JP3733219B2 - Inductor for semiconductor device and manufacturing method thereof - Google Patents

Inductor for semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3733219B2
JP3733219B2 JP26782397A JP26782397A JP3733219B2 JP 3733219 B2 JP3733219 B2 JP 3733219B2 JP 26782397 A JP26782397 A JP 26782397A JP 26782397 A JP26782397 A JP 26782397A JP 3733219 B2 JP3733219 B2 JP 3733219B2
Authority
JP
Japan
Prior art keywords
insulating film
wiring
inductor
semiconductor device
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26782397A
Other languages
Japanese (ja)
Other versions
JPH1187618A (en
Inventor
賢一 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP26782397A priority Critical patent/JP3733219B2/en
Publication of JPH1187618A publication Critical patent/JPH1187618A/en
Application granted granted Critical
Publication of JP3733219B2 publication Critical patent/JP3733219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波用ICの内部に、受動素子の一つとして設けられるンダクタに関する。
【0002】
【従来の技術】
従来、高周波用IC内部に作り込まれるインダクタとして、スパイラル型のものとメアンダ型のものが広く用いられている。
【0003】
図2(a)は、スパイラル型インダクタの平面図、同(b)はその断面図、図3(a)は、メアンダ型インダクタの平面図、同(b)はその断面図を示す。
【0004】
スパイラル型インダクタは、通常図2に示すように、2層構造で形成されている。半導体基板6上に設けられた絶縁膜5上に引出し配線2が形成され、これらを被って第2層の絶縁膜4が設けられ、その上に金属薄膜配線よりなる渦巻き状のコイルが形成され、同コイルの中心端は絶縁膜4に開けられたビアホール(viahole)3を介して引出し配線2に接続されている。
【0005】
一方、メアンダ型インダクタは、図3に示すように単層構造で、絶縁膜5上に成されたつづら折れ状の配線1でコイル部を構成している。
【0006】
【発明が解決しようとする課題】
図2及び図3に示したような従来のインダクタでは、巻数を多くしようとすると、占有面積と共に、配線の長さ(従って抵抗の大きさ)が大きく増大し、面積効率がよく、またQ特性のよいインダクタを作ることが困難となるという問題があった。
【0007】
因みに、図2に示したスパイラル型インダクタについては、コイルのピッチをs、最小のコイルの辺の長さをL1 、巻数をnとすれば、コイル部の配線長さA1 及び占有面積S1 は、それぞれ以下のようとなる。
A1 =4n・L1 +2(2n−1)n・s
S1 ={L1 +2(n−1)s}2
【0008】
上式が示すように巻数が多くなると、配線長さ及び占有面積は共に巻数nの2乗に比例して増加することとなるので、上述の問題が顕著となる。
【0009】
一方、図3に示したメアンダ型インダクタについては、素辺の長さをL2 、ピッチをs、巻数をnとすると、配線長さA2 及び占有面積S2 は、以下のようになり、
A2 =2n・L2 +2n・s
S2 =2n・L2 ・s
配線長さ及び占有面積は共に巻数nに比例して増加するので、上述の面積効率やQ特性については、巻数を大きくすることによる問題はない。
【0010】
しかし、メアンダ型のインダクにおいては、隣接導体を流れる電流が互いに逆方向となるため、隣接導体間の相互インダクタンスが自己インダクタンスに対して負に働き、導体間の間隔(配線の間隔)を狭くするほど、インダクタンス値が低減されるという、メアンダ型インダクタ固有の特性があり、それが実装密度を上げる上での制約になっている。
【0011】
本発明は、上記問題点を解消した半導体装置用インダクタを提供しようとするものである。
【0012】
【課題を解決するための手段】
半導体基板上の絶縁膜上に設けられ、薄膜状の配線で構成される半導体装置用インダクタにおいて、前記絶縁膜を櫛歯状に交互に平行する複数個の凸状部および凹状部を有するように段差をつけた形状に形成し、前記凸状部及び凹状部に沿って形成した配線部分及び前記段差部分に形成した折り返し配線部分によりメアンダ型のコイルを構成した。
【0013】
上記のように絶縁膜を段差を有するように形成し、その凸状部及び凹状部に沿った配線を主要部分としてメアンダ型のコイルを構成することにより、隣接導体間の間隔を実質的に大きくすることができ、上述の導体間隔の狭小によるインダクタンス値の低減の問題が緩和されるので、メアンダ型のコイルでありながら実装密度を上げることが可能となる。
【0014】
上記半導体装置用インダクタは、前記半導体基板上の所定範囲一面に第1絶縁膜を堆積する工程、該第1絶縁膜上に第2絶縁膜を堆積し、該第2絶縁膜を選択エッチングし、櫛歯状に交互に平行する複数個の凸状部及び凹状部を、その段差部分が順テーパー状になるように形成する工程と、前記第1絶縁膜、前記第2絶縁膜の上面に配線材料を堆積し、エッチングにより、又は配線材料の直接描写により、前記凸状部及び凹状部に沿って延び、前記段差部分で折り返すメアンダ型のコイルを形成する工程と、を含む一連の工程により製作できる。
【0015】
【発明の実施の形態】
図1は、本発明の半導体装置用インダクタの説明図であり、(a)はその平面図、(b)はその断面図である。以下、Si等の半導体基板上に設けた一実施例につき、本発明のインダクタの構造、及びその製作手順を説明する。
【0016】
先ず半導体基板6上に、CVD等により例えばSiO2 等の絶縁膜5を形成させるが、この絶縁膜5は下地絶縁膜として他の素子の形成にも利用されるものである。
【0017】
次に、絶縁膜5の上面にCVD等によりSiO2 等の絶縁膜4を堆積させ、同絶縁膜の選択エッチングにより櫛歯状に交互に平行する複数個の凸状部8を形成する。この工程により底面に絶縁膜5の面をもつ凹状部が形成される。段差部7は次工程で行う配線を確実にするために、順テーパーをもつように形成する必要があり、ドライエッチング等により行うが、ウエットエッチングで行う場合は、アンダーカットを防ぐため、絶縁膜の材質とエッチング液の組成との調節が必要である。
【0018】
また、絶縁膜4としてポリイミドを用いることもできる。この場合は、スピンコートにより膜を形成し、同様にエッチングにより凸状部を形成するが、素材の性質から段差部は順テーパー状となる。
【0019】
次に、上記により構成した段差つきの絶縁膜上に、スパッタ、蒸着等によりAl、Au等の金属薄膜を被着させ、選択箇所を残してエッチングすることにより、平行する凸状部8、凹状部9に沿って延び、段差部7で折り返すメアンダ型の薄膜コイルが形成される。上記薄膜コイルの形成は、FIB装置等を用い配線材料を直接描画し、被着させる方法によっても可能である。
【0020】
上記のように構成することにより、配線構造が立体的となるので、同一実装密度に対し、従来のものに比べ、実質的に配線間隔が広いインダクタを実現することができる。
【0021】
【発明の効果】
以上説明したように、本発明の半導体装置用インダクタは、絶縁膜を櫛歯状に交互に平行する複数個の凸状部および凹状部を有するように段差をつけた形状に形成し、前記凸状部および凹状部に沿った配線及び前記段差部での折り返し配線によりメアンダ型のコイルを構成したので、配線間隔を実質的に大きくすることができ、メアンダ型の弱点である配線間隔の狭小に伴うインダクタンス値の低減の問題が緩和される。
【0022】
このため、巻数が大きい場合に特別にQの低下がないメアンダ型の利点をもちながら、実装効率のよいメアンダ型のインダクタを実現することができる。
【0023】
また、本発明の特徴である上記の段差を有する絶縁膜は、半導体基板上の所定範囲一面に第1絶縁膜を堆積する工程、該第1絶縁膜上に、第2絶縁膜を堆積し、該第2絶縁膜を選択エッチングする工程を用いることにより容易に形成することができる。
【0024】
また、本発明のインダクタは、ビアホールによる配線接続等を含む複雑な2層配線を必要とず、比較的簡易な一層配線で製作できる利点をもっている。
【図面の簡単な説明】
【図1】本発明の半導体装置用インダクタの一実施例の説明図であり、(a)はその平面図、(b)はその断面図である。
【図2】従来のスパイラル型半導体装置用インダクタの説明図であり、(a)はその平面図、(b)はその断面図である。
【図3】従来のメアンダ型半導体装置用インダクタの説明図であり、(a)はその平面図、(b)はその断面図である。
【符号の説明】
1 コイル部配線
2 引出し配線
3 ビアホール
4、5 絶縁膜
6 半導体基板
7 段差部
8 凸状部
9 凹状部
[0001]
BACKGROUND OF THE INVENTION
The present invention includes, in a high-frequency IC, relates inductor provided as a passive element.
[0002]
[Prior art]
Conventionally, spiral type and meander type inductors are widely used as inductors built in high frequency ICs.
[0003]
2A is a plan view of the spiral inductor, FIG. 2B is a sectional view thereof, FIG. 3A is a plan view of the meander inductor, and FIG. 2B is a sectional view thereof.
[0004]
A spiral inductor is usually formed in a two-layer structure as shown in FIG. A lead-out wiring 2 is formed on an insulating film 5 provided on a semiconductor substrate 6, a second-layer insulating film 4 is provided over the insulating film 5, and a spiral coil made of a metal thin film wiring is formed thereon. The central end of the coil is connected to the lead wiring 2 through a via hole 3 formed in the insulating film 4.
[0005]
On the other hand, the meander-type inductor is a single-layer structure as shown in FIG. 3, constitute a coil unit in zigzag shaped wire 1 was made form on the insulating film 5.
[0006]
[Problems to be solved by the invention]
In the conventional inductor as shown in FIG. 2 and FIG. 3, when the number of turns is increased, the length of the wiring (and hence the size of the resistance) increases greatly with the occupied area, the area efficiency is improved, and the Q characteristic is obtained. There was a problem that it was difficult to make a good inductor.
[0007]
For the spiral inductor shown in FIG. 2, if the coil pitch is s, the minimum coil side length is L1, and the number of turns is n, the coil length A1 and the occupied area S1 are: Each is as follows.
A1 = 4n.L1 + 2 (2n-1) n.s
S1 = {L1 +2 (n-1) s} 2
[0008]
As the number of turns increases as shown in the above equation, the wiring length and the occupied area both increase in proportion to the square of the number of turns n, so that the above problem becomes significant.
[0009]
On the other hand, for the meander type inductor shown in FIG. 3, when the length of the element side is L2, the pitch is s, and the number of turns is n, the wiring length A2 and the occupied area S2 are as follows:
A2 = 2n · L2 + 2n · s
S2 = 2n · L2 · s
Since both the wiring length and the occupied area increase in proportion to the number of turns n, the above-described area efficiency and Q characteristics do not have a problem caused by increasing the number of turns.
[0010]
However, in the meander-type inductor of a current flowing through the adjacent conductor is opposite to each other, it acts on the negative mutual inductance between adjacent conductors against self-inductance, reduce the distance between the conductors (wiring interval) There is a characteristic peculiar to meander type inductors that the inductance value is reduced, which is a limitation in increasing the mounting density.
[0011]
The present invention seeks to provide an inductor for a semiconductor device that solves the above problems.
[0012]
[Means for Solving the Problems]
In an inductor for a semiconductor device, which is provided on an insulating film on a semiconductor substrate and includes thin-film wiring, the insulating film has a plurality of convex portions and concave portions that are alternately parallel to each other in a comb shape. A meandering coil was formed by forming a stepped shape, and the convex part, the wiring part formed along the concave part, and the folded wiring part formed in the step part.
[0013]
As described above, the insulating film is formed to have a step, and the meandering coil is substantially increased by forming the meander type coil with the convex part and the wiring along the concave part as the main part. In addition, since the problem of reducing the inductance value due to the narrowing of the conductor interval described above is alleviated, it is possible to increase the mounting density even though it is a meander type coil.
[0014]
The semiconductor device inductor, said depositing a first insulating layer in a predetermined range one surface of the semiconductor substrate, depositing a second insulating film on the first insulating film, and selective etching said second insulating film , a plurality of convex portions and concave shaped portion parallel to alternately like comb teeth, the steps of the stepped portion is formed so that the forward tapered shape, the first insulating film, an upper surface of the second insulating film a series of steps including depositing a wiring material by etching or by direct depiction of the wiring material, extends along the convex portion and the concave portion, and forming a meander-shaped coil wrap the step portion, to Can be produced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are explanatory views of an inductor for a semiconductor device according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view thereof. Hereinafter, the structure of the inductor of the present invention and the manufacturing procedure thereof will be described with respect to an embodiment provided on a semiconductor substrate such as Si.
[0016]
First, an insulating film 5 such as SiO2 is formed on the semiconductor substrate 6 by CVD or the like. This insulating film 5 is also used for forming other elements as a base insulating film.
[0017]
Next, an insulating film 4 made of SiO2 or the like is deposited on the upper surface of the insulating film 5 by CVD or the like, and a plurality of convex portions 8 alternately parallel in a comb shape are formed by selective etching of the insulating film. By this step, a concave portion having the surface of the insulating film 5 on the bottom surface is formed. The stepped portion 7 needs to be formed to have a forward taper in order to ensure the wiring to be performed in the next process, and is performed by dry etching or the like. In the case of performing wet etching, an insulating film is used to prevent undercutting. It is necessary to adjust the material and the composition of the etching solution.
[0018]
Also, polyimide can be used as the insulating film 4. In this case, a film is formed by spin coating, and a convex portion is similarly formed by etching. However, the stepped portion has a forward tapered shape due to the nature of the material.
[0019]
Next, a metal thin film such as Al or Au is deposited on the stepped insulating film constituted as described above by sputtering, vapor deposition, or the like, and etching is performed while leaving a selected portion, whereby parallel convex portions 8 and concave portions are formed. A meander type thin film coil extending along the line 9 and folded back at the stepped portion 7 is formed. The thin film coil can also be formed by a method of directly drawing and depositing a wiring material using an FIB apparatus or the like.
[0020]
By configuring as described above, the wiring structure becomes three-dimensional, so that it is possible to realize an inductor having a substantially wider wiring interval than the conventional one for the same mounting density.
[0021]
【The invention's effect】
As described above, in the semiconductor device inductor according to the present invention, the insulating film is formed in a stepped shape so as to have a plurality of convex portions and concave portions that are alternately arranged in a comb-teeth shape, and the convex portions are formed. Since the meander type coil is configured by the wiring along the concave portion and the concave portion and the folded wiring at the stepped portion, the wiring interval can be substantially increased, and the wiring interval, which is a meander type weak point, is reduced. The problem of the accompanying inductance value reduction is alleviated.
[0022]
For this reason, it is possible to realize a meander type inductor with high mounting efficiency while having the advantage of a meander type that does not particularly lower the Q when the number of turns is large.
[0023]
In addition, the step-insulating film, which is a feature of the present invention, is a step of depositing a first insulating film over a predetermined range on a semiconductor substrate, a second insulating film is deposited on the first insulating film, The second insulating film can be easily formed by using a step of selectively etching.
[0024]
In addition, the inductor of the present invention does not require complicated two-layer wiring including wiring connection by via holes, and has an advantage that it can be manufactured with relatively simple one-layer wiring.
[Brief description of the drawings]
1A and 1B are explanatory views of an embodiment of an inductor for a semiconductor device according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view thereof.
2A and 2B are explanatory diagrams of a conventional inductor for a spiral type semiconductor device, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view thereof.
3A and 3B are explanatory views of a conventional meander type semiconductor device inductor, FIG. 3A is a plan view thereof, and FIG. 3B is a cross-sectional view thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coil part wiring 2 Lead-out wiring 3 Via hole 4, 5 Insulating film 6 Semiconductor substrate 7 Step part 8 Convex part 9 Concave part

Claims (2)

半導体基板上の絶縁膜上に設けられ、薄膜状の配線で構成される半導体装置用インダクタにおいて、前記絶縁膜を櫛歯状に交互に平行する複数個の凸状部および凹状部を有するように段差をつけた形状に形成し、前記凸状部及び凹状部に沿って形成した配線部分及び前記段差部分に形成した折り返し配線部分によりメアンダ型のコイルを構成したことを特徴とする半導体装置用インダクタ。In an inductor for a semiconductor device, which is provided on an insulating film on a semiconductor substrate and is constituted by thin-film wiring, the insulating film has a plurality of convex portions and concave portions that are alternately parallel in a comb shape. An inductor for a semiconductor device, wherein a meandering coil is formed by forming a stepped shape, a wiring portion formed along the convex portion and the concave portion, and a folded wiring portion formed in the step portion. . 半導体基板上の絶縁膜上に設けられ、薄膜状の配線で構成される半導体装置用インダクタの製造方法において、前記半導体基板上の所定範囲一面に第1絶縁膜を堆積する工程、該第1絶縁膜上に第2絶縁膜を堆積し、該第2絶縁膜を選択エッチングし、櫛歯状に交互に平行する複数個の凸状部及び凹状部を、その段差部分が順テーパー状になるように形成する工程と、前記第1絶縁膜、前記第2絶縁膜の上面に配線材料を堆積し、エッチングにより、又は配線材料の直接描写により、前記凸状部及び凹状部に沿って延び、前記段差部分で折り返すメアンダ型のコイルを形成する工程、を含むことを特徴とする半導体装置用インダクタの製造方法。Provided on an insulating film on a semiconductor substrate, in the manufacturing method of the semiconductor device inductor composed of thin-film wiring, depositing a first insulating layer in a predetermined range one surface on said semiconductor substrate, said first the second insulating film is deposited on the insulating film, and selective etching said second insulating film, a plurality of convex portions in parallel alternately in a comb shape and a concave-shaped portion, the step portion is in a forward tapered shape forming so that the first insulating film, a wiring material is deposited on the upper surface of the second insulating film, by etching, or by direct depiction of the wiring material, extends along the convex portion and the concave portion the method of manufacturing a semiconductor device inductor which comprises a step of forming a meander-shaped coil wrap the step portion.
JP26782397A 1997-09-12 1997-09-12 Inductor for semiconductor device and manufacturing method thereof Expired - Fee Related JP3733219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26782397A JP3733219B2 (en) 1997-09-12 1997-09-12 Inductor for semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26782397A JP3733219B2 (en) 1997-09-12 1997-09-12 Inductor for semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1187618A JPH1187618A (en) 1999-03-30
JP3733219B2 true JP3733219B2 (en) 2006-01-11

Family

ID=17450113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26782397A Expired - Fee Related JP3733219B2 (en) 1997-09-12 1997-09-12 Inductor for semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3733219B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324962A (en) * 2001-02-21 2002-11-08 Toppan Printing Co Ltd Inductor built-in printed wiring board and its manufacturing method
JP4519418B2 (en) * 2003-04-28 2010-08-04 ルネサスエレクトロニクス株式会社 Semiconductor device
DE60337036D1 (en) * 2003-08-28 2011-06-16 Hitachi Ltd SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
US8109612B2 (en) 2005-08-29 2012-02-07 Fujifilm Corporation Wiring substrate, method of manufacturing wiring substrate, and liquid droplet ejection head

Also Published As

Publication number Publication date
JPH1187618A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
US7022581B2 (en) Interdigitaded capacitors
US7327010B2 (en) Inductors for integrated circuits
US5788854A (en) Methods for fabrication of thin film inductors, inductor networks, inductor/capactor filters, and integration with other passive and active devices, and the resultant devices
JP2004519844A (en) Planar inductor with segmented conductive plane
JP2001502851A (en) Electronic component having a resilient contact element in a region remote from the corresponding terminal
US7557423B2 (en) Semiconductor structure with a discontinuous material density for reducing eddy currents
JP2001522144A (en) Integrated inductor
JP2007149827A (en) Electronic part and manufacturing method thereof
JP3733219B2 (en) Inductor for semiconductor device and manufacturing method thereof
JP6686101B2 (en) Coil component and manufacturing method thereof
JPS58188115A (en) Forming method of inductive element
JP2004506320A (en) Integrated inductance
US10020114B2 (en) Method of making a high frequency inductor chip
JPH09330817A (en) Flat coil device and manufacture thereof
TWI576869B (en) Passive component structure and manufacturing method thereof
JPH10270248A (en) Spiral inductor
JP3177954B2 (en) Semiconductor device and method of manufacturing the same
JP5075489B2 (en) Magnetic device and manufacturing method thereof
JP2002015917A (en) Inductor
JPH07336138A (en) Sine wave oscillation circuit
JPH08195479A (en) Semiconductor device and its manufacture
WO2001063669A1 (en) Microwave electric elements using porous silicon dioxide layer and forming method of same
JP2005064193A (en) Semiconductor device and its manufacturing method
JP6631209B2 (en) Mounting structure of semiconductor element on printed wiring board, semiconductor element, inductor setting method, and processor
JP3173444B2 (en) Semiconductor device and method of forming inductor in semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees