JP3732244B2 - X-ray imaging device - Google Patents

X-ray imaging device Download PDF

Info

Publication number
JP3732244B2
JP3732244B2 JP23801094A JP23801094A JP3732244B2 JP 3732244 B2 JP3732244 B2 JP 3732244B2 JP 23801094 A JP23801094 A JP 23801094A JP 23801094 A JP23801094 A JP 23801094A JP 3732244 B2 JP3732244 B2 JP 3732244B2
Authority
JP
Japan
Prior art keywords
electrode
ray
detection
detection unit
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23801094A
Other languages
Japanese (ja)
Other versions
JPH08102890A (en
Inventor
昌昭 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23801094A priority Critical patent/JP3732244B2/en
Publication of JPH08102890A publication Critical patent/JPH08102890A/en
Application granted granted Critical
Publication of JP3732244B2 publication Critical patent/JP3732244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、X線固体検出器、X線アレイセンサー、X線量子計数器等を用いたX線撮像装置に関する。
【0002】
【従来の技術】
一般に、X線撮像装置は複数個の半導体X線検出器を1次元もしくは2次元状に配列した検出器アレイに被写体を透過後のX線を入射させ、そのとき発生する電荷量または電荷パルス数を用いて、画像信号を得るようにしている。例えば、図7は電荷パルス数を計数するようにした装置の構成例である。
【0003】
1 〜Sn は1次元もしくは2次元状に配列された半導体X線検出器であり、この各検出器には各々、逆バイアス電圧−VB が加えられている。
【0004】
各半導体X線検出器S1 〜Sn にX線が入射すると、パルス状の電流が発生し、このパルス信号が増幅器41で増幅され、波形整形回路42を経た後、比較回路43の基準電圧Vf によってバックグランドが除去され、X線入射に起因するパルスのみが弁別される。
【0005】
この弁別後のパルスはパルス計数回路44に導かれて計数され、各計数回路の出力信号は次の情報処理回路45で処理することによって画像濃度情報等を作成し、CRT46上に表示するようにしている。
【0006】
図8は半導体X線検出器と増幅器との接続部分を詳細に示したものであり、半導体X線アレイ検出器50が、図6の半導体X線検出器S1 〜Sn に相当する部分である。この半導体X線アレイ検出器50の上側にバイアス電極49が、下側には電荷取り出し電極として検出電極48とガード電極47が形成されている。
電荷取り出し電極の内ガード電極47は、検出器の周縁に形成され、接地されている。図のアレイ検出器中に記載された実線は電気力線(電荷ドリフトライン)を示す。
【0007】
バイアス電極49には逆バイアス電圧が印加され、検出電極48は増幅器41の入力端子に接続されている。半導体X線アレイ検出器50にX線が入射すると、そのX線のエネルギーに相当する数の電子が発生する。この電子が電気力線に沿って検出電極48の方へ移動することで電荷パルスが発生し、この電荷パルスを次の増幅器41で増幅してX線を検出する。
【0008】
この検出器の各画素の分解能・感度は、検出電極48の配置間隔で決まるが、各画素の分解能・感度を均一に保つためにガード電極47が設けられている。
【0009】
すなわち、半導体X線アレイ検出器の周縁部は電場が乱れて正確なX線検出ができないので、周縁部はX線を検出しないようにダミーとするとともに、これを増幅器入力電位(通常は0V近辺)付近に固定することで他の検出電極に与える電界の影響を軽微なものとし、X線検出を安定化している。
【0010】
【発明が解決しようとする課題】
しかし、上記従来技術では各検出画素の空間分解能や感度を安定的に均一に保つには良いが、検出画素の空間分解能や感度(有感体積)を変えようとすると、検出電極間隔を変えたものを製作するしかなかった。
【0011】
本発明は、上記課題を解決するために創案されたもので、検出画素の空間分解能や感度(有感体積)を変えたい場合に、その都度検出電極間隔を変更した装置を製作することなく、簡単に空間分解能や感度を変化させられるX線撮像装置を提供するものである。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1にかかるX線撮像装置は、X線検出部と、このX線検出部の一方に形成されたバイアス電極と、他方に形成された電荷取り出し電極とを備え、X線の入射によりX線検出部から発生する電荷を検出して画像を形成する装置において、前記電荷取り出し電極間にガード電極を設けると共に、前記ガード電極に可変の電圧を印加する電圧源を設けたことを特徴とする。
また、請求項2にかかるX線撮像装置は、X線検出部と、前記X線検出部の一方に形成されたバイアス電極と、他方に形成された複数の電荷取り出し電極と、それぞれの電荷取り出し電極に接続された増幅器を備え、X線の入射により前記X線検出部から発生する電荷を検出して画像を形成する装置において、前記それぞれの増幅器に供給されている電源電圧を個別に変化させて各増幅器の動作点を変化させ、前記複数の電荷取り出し電極の各電位を任意に変更できるようにしたことを特徴とする。
【0013】
【作用】
X線検出部にX線が入射すると、そのX線のエネルギーに相当する数の電子が発生し、X線検出部内の電気力線に沿って電荷取り出し電極まで移動する。
【0014】
しかし、電荷取り出し電極には電位を制御する手段が設けられているので、この制御手段によって電荷取り出し電極の電位を変化させると、バイアス電極から電荷取り出し電極に向かう電気力線が変化するため、電子を集積する有感体積が変わり、電荷取り出し電極における分解能・感度を変えることができる。
【0015】
【実施例】
本発明の一実施例を、以下、図面に基づいて説明する。
【0016】
図1は本発明によるX線撮像装置の主要構成図を示す。
【0017】
1は半導体X線アレイ検出器、2はバイアス電極、3は半導体X線結晶等のX線検出部、4は電荷を検出しないガード電極、5a〜5cは電荷を検出するための検出電極、6は増幅器、7はガード電極4の電位を制御する手段としての切換器である。
【0018】
半導体X線アレイ検出器1はバイアス電極2、X線検出器部3、ガード電極4、検出電極5a〜5cからなり、バイアス電極2には逆バイアス電圧(−VB )が印加されている。各検出電極は増幅器6に接続され、増幅器6の先は図6に示すような波形整形回路、比較回路、計数回路、情報処理回路等に接続されており、画像濃淡情報等がCRT上に表示されるようになっている。ガード電極4は切換器7に接続され、切換器7の接点の一方は接地されている。
【0019】
X線検出器部3にX線が入射すると、X線のエネルギーに相当する数の電子が発生する。この電子は電気力線に沿って検出電極5a〜5cの方へ移動して電荷パルスとして検出されるが、この状態は切換器7を切換えることによって変化する。
【0020】
図2は2個の切換器7を両方とも開放したときの電気力線(電荷ドリフトライン)の様子を示したものである。ガード電極4の電位は開放されているのでガード電極4とバイアス電極2との間には電気力線が生じず、バイアス電極2の周縁では電気力線は検出電極5a、5cの方へ向かう。
【0021】
X線検出器部3で発生した電子は電気力線に沿って各検出電極へ移動するので、各検出電極に集まる電気力線の範囲が大きい程、より多くの電子を集積させることができ、有感体積が広がるので感度は向上する。
【0022】
一方、有感体積が広がることは広範囲に入射したX線を一つの検出電極で検出することになるので空間分解能は低下する。
【0023】
したがって、図の検出電極5a、5cに対応する検出画素の感度は向上し、空間分解能は低下する。また、検出電極5bに対応する検出画素の分解能・感度はほとんど変わらない。
【0024】
次に切換器7を接地されている接点の方へ切換えたときにはガード電極4は接地されることになるので、このときの電気力線の様子は図7と同一となり、上記ガード電極4の電位が開放されている場合に比べて検出電極5a、5cに対応する検出画素の感度は低下し、分解能は向上する。
【0025】
このようにして、簡単に検出画素の空間分解能・感度を変化させることができる。
【0026】
図3は他の実施例のX線撮像装置の主要構成図を示し、図4、図5は電気力線の様子を示したものである。
【0027】
図3において図1と同じ構成部分には同じ符号を付してある。図1と異なる部分は切換器7の代わりに電圧源8をガード電極4に接続し、これを電位を制御する手段としたことである。電圧源8は+Vs 〜−Vs まで供給電圧を連続的に変化させられるようになっている。
【0028】
ここで、電圧源8の電圧を+Vs にしたときの電気力線の様子を示したのが図4であり、バイアス電極2からガード電極4へ電気力線が発生し、有感体積が減少するので、検出電極5a、5cへ移動する電子の個数は減少し、検出電極5a、5cに対応する検出画素の空間分解能は向上し、感度は低下する。
【0029】
一方、電圧源8の電圧を−Vs にしたときの電気力線の様子を示したのが図5でありバイアス電極2からガード電極4へ電気力線が発生せず、有感体積が増大するので、検出電極5a、5cに対応する検出画素の空間分解能は低下し、感度は向上する。検出電極5bに対応する検出画素の空間分解能・感度はガード電極4の電位が変化してもほとんど変わらない。
【0030】
なお、電圧源8の電圧を連続的に変化させれば、電気力線の状態がそれに応じて変化するので、検出画素の空間分解能・感度を変化させることができる。
【0031】
以上の実施例では2つのガード電極7の電位を同じ方向へ変えているが、これを個々に変えるようにしても良く、X線検出中に各検出電極の検出結果をフィードバックして、ガード電極7に加える電位を最適なものにするようにしても良い。 また、ガード電極の電位を装置の外部から操作できるように構成することもできる。
【0032】
さらに、上述した実施例では検出電極5bに対応する検出画素の空間分解能・感度を変化させることができないので、ガード電極と検出電極を交互に配置してすべての検出電極に対応する検出画素の空間分解能・感度を変化させられるようにしても良い。ただし、この場合ガード電極は電荷の検出は行わない電極であるので、ガード電極を接地または正電位とした場合に半導体X線アレイ検出器の広範囲に渡って、不感領域が生じる。
【0033】
そこで、ガード電極を用いずに、検出電極のみとし個々の検出電極に接続される増幅器の入力電位すなわち、検出電極の電位を制御できるようにしても良い。この場合の一例としては図6に示すように各増幅器6に供給されている電源電圧±VD を個別に変化させて各増幅器の動作点を変化させるようにする方法がある。このようにすれば、結果的に各検出電極5a〜5eの電位を任意に変えることができるので、検出画素の空間分解能・感度を任意に制御できる。
【0034】
【発明の効果】
以上説明したように、本発明のX線撮像装置によれば、電荷取り出し電極の電位を必要に応じて変化させるようにしたので、バイアス電極と電荷取り出し電極の間に発生する電気力線の状態が変化し、検出画素に対する有感体積を増減させることができるので、検出電極間隔を変更した装置を製作することなく、簡単に空間分解能や感度を変化させることができる。
【図面の簡単な説明】
【図1】本発明の一実施例のX線撮像装置の構成を示す図である。
【図2】図1のガード電極の電位が開放されている場合の電気力線を示す図である。
【図3】本発明の他の実施例のX線撮像装置の構成を示す図である。
【図4】図3のガード電極に+Vs の電位が印加された場合の電気力線を示す図である。
【図5】図3のガード電極に−Vs の電位が印加された場合の電気力線を示す図である。
【図6】ガード電極を用いない実施例のX線撮像装置の構成を示す図である。
【図7】X線撮像装置の全体構成を示す図である。
【図8】従来のX線撮像装置の主要部を示す図である。
[0001]
[Industrial application fields]
The present invention relates to an X-ray imaging apparatus using an X-ray solid state detector, an X-ray array sensor, an X-ray quantum counter, and the like.
[0002]
[Prior art]
In general, in an X-ray imaging apparatus, X-rays that have passed through a subject are incident on a detector array in which a plurality of semiconductor X-ray detectors are arranged one-dimensionally or two-dimensionally, and the amount of charges or the number of charge pulses generated at that time. Is used to obtain an image signal. For example, FIG. 7 shows an example of the configuration of an apparatus that counts the number of charge pulses.
[0003]
S 1 to S n is a semiconductor X-ray detectors arranged in a one-dimensional or two-dimensionally, each for the respective detectors, the reverse bias voltage -V B are added.
[0004]
When X-rays enter each of the semiconductor X-ray detectors S 1 to S n , a pulsed current is generated. This pulse signal is amplified by the amplifier 41, passes through the waveform shaping circuit 42, and then the reference voltage of the comparison circuit 43. The background is removed by V f and only the pulses due to X-ray incidence are discriminated.
[0005]
The pulses after the discrimination are guided to the pulse counting circuit 44 and counted, and the output signal of each counting circuit is processed by the next information processing circuit 45 so as to create image density information and display it on the CRT 46. ing.
[0006]
Figure 8 is shows a connection portion between the semiconductor X-ray detector and the amplifier in detail, the semiconductor X-ray array detector 50, at a portion corresponding to the semiconductor X-ray detectors S 1 to S n in FIG. 6 is there. A bias electrode 49 is formed on the upper side of the semiconductor X-ray array detector 50, and a detection electrode 48 and a guard electrode 47 are formed on the lower side as charge extraction electrodes.
An inner guard electrode 47 of the charge extraction electrode is formed on the periphery of the detector and is grounded. The solid line described in the array detector in the figure indicates the electric force lines (charge drift lines).
[0007]
A reverse bias voltage is applied to the bias electrode 49, and the detection electrode 48 is connected to the input terminal of the amplifier 41. When X-rays enter the semiconductor X-ray array detector 50, a number of electrons corresponding to the energy of the X-rays are generated. The electrons move toward the detection electrode 48 along the lines of electric force to generate a charge pulse. The charge pulse is amplified by the next amplifier 41 to detect X-rays.
[0008]
The resolution and sensitivity of each pixel of the detector is determined by the arrangement interval of the detection electrodes 48, but a guard electrode 47 is provided to keep the resolution and sensitivity of each pixel uniform.
[0009]
In other words, since the electric field is disturbed at the peripheral portion of the semiconductor X-ray array detector and accurate X-ray detection cannot be performed, the peripheral portion is set as a dummy so as not to detect X-rays, and this is used as an amplifier input potential (usually around 0V). ) The X-ray detection is stabilized by fixing in the vicinity to minimize the influence of the electric field on the other detection electrodes.
[0010]
[Problems to be solved by the invention]
However, in the above-mentioned conventional technique, it is good to maintain the spatial resolution and sensitivity of each detection pixel stably and uniformly, but when changing the spatial resolution and sensitivity (sensitive volume) of the detection pixel, the detection electrode interval was changed. There was no choice but to make things.
[0011]
The present invention was devised to solve the above problems, and when it is desired to change the spatial resolution and sensitivity (sensitive volume) of the detection pixel, without producing a device in which the detection electrode interval is changed each time, An X-ray imaging apparatus capable of easily changing spatial resolution and sensitivity is provided.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an X-ray imaging apparatus according to claim 1 includes an X-ray detection unit, a bias electrode formed on one side of the X-ray detection unit, and a charge extraction electrode formed on the other side. A voltage source for providing a guard electrode between the charge extraction electrodes and applying a variable voltage to the guard electrode. Is provided.
According to a second aspect of the present invention, an X-ray imaging apparatus includes: an X-ray detection unit; a bias electrode formed on one of the X-ray detection units; a plurality of charge extraction electrodes formed on the other; In an apparatus that includes an amplifier connected to an electrode and detects an electric charge generated from the X-ray detection unit upon incidence of X-rays to form an image, the power supply voltage supplied to each amplifier is individually changed. Thus, the operating point of each amplifier is changed so that each potential of the plurality of charge extraction electrodes can be arbitrarily changed.
[0013]
[Action]
When X-rays enter the X-ray detection unit, a number of electrons corresponding to the energy of the X-rays are generated, and move to the charge extraction electrode along the lines of electric force in the X-ray detection unit.
[0014]
However, since the electric charge extraction electrode is provided with a means for controlling the electric potential, if the electric potential of the electric charge extraction electrode is changed by this control means, the lines of electric force directed from the bias electrode to the electric charge extraction electrode are changed. The sensitive volume in which the charge is accumulated is changed, and the resolution and sensitivity of the charge extraction electrode can be changed.
[0015]
【Example】
An embodiment of the present invention will be described below with reference to the drawings.
[0016]
FIG. 1 shows a main configuration diagram of an X-ray imaging apparatus according to the present invention.
[0017]
1 is a semiconductor X-ray array detector, 2 is a bias electrode, 3 is an X-ray detector such as a semiconductor X-ray crystal, 4 is a guard electrode that does not detect charges, 5a to 5c are detection electrodes for detecting charges, 6 Is an amplifier, and 7 is a switch as means for controlling the potential of the guard electrode 4.
[0018]
The semiconductor X-ray array detector 1 includes a bias electrode 2, an X-ray detector unit 3, a guard electrode 4, and detection electrodes 5 a to 5 c, and a reverse bias voltage (−V B ) is applied to the bias electrode 2. Each detection electrode is connected to an amplifier 6, and the tip of the amplifier 6 is connected to a waveform shaping circuit, a comparison circuit, a counting circuit, an information processing circuit, etc. as shown in FIG. 6, and image density information is displayed on the CRT. It has come to be. The guard electrode 4 is connected to the switch 7 and one of the contacts of the switch 7 is grounded.
[0019]
When X-rays are incident on the X-ray detector unit 3, a number of electrons corresponding to the energy of the X-rays are generated. The electrons move toward the detection electrodes 5 a to 5 c along the lines of electric force and are detected as charge pulses, but this state is changed by switching the switch 7.
[0020]
FIG. 2 shows the state of electric lines of force (charge drift lines) when both of the two switches 7 are opened. Since the potential of the guard electrode 4 is open, no electric lines of force are generated between the guard electrode 4 and the bias electrode 2, and the electric lines of force are directed toward the detection electrodes 5a and 5c at the periphery of the bias electrode 2.
[0021]
Since the electrons generated in the X-ray detector unit 3 move to the respective detection electrodes along the electric force lines, the larger the range of electric force lines gathered at the respective detection electrodes, the more electrons can be accumulated, Sensitivity is improved because the sensitive volume is expanded.
[0022]
On the other hand, when the sensitive volume is widened, X-rays incident on a wide range are detected by one detection electrode, so that the spatial resolution is lowered.
[0023]
Therefore, the sensitivity of the detection pixels corresponding to the detection electrodes 5a and 5c in the figure is improved, and the spatial resolution is lowered. Further, the resolution and sensitivity of the detection pixel corresponding to the detection electrode 5b are hardly changed.
[0024]
Next, when the switch 7 is switched to the grounded contact point, the guard electrode 4 is grounded, so the state of the electric lines of force at this time is the same as in FIG. The sensitivity of the detection pixels corresponding to the detection electrodes 5a and 5c is lowered and the resolution is improved as compared with the case where is opened.
[0025]
In this way, the spatial resolution and sensitivity of the detection pixel can be easily changed.
[0026]
FIG. 3 shows a main configuration diagram of an X-ray imaging apparatus of another embodiment, and FIGS. 4 and 5 show states of electric lines of force.
[0027]
3, the same components as those in FIG. 1 are denoted by the same reference numerals. A difference from FIG. 1 is that a voltage source 8 is connected to the guard electrode 4 instead of the switch 7, and this is used as means for controlling the potential. The voltage source 8 can continuously change the supply voltage from + V s to −V s .
[0028]
Here, FIG. 4 shows the state of the electric lines of force when the voltage of the voltage source 8 is set to + V s , and electric lines of force are generated from the bias electrode 2 to the guard electrode 4 to reduce the sensitive volume. Therefore, the number of electrons moving to the detection electrodes 5a and 5c decreases, the spatial resolution of the detection pixels corresponding to the detection electrodes 5a and 5c improves, and the sensitivity decreases.
[0029]
On the other hand, FIG. 5 shows the state of the electric lines of force when the voltage of the voltage source 8 is −V s , and no electric lines of force are generated from the bias electrode 2 to the guard electrode 4, increasing the sensitive volume. Therefore, the spatial resolution of the detection pixels corresponding to the detection electrodes 5a and 5c is reduced, and the sensitivity is improved. The spatial resolution and sensitivity of the detection pixel corresponding to the detection electrode 5b hardly change even if the potential of the guard electrode 4 changes.
[0030]
If the voltage of the voltage source 8 is continuously changed, the state of the electric lines of force changes accordingly, so that the spatial resolution and sensitivity of the detection pixel can be changed.
[0031]
In the above embodiment, the potentials of the two guard electrodes 7 are changed in the same direction. However, these may be changed individually, and the detection result of each detection electrode is fed back during X-ray detection, and the guard electrode 7 is fed back. The potential applied to 7 may be optimized. Moreover, it can also comprise so that the electric potential of a guard electrode can be operated from the exterior of an apparatus.
[0032]
Furthermore, in the embodiment described above, since the spatial resolution and sensitivity of the detection pixel corresponding to the detection electrode 5b cannot be changed, the guard electrode and the detection electrode are alternately arranged and the space of the detection pixel corresponding to all the detection electrodes. The resolution and sensitivity may be changed. However, in this case, since the guard electrode is an electrode that does not detect charges, a dead region is generated over a wide range of the semiconductor X-ray array detector when the guard electrode is grounded or at a positive potential.
[0033]
Therefore, the input potential of the amplifier connected to each detection electrode, that is, the potential of the detection electrode may be controlled without using the guard electrode. As an example of this case, there is a method of changing the operating point of each amplifier by individually changing the power supply voltage ± V D supplied to each amplifier 6 as shown in FIG. In this way, as a result, the potentials of the detection electrodes 5a to 5e can be arbitrarily changed, so that the spatial resolution and sensitivity of the detection pixels can be arbitrarily controlled.
[0034]
【The invention's effect】
As described above, according to the X-ray imaging apparatus of the present invention, since the potential of the charge extraction electrode is changed as necessary, the state of the electric lines of force generated between the bias electrode and the charge extraction electrode Changes, and the sensitive volume with respect to the detection pixel can be increased or decreased, so that the spatial resolution and sensitivity can be easily changed without manufacturing a device in which the detection electrode interval is changed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an X-ray imaging apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing lines of electric force when the potential of the guard electrode in FIG. 1 is opened.
FIG. 3 is a diagram showing a configuration of an X-ray imaging apparatus according to another embodiment of the present invention.
4 is a diagram showing lines of electric force when a potential of + V s is applied to the guard electrode of FIG. 3;
5 is a diagram showing electric lines of force when a potential of −V s is applied to the guard electrode of FIG. 3;
FIG. 6 is a diagram illustrating a configuration of an X-ray imaging apparatus according to an embodiment that does not use a guard electrode.
FIG. 7 is a diagram illustrating an overall configuration of an X-ray imaging apparatus.
FIG. 8 is a diagram showing a main part of a conventional X-ray imaging apparatus.

Claims (2)

X線検出部と、このX線検出部の一方に形成されたバイアス電極と、他方に形成された複数の電荷取り出し電極とを備え、X線の入射によりこのX線検出部から発生する電荷を検出して画像を形成する装置において、前記電荷取り出し電極間にガード電極を交互に設けると共に、前記ガード電極に可変の電圧を印加する電圧源を設けたことを特徴とするX線撮像装置。 An X-ray detection unit, a bias electrode formed on one side of the X-ray detection unit, and a plurality of charge extraction electrodes formed on the other side, charge generated from the X-ray detection unit upon incidence of X-rays In the apparatus for detecting and forming an image, an X-ray imaging apparatus, wherein guard electrodes are alternately provided between the charge extraction electrodes, and a voltage source for applying a variable voltage to the guard electrodes is provided. X線検出部と、前記X線検出部の一方に形成されたバイアス電極と、他方に形成された複数の電荷取り出し電極と、それぞれの電荷取り出し電極に接続された増幅器を備え、X線の入射により前記X線検出部から発生する電荷を検出して画像を形成する装置において、前記それぞれの増幅器に供給されている電源電圧を個別に変化させて各増幅器の動作点を変化させ、前記複数の電荷取り出し電極の各電位を任意に変更できるようにしたことを特徴とするX線撮像装置。An X-ray detection unit, a bias electrode formed on one side of the X-ray detection unit, a plurality of charge extraction electrodes formed on the other side, and an amplifier connected to each of the charge extraction electrodes are provided. In the apparatus for forming an image by detecting charges generated from the X-ray detection unit, the power supply voltage supplied to each amplifier is individually changed to change the operating point of each amplifier, An X-ray imaging apparatus characterized in that each potential of a charge extraction electrode can be arbitrarily changed.
JP23801094A 1994-09-30 1994-09-30 X-ray imaging device Expired - Fee Related JP3732244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23801094A JP3732244B2 (en) 1994-09-30 1994-09-30 X-ray imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23801094A JP3732244B2 (en) 1994-09-30 1994-09-30 X-ray imaging device

Publications (2)

Publication Number Publication Date
JPH08102890A JPH08102890A (en) 1996-04-16
JP3732244B2 true JP3732244B2 (en) 2006-01-05

Family

ID=17023809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23801094A Expired - Fee Related JP3732244B2 (en) 1994-09-30 1994-09-30 X-ray imaging device

Country Status (1)

Country Link
JP (1) JP3732244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881071B2 (en) * 2006-05-30 2012-02-22 株式会社日立製作所 Radiation detector and radiation imaging apparatus equipped with the same
JP5560338B2 (en) 2010-07-30 2014-07-23 株式会社リガク X-ray stress measurement device

Also Published As

Publication number Publication date
JPH08102890A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US5677539A (en) Semiconductor radiation detector with enhanced charge collection
EP0276229B1 (en) Dose measurement and uniformity monitoring system for ion implantation
US6330303B1 (en) X-ray imaging apparatus
US7388534B2 (en) Adaptive data acquisition for an imaging system
JPH08257026A (en) Digital x-ray photographing device
JP2003529425A (en) Method and apparatus for automatic illumination control using local capacitive coupling in a matrix-addressed imaging panel
JPH0284942A (en) Dental x-ray diagnostic apparatus
JPH09511616A (en) Imaging system with variable electrode arrangement and processing
US20100134480A1 (en) Drive circuit for semiconductor image sensor array
JP3732244B2 (en) X-ray imaging device
JP4823480B2 (en) Sensor apparatus and method for digital scan imaging
KR100788082B1 (en) X-ray diagnosis apparatus
US20030095629A1 (en) Arrangement of sensor elements
US9812475B2 (en) Detector arrangement and corresponding operating method wherein the detector is a semi-conductor detector which is switchable between collection states with selected subpixel sensitivity
EP1136798B1 (en) Photodetector device
JPS6017269B2 (en) Offset voltage removal device in video signal processing
EP0842539A1 (en) Method and apparatus of operating a dual gate tft electromagnetic radiation imaging device
JPH0572345A (en) Radiographic camera
JP3008621B2 (en) Radiation measurement device
EP0392794B1 (en) Optical signal detector
US20140175297A1 (en) Imaging array and method for supporting automatic exposure control in a radiographic system
JP3533774B2 (en) X-ray imaging device
JPH04122882A (en) Charged particle measuring apparatus and light intensity waveform measuring apparatus
RU2040862C1 (en) Television analyzer having matrix of charge-coupling units
SU1758538A1 (en) Device for nondestructive control of objects

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees