーとし、これを固液分離した。上記硫酸浸出スラリーの濾液とこのアルカリ浸出スラリーの濾液とを混合比3.5:1(体積)で混合し、混合液のpHを10.5に調整した。生じた沈澱を固液分離し、その濾液と、硫酸浸出工程の固形分を分離した濾液、アルカリ浸出工程の固形分を除去した濾液について、セレン濃度を測定した。この結果を表3に示した。この結果に示されるように、濾液に含まれていたセレンの57%が銅や鉛、亜鉛と共に沈澱して分離された。
【0023】
【表3】
Figure 0003733452
【0024】
【発明の効果】
本発明の処理方法によれば、各種廃棄物に含まれる銅、亜鉛、鉛などを簡単にかつ効率良く除去することができる。しかも、これら金属を沈殿除去する際に、従来のような水硫化ソーダなどの薬剤を用いる必要がないので排液処理が容易であり、処理コストも低い。また、処理後に得られる固形物をセメント原料として利用することができる。さらに、廃棄物から分離した銅、鉛、亜鉛等の金属類を含む沈殿物についても、これらの人工原料鉱石として再利用することができる。また、廃棄物に微量のセレンが含まれている場合にも、液中に溶存している微量のセレンは混合沈澱工程で銅や鉛および亜鉛と一緒に共沈するので、これらの金属と一緒に分離除去することができ、排液処理の負担が軽減される。
【図面の簡単な説明】
【図1】 本発明の処理方法を示すフロー図
【図2】 金属イオンの溶解度とpHの関係を示すグラフ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste treatment method that separates and removes lead, copper, and the like remaining in waste, and in particular, when removing copper, lead, zinc, and the like from waste to make it harmless, the treatment is easy. The present invention also relates to a waste treatment method that is excellent in removal effect and that can use the solid content as a cement raw material.
[0002]
[Prior art and its problems]
Conventional industrial waste and domestic waste and their incineration ash are mostly mostly landfilled, but it is becoming increasingly difficult to provide a disposal site, and effective treatment measures are required. In addition, these wastes contain about several percent of metals such as copper and lead. If these wastes are landfilled as they are, heavy metals such as lead may flow out and cause environmental pollution. It is required to separate and remove the metal as much as possible.
[0003]
Conventionally, as a waste treatment method, waste is treated with sulfuric acid to leach heavy metals such as copper, and sodium hydrosulfide is added to the leachate, and the metal in the liquid is turned into sulfides for precipitation. A processing method has been proposed. However, this conventional treatment method has a problem that the solid content after treatment becomes unsuitable for cement raw materials. That is, the waste contains a large amount of calcium, which is converted to gypsum by sulfuric acid treatment. When this gypsum-containing solid content is used as a cement raw material, sulfate radicals are excessively introduced into the cement, which is not suitable as a cement raw material. In addition, lead contained in the waste is converted to lead sulfate during the sulfuric acid treatment and remains in the solid content, so that the lead content becomes high, and from this point, it is difficult to make a cement raw material.
[0004]
In addition, when selenium is contained in the waste, the selenium is discharged while the selenium is dissolved in the filtrate in the conventional processing method in which the contained heavy metal is converted to sulfide, so the burden of the drainage treatment There is a problem that becomes larger.
[0005]
The present invention solves the above-mentioned problems in conventional waste treatment, and easily separates and removes copper, lead, zinc, selenium, etc. remaining in waste, and has high removal efficiency. It is an object of the present invention to provide a treatment method that can effectively use solid content as a cement raw material.
[0006]
[Means for Solving the Problems]
That is, the present invention is (1) a sulfuric acid leaching process in which waste and sulfuric acid leaching slurry are used to elute copper and zinc contained in the waste into the liquid, and the solid content of the sulfuric acid leaching slurry is separated and alkali leached. Alkaline leaching process for eluting lead in the solid content into the liquid, the filtrate obtained by solid-liquid separation of the alkali leaching slurry and the filtrate of the sulfuric acid leaching slurry are mixed, and the pH of the filtrate is co-precipitation region of copper, zinc and lead The present invention relates to a waste treatment method characterized by having a treatment system comprising a mixed precipitation step in which these metals are co-precipitated and separated into solid and liquid.
[0007]
In the treatment method of the present invention, preferably, (2) in the mixed precipitation step, the pH of the mixed filtrate is adjusted to 9 to 12 to precipitate and remove the metal in the liquid as a hydroxide or sulfate. Waste disposal method.
[0008]
Furthermore, the present invention (3) elutes copper and zinc contained in the waste in the sulfuric acid leaching step, turns the calcium in the waste into gypsum and leaves it in a solid content, and further in the lead in the alkaline leaching step In the waste treatment method described in (1) or (2) above, the gypsum contained in the solid content is converted into calcium hydroxide and recovered as a cement raw material. (4) In the mixed precipitation step, The waste treatment method according to (1), (2) or (3) above, wherein a trace amount of selenium is co-precipitated with copper, zinc and lead and separated into solid and liquid.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments. The outline of the processing method according to the present invention is shown in the flowchart of FIG. As shown in the figure, the treatment method of the present invention comprises a sulfuric acid leaching step in which waste is leached with sulfuric acid to elute copper and zinc contained in the waste into the liquid, and the solid content of the sulfuric acid leaching slurry is separated to obtain an alkali. Alkaline leaching process for leaching out the solid lead into the liquid by leaching, the filtrate obtained by solid-liquid separation of the alkaline leaching slurry and the filtrate of the sulfuric acid leaching slurry are mixed, and copper, zinc and lead contained in the filtrate The co-precipitation region has a treatment system comprising a mixed precipitation step of precipitating and separating the metal in the liquid by adjusting the pH of the filtrate.
[0010]
The waste in the treatment method of the present invention includes various domestic wastes, for example, incineration ash of municipal waste and sewage sludge, its molten slag fly ash, or fly ash (eco dust) generated during the production of eco cement. When a water-soluble chlorine compound is contained in these wastes, the chlorine content in the wastes may be removed by adding water in advance to form a slurry and solid-liquid separation. In order to suppress the elution of copper, lead, zinc and the like and selectively elute chlorine, the pH of the water washing (water leaching) slurry is adjusted to 8.5 to 13, preferably 9 to 12. The dehydrated (desalted) cake may be further washed with an amount of water of 50 wt% or more to reduce residual chlorine.
[0011]
This dehydrated cake is crushed and sent to the sulfuric acid leaching process. On the other hand, the liquid separated from the dehydrated cake is introduced into the wastewater treatment process, and ferrous sulfate, etc. is added to reduce the small amount of chromium and selenium contained in the liquid and coprecipitated with iron hydroxide precipitates for separation. To do. Furthermore, if necessary, a polymer flocculant is added to agglomerate the precipitate to improve filterability and solid-liquid separation. When the liquid COD is high, sodium hypochlorite is added to reduce COD. After draining.
[0012]
( 1 ) Sulfuric acid leaching step Sulfuric acid is added to the solid content of the waste or its slurry to obtain a sulfuric acid leaching slurry. The solid-liquid ratio of the sulfuric acid leaching slurry is suitably 400 g / l or less, and the pH is preferably 4 or less. The copper and zinc compounds contained in the waste are decomposed by sulfuric acid and become copper ions and zinc ions and are eluted in the liquid. On the other hand, most of calcium and lead compounds form insoluble sulfates (lead sulfate and gypsum) and remain in the solid content. Therefore, copper and zinc can be separated from waste by solid-liquid separation of the sulfuric acid leaching slurry. Moreover, when a trace amount of selenium is contained in the waste, a part of this selenium is also eluted by sulfuric acid leaching.
[0013]
( 2 ) Alkaline leaching step The sulfuric acid leaching slurry is subjected to solid-liquid separation, and an alkali solution is added to the solid content to obtain an alkali leaching slurry. The solid-liquid ratio of the alkali leaching slurry is suitably 200 g / l or less, preferably 100 g / l or less. Further, the liquid property of the slurry is suitably pH 13.5 or more. By this alkali treatment, lead sulfate is decomposed and eluted in the liquid, and gypsum is changed to calcium hydroxide. The elution rate of lead increases with an increase in the pH of the slurry, and is about 20% near pH 12.5, but reaches almost 70% at pH 13.5 or higher. When the pH of the slurry is less than 13.5, the gypsum remains almost undecomposed. In the region of pH 13.5 or higher, most of the gypsum changes to calcium hydroxide. Moreover, when a trace amount of selenium is contained in the waste, a part of this selenium is also eluted by alkali leaching. As the alkali solution used for alkali leaching, caustic soda, caustic potash and the like are suitable. The alkali concentration should just be the range which can maintain the said pH.
[0014]
The alkali leaching slurry is subjected to solid-liquid separation to recover a solid content. Since lead elutes and is contained in the filtrate, this solid contains almost no lead, and copper, lead, and zinc have also been removed in advance, and almost all calcium in the solid is converted to calcium hydroxide. Since it has changed, the recovered solid content can be used as a cement raw material. If hydrochloric acid leaching is performed instead of the first sulfuric acid leaching, calcium in the waste is eluted into the filtrate, so that the solid content of the hydrochloric acid leaching slurry cannot be used as a cement raw material.
[0015]
( 3 ) Mixed precipitation step The sulfuric acid leaching slurry filtrate and the alkaline leaching slurry filtrate are mixed, and the pH of the filtrate is adjusted in the coprecipitation region of copper, zinc and lead contained in the filtrate. The metal inside is precipitated and removed. As shown in the graph of FIG. 2, Cu 2+ , Zn 2+ , Pb 2+ , and Fe 2+ in the liquid all have high solubility in an acidic region at pH 5 or lower, and the solubility increases as the pH gradually increases from 5. greatly reduced, Cu 2+ at pH7 or more regions, the solubility of Pb 2+ is generally become less 10 -5 mol / l, made to pH9 than when Zn 2+, the solubility of Fe 2+ is approximately 10 -5 mol / l or less. Note that the solubility of Pb 2+ and Zn 2+ is higher than 10 −5 mol / l in the region of pH 12 or higher, but the solubility is lower than pH 12 below. Therefore, by adjusting the pH of the mixed filtrate to 9 to less than 12, and preferably to pH 9.5 to 11.5, copper, lead and zinc can be simultaneously precipitated and removed from the liquid. Copper and zinc in the liquid turn into hydroxide and precipitate, and lead reacts with the sulfate radical contained in the sulfuric acid leaching filtrate and turns into lead sulfate and precipitates. When the pH of the mixed filtrate is less than 9, the solubility of copper, lead, and zinc is high. When the pH is 12 or more, the solubility of lead and zinc is high, so that the removal rate thereof decreases. When a small amount of selenium is dissolved in the liquid, selenium coprecipitates with copper, lead and zinc in this pH range.
[0016]
The pH of the mixed filtrate can be set in the above pH range by adjusting the amount of the mixed solution of the sulfuric acid leached filtrate and the alkaline leached filtrate. By adjusting the pH, copper, lead, zinc, selenium and the like in the liquid can be efficiently and simultaneously precipitated, so that it is not necessary to use a precipitating agent such as sodium hydrosulfide which has been conventionally used.
[0017]
By solid-liquid separation of this mixed filtrate, the above metals can be finally removed from the waste. Since the filtrate from which the precipitate has been removed does not contain copper, lead, zinc or the like, it can be reused as water for the first water washing step.
[0018]
【Example】
Hereinafter, the processing method of the present invention will be specifically described by way of examples. In addition, these Examples do not limit this invention.
[0019]
[Example 1]
Slag fly ash (component wt%: Ca: 7.3, Si: 3.5, Na: 19.1, K: 13.9, Cl: 25.2, S: 6.3, Pb: 2.1, Cu: 2.3, Zn: 6.0) according to the method of the present invention Processed as follows. First, water was added to the fly ash so as to have a solid-liquid ratio of 300 g / l and stirred, and then solid-liquid separation was performed to remove the water-soluble chlorine compound. To this solid content, sulfuric acid and water were added so that the pH of the slurry was 3 or less to obtain a slurry having a solid-liquid ratio of 250 g / l, and copper and zinc were eluted. This sulfuric acid leaching slurry was subjected to solid-liquid separation to obtain a solid content and a filtrate. This solid content was analyzed by an X-ray diffractometer, and it was confirmed that most of calcium was converted to gypsum. Next, a 1 mol / l caustic soda solution was added to the solid content of the sulfuric acid leaching so as to have a solid-liquid ratio of 100 g / l to obtain an alkaline leaching slurry to elute lead. This was solid-liquid separated to obtain a solid content and a filtrate. When this solid content was analyzed by an X-ray diffractometer, it was confirmed that almost all gypsum in the solid content was converted to calcium hydroxide. The amount of calcium hydroxide in this solid content was 70 wt%.
Next, the sulfuric acid leaching filtrate and the alkaline leaching filtrate were mixed, and the amounts of the respective liquids were adjusted to obtain a liquid mixture having a pH shown in Table 1. The mixed solution of each pH was subjected to solid-liquid separation after precipitation, and the concentrations of copper, zinc and lead in the filtrate were measured by ICP emission spectrometry. In addition, the metal concentration of the sulfuric acid leaching filtrate before mixing and the alkali leaching filtrate was measured in advance in the same manner. These results are summarized in Table 1. Further, Table 2 shows the metal concentration (in terms of hydroxide) contained in the solid content recovered by solid-liquid separation of the mixed solution.
As shown in Table 1, a large amount of copper and zinc are dissolved in the sulfuric acid leaching filtrate, and a large amount of lead is dissolved in the alkaline leaching filtrate, but these liquids are mixed to pH 9-12. The metal concentration in the filtrate that was adjusted and separated into solid and liquid was greatly reduced, indicating a high removal effect. Incidentally, in the case of pH 9 to 11, the concentrations of copper, zinc and lead are all at a level of 0.1 to 0.5 ppm.
[0020]
[Table 1]
Figure 0003733452
[0021]
[Table 2]
Figure 0003733452
[0022]
[Example 2]
Water was added to fly ash containing selenium so as to have a solid-liquid ratio of 600 g / l, and the mixture was stirred to form an aqueous slurry, which was subjected to solid-liquid separation to remove soluble salts. The dehydrated cake was crushed and water and sulfuric acid were added so that the pH was 3 or less to obtain a sulfuric acid slurry having a solid-liquid ratio of 375 g / l. This was subjected to solid-liquid separation, and 1.5 mol / l aqueous sodium hydroxide solution was added to the solid content so as to have a solid-liquid ratio of 100 g / l to obtain an alkali leaching slurry, which was subjected to solid-liquid separation. The sulfuric acid leaching slurry filtrate and the alkaline leaching slurry filtrate were mixed at a mixing ratio of 3.5: 1 (volume) to adjust the pH of the mixture to 10.5. The resulting precipitate was subjected to solid-liquid separation, and the selenium concentration was measured for the filtrate, the filtrate from which the solid content in the sulfuric acid leaching process was separated, and the filtrate from which the solid content in the alkaline leaching process was removed. The results are shown in Table 3. As shown in this result, 57% of the selenium contained in the filtrate was precipitated and separated together with copper, lead and zinc.
[0023]
[Table 3]
Figure 0003733452
[0024]
【The invention's effect】
According to the treatment method of the present invention, copper, zinc, lead and the like contained in various wastes can be removed easily and efficiently. In addition, when these metals are removed by precipitation, it is not necessary to use a conventional chemical such as sodium hydrosulfide, so that drainage treatment is easy and the treatment cost is low. Moreover, the solid substance obtained after a process can be utilized as a cement raw material. Furthermore, precipitates containing metals such as copper, lead and zinc separated from waste can also be reused as these artificial raw material ores. In addition, even if the waste contains a trace amount of selenium, the trace amount of selenium dissolved in the liquid is co-precipitated with copper, lead and zinc in the mixed precipitation process. Can be separated and removed, and the burden of drainage treatment is reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing the treatment method of the present invention. FIG. 2 is a graph showing the relationship between the solubility of metal ions and pH.

Claims (4)

廃棄物を硫酸浸出スラリーとして該廃棄物に含まれる銅および亜鉛を液中に溶出させる硫酸浸出工程、この硫酸浸出スラリーの固形分を分離してアルカリ浸出することにより固形分中の鉛を液中に溶出させるアルカリ浸出工程、このアルカリ浸出スラリーを固液分離した濾液と上記硫酸浸出スラリーの濾液とを混合し、濾液のpHを銅、亜鉛および鉛の共沈領域に調整することによりこれらの金属を共沈させて固液分離する混合沈殿工程からなる処理系を有することを特徴とする廃棄物の処理方法。A sulfuric acid leaching step for eluting the copper and zinc contained in the waste into the liquid as a sulfuric acid leaching slurry, and separating the solid content of the sulfuric acid leaching slurry and alkali leaching to separate the lead in the solid content into the liquid These metals are obtained by mixing the alkali leaching step to be eluted into the mixture, the filtrate obtained by solid-liquid separation of the alkali leaching slurry and the filtrate of the sulfuric acid leaching slurry, and adjusting the pH of the filtrate to the coprecipitation region of copper, zinc and lead. A waste treatment method comprising a treatment system comprising a mixed precipitation step of co-precipitation and solid-liquid separation. 混合沈殿工程において、混合した濾液のpHを9〜12に調整することにより、液中の金属を水酸化物ないし硫酸塩として沈殿させて除去する請求項1に記載の廃棄物処理方法。The waste treatment method according to claim 1, wherein, in the mixed precipitation step, the pH of the mixed filtrate is adjusted to 9 to 12 to precipitate and remove the metal in the liquid as a hydroxide or sulfate. 硫酸浸出工程において廃棄物に含まれる銅および亜鉛を液中に溶出させると共に廃棄物中のカルシウムを石膏に転じて固形分に残し、さらにアルカリ浸出工程において鉛を液中に溶出させると共に固形分に含まれる石膏を水酸化カルシウムに転じ、これをセメント原料として回収する請求項1または2に記載する廃棄物処理方法。In the sulfuric acid leaching process, the copper and zinc contained in the waste are eluted in the liquid and calcium in the waste is turned into gypsum to leave it in solids, and in the alkaline leaching process, the lead is eluted in the liquid and solids in the liquid. The waste disposal method according to claim 1 or 2, wherein the gypsum contained is converted into calcium hydroxide and recovered as a cement raw material. 混合沈澱工程において、濾液に含まれる微量のセレンを銅、亜鉛および鉛と共に共沈させて固液分離する請求項1、2または3の廃棄物処理方法。The waste treatment method according to claim 1, 2 or 3, wherein in the mixed precipitation step, a trace amount of selenium contained in the filtrate is coprecipitated with copper, zinc and lead and separated into solid and liquid.
JP2000198647A 1999-10-14 2000-06-30 Waste disposal method Expired - Fee Related JP3733452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198647A JP3733452B2 (en) 1999-10-14 2000-06-30 Waste disposal method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-291879 1999-10-14
JP29187999 1999-10-14
JP2000198647A JP3733452B2 (en) 1999-10-14 2000-06-30 Waste disposal method

Publications (2)

Publication Number Publication Date
JP2001179215A JP2001179215A (en) 2001-07-03
JP3733452B2 true JP3733452B2 (en) 2006-01-11

Family

ID=26558743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198647A Expired - Fee Related JP3733452B2 (en) 1999-10-14 2000-06-30 Waste disposal method

Country Status (1)

Country Link
JP (1) JP3733452B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524493B2 (en) * 2005-03-15 2010-08-18 Dowaメタルマイン株式会社 Fly ash treatment method
JP5988018B2 (en) * 2011-08-05 2016-09-07 学校法人 芝浦工業大学 Metal recovery method in cement manufacturing process
JP6779776B2 (en) * 2016-06-15 2020-11-04 サンスター株式会社 Oxidized HDL measurement method and oxidized HDL measurement kit
JP7338462B2 (en) 2019-12-26 2023-09-05 三菱マテリアル株式会社 Selenium recovery method

Also Published As

Publication number Publication date
JP2001179215A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP4839653B2 (en) Method for treating waste containing chlorine and heavy metals
JPS62253738A (en) Removal of dangerous metal waste sludge
JP3625270B2 (en) Waste disposal method
KR102556133B1 (en) Wastewater Treatment Method
JP3911538B2 (en) Heavy metal recovery from fly ash
CN103304062A (en) Method for treating lead-zinc sulfide ore production wastewater and recycling zinc from wastewater
JP2002018394A (en) Treating method for waste
JP3924981B2 (en) Waste material processing method for cement
JP3733452B2 (en) Waste disposal method
JP3646245B2 (en) Processing method for fly ash containing heavy metals
CN111542499B (en) Method for treating waste water
JP3813052B2 (en) Method for processing fly ash containing heavy metals
JP3794260B2 (en) Waste disposal method
JP3773467B2 (en) Method for treating substances containing calcium and heavy metals
JP3766908B2 (en) Waste disposal method
JP4629851B2 (en) Wastewater treatment method
JP2002011429A (en) Treatment process of heavy metal in waste
JP2005177757A (en) Calcium-and heavy metal-containing matter treatment method
JP4026167B2 (en) Waste dehydrated cake processing method
JP2002126694A (en) Method for treatment waste
JPH06170354A (en) Method for treating fly ash from incinerator and melting furnace
JP3914814B2 (en) Method for treating fly ash containing calcium
JP3646244B2 (en) Method for treating fly ash containing heavy metals
JP3524601B2 (en) Method for treating fly ash from incinerators and melting furnaces
JP7351199B2 (en) Treatment method for arsenic-containing wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Ref document number: 3733452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees