JP3731916B2 - Manufacturing method of ceramic laminated piezoelectric element - Google Patents

Manufacturing method of ceramic laminated piezoelectric element Download PDF

Info

Publication number
JP3731916B2
JP3731916B2 JP3430995A JP3430995A JP3731916B2 JP 3731916 B2 JP3731916 B2 JP 3731916B2 JP 3430995 A JP3430995 A JP 3430995A JP 3430995 A JP3430995 A JP 3430995A JP 3731916 B2 JP3731916 B2 JP 3731916B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
laminated piezoelectric
ceramic laminated
ceramic
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3430995A
Other languages
Japanese (ja)
Other versions
JPH08213667A (en
Inventor
徹 江崎
孝宏 山川
裕 丸山
信行 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Taiheiyo Cement Corp
Original Assignee
Canon Inc
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Taiheiyo Cement Corp filed Critical Canon Inc
Priority to JP3430995A priority Critical patent/JP3731916B2/en
Publication of JPH08213667A publication Critical patent/JPH08213667A/en
Application granted granted Critical
Publication of JP3731916B2 publication Critical patent/JP3731916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、セラミックス積層圧電体素子の製造方法に関し、特に分極工程の際の位置合わせが容易で、しかも平面度の高い素子を製造することが可能な、セラミックス積層圧電体素子の製造方法に関するものである。
【0002】
【従来の技術】
従来、例えば超音波モータ用素子として使用されるセラミックス積層圧電体素子を製造するにあたっては、先ず圧電体粉末にバインダー等を混合して得られたスラリーを、押出し成形或いはドクターブレード法等により薄肉のグリーンシートに成形し、該グリーンシートに貫通孔を穿設して導電ペーストを充填することにより層間配線を形成すると共に、そのグリーンシートの板面に二分割、或いは四分割電極を導電ペーストを用いてスクリーン印刷法等により形成する。
【0003】
次に、電極及び層間配線が形成された上記グリーンシートを、必要枚数、所定の順番で積み上げ、グリーンシート中のバインダーによって積み上げた複数枚のグリーンシートが一体化するように適当な温度と圧力を加えた後、焼成収縮を見込んだ寸法で、例えば打抜きプレス等の手段による剪断加工で製品形状である例えば円板状に複数枚が一体化した上記グリーンシートを加工する。
【0004】
続いて、製品形状に加工された上記グリーンシートの積層体を、気密性のさや内において焼成し、その後、該円板状のセラミックス焼結体101を、図4に示したように分極装置102のステージ103上に形成された円形凹部104に搭載し、セラミックス焼結体101の内部に存在する上記電極及び層間配線と導通する表面電極105と、分極装置102の分極用端子ピン106とを位置合わせし、実験により求めた適正な分極条件(温度、電圧、時間)でセラミックスを分極させ、セラミックス積層圧電体素子を製造していた。
【0005】
【発明が解決しようとする課題】
しかしながらここで、上記従来の製造方法においては、分極工程中においてその製品形状が円板状のもので有る場合には、図4に示したように円板状の素子材料101を、分極装置102の円形凹部104内において位置合わせすることとなり、その位置合わせは、円板状の素子材料101が円形凹部104内において容易に回転することから、困難な作業となり、分極処理作業に多くの時間を要していた。
【0006】
また、従来の製造方法は、焼成前のグリーンシート積層体の段階で素子材料を剪断加工により製品形状に加工するものであるため、その剪断加工時の応力やひずみが加工製品の外周辺部に残り、この残留応力とひずみが原因で焼成後のセラミックス焼結体に反りが発生し、またその後の分極処理によって生じるひずみも前記セラミックス焼結体の反りに加わり、出来上がったセラミックス積層圧電体素子の平面度は悪いものとなっていた。
【0007】
本発明は、上述した従来のセラミックス積層圧電体素子の製造方法が有する課題に鑑み成されたものであって、その目的は、分極工程の際の位置合わせが容易で、しかも平面度の高い素子を製造することが可能な、セラミックス積層圧電体素子の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記した目的を達成するために、製品形状に加工する工程を、分極する工程の後に行なうこととした。
即ち、本発明は、グリーンシートに設けられた貫通孔に層間配線を、該グリーンシートの板面に電極を形成し、該電極及び層間配線が形成された複数枚のグリーンシートを積層し、該積層体を焼成して一体化させた後、得られた焼結体を多角形からなる板形状の状態でその内部に存在する上記電極及び層間配線と導通する最上部の層間配線である表面電極を利用して分極し、その後製品形状である円板状に加工するセラミックス積層圧電体素子の製造方法とした。
【0009】
また、本発明は、少なくとも上記表面電極を利用して分極する工程を、1個或いは複数個のセラミックス積層圧電体素子が含まれる四角板形状に加工された状態で行なうセラミックス積層圧電体素子の製造方法とした。
【0010】
【作用】
上記した本発明にかかるセラミックス積層圧電体素子の製造方法は、製品形状に加工する工程を、分極工程の後に行なうこととしたことに特徴を有するものであり、この方法を採ることによる作用を、以下、説明する。
【0011】
従来のセラミックス積層圧電体素子の製造方法は、上記「従来の技術」の項において記載したように、焼成及び分極工程前に積層されたグリーンシートを剪断加工により製品形状に加工していた。
【0012】
この工程順序は、グリーンシートの積層前に各々のグリーンシートに貫通孔に充填された導電ペースト等によって層間配線が形成されていない場合においては、積層されたグリーンシートの側面を利用して内部電極を導電ペースト等により接続する必要が生じることから従わなければならない工程順序となるが、積層前のグリーンシートに電極と共に層間配線が既に形成されている場合においては、この電極及び層間配線に導通する表面電極(最上部の層間配線)を用いて製品形状加工前においてもその分極処理が可能となるため、このような層間配線が積層されたグリーンシートに既に形成されている場合においては、この工程順序に必ずしも従う必要はないものである。
【0013】
また、焼成後のセラミックス焼結体に反りが生じる最大の原因は、積層されたグリーンシートを製品形状に剪断加工する際、その剪断加工時の応力とひずみが加工製品の外周辺部に残り、この残留応力とひずみが原因で焼成後のセラミックス焼結体に反りが発生するものであった。
【0014】
さらに、分極時の位置合わせを困難なものとしていた原因は、通常セラミックス積層圧電体素子はその分極時に2ヵ所以上の表面電極と導通を取る必要があり、その素子の分極装置内における位置決めはかなりの精度で成される必要があるが、分極時に製品形状である例えば円板状に既に加工された素子においては、分極装置内に位置決めされた後においても僅かな振動によって回転してしまい、その位置合わせを何度も繰り返さなければならなかったことによる。
【0015】
そこで、本発明においては、積層前のグリーンシートに電極と共に層間配線を予め形成し、この電極及び層間配線が形成された積層体の製品形状への加工を、焼成及び分極工程の後に行なうこととすることにより、焼成前のグリーンシートに応力やひずみが生じないようにし、焼成後の反りという課題を解決すると共に、製品形状が板状の素子において分極はその製品形状加工前の多角形からなる板形状、例えば四角板形状で行なうことにより、分極時の位置合わせを容易なものとすることができた。
【0016】
また、本発明においては、分極工程の後に製品形状に素子材料を加工するものであるため、その仕上加工作業は、柔らかいグリーンシートの段階で行なっていた従来技術よりも慎重さを必要としない作業となり、しかも圧電体として用いられるセラミックスは、通常、焼成後においても比較的加工のし易い硬さのものであるため、コストアップにならずにその加工ができる。
なお、この製品形状への加工方法としては、研削等の機械加工の他、レーザー加工等によっても行なうことができる。
【0017】
なお、上記製品形状加工前の少なくとも分極工程は、四角板形状に仮加工された状態で行なわれることが、分極の際の位置決めが確実になされることからも好ましい。
これは、本発明にかかる製造方法においては、焼成及び分極工程の後に製品形状に素子材料を加工するものであるため、分極工程においては位置合わせが容易な形状であればどの様な形状、例えば四角板形状以外の三角板形状、或いは五角板形状で行なっても良いこととなるが、その作り方まで考えた場合には、四角板形状に仮加工することが最良となる。
【0018】
なお、分極工程前に素子材料を四角板形状に仮加工する方法しては、図2に示すように必要枚数のグリーンシートを熱圧着により一体化したグリーンシート積層体5に、四角板形状にしたい箇所、例えば積層体に存在する複数の縦、横に並ぶ素子6と素子6との間に金属刃等を用いて片面、或いは両面に適当な深さの分割溝7(図中破線で示す)を形成し、焼成前或いは焼成後にその位置で例えば手で折り曲げて分割する。
この場合の溝の深さは、使用する圧電体材料、素子材料の厚み、或いは焼成条件等により異なるため、正確には実験により求めることとなるが、概ね素子材料の厚みの1/10程度の深さの溝を形成すれば良い。
また、この分割溝を作る溝入れ加工は、積層体に対し刃を垂直に押し当てるか、所謂引き切り、押し切り等により形成する。刃の両側には積層体を押さえるためのストリッパーを取り付け、該ストリッパーは積層体を押す力と、刃の上下駆動とのタイミングを適正な条件にして使用する。
【0019】
勿論、上記したように金属刃により分割溝を形成しなければならない必要はなく、セラミックス刃、或いはレーザー光線等により溝を形成しても良い。また、溝を入れた積層体をそのまま焼成し、その後に溝に沿って分割するのが最も破面がきれいなものとなり、また焼成前に複数個の素子を同時に一体でハンドリングできるので作業性も良好となる。勿論、焼成前に溝に沿って全て分割してしまっても良い。また、積層体に上記した溝を形成することなく、積層体の焼成後にダイシング、或いはレーザー加工等で素子材料である焼結体を四角板形状に仮加工しても良いが、この方法による場合は、加工性が悪く、また加工コストが高くなる。
【0020】
なお、万一この四角板形状に仮加工する際に、応力ひずみが加工製品の外周辺部に残り、この残留応力が原因で焼成後のセラミックス焼結体に反りが発生したとしても、この外周辺部反りは、後の製品形状への加工の際に切り落とすことができ、問題とならない。
【0021】
以上、説明したセラミックス積層圧電体素子の製造方法は、製品形状への加工工程を、焼成及び分極工程の後に行なうこととすることにより、焼成後の素子の反り、分極時の位置合わせの困難性という従来技術の課題を同時に解決することが可能となると共に、仮加工も容易で、焼成作業性も向上できるセラミックス積層圧電体素子の製造方法となる。
【0022】
【実施例・比較例】
以下、上記した本発明の実施例を、比較例と共に詳細に説明する。
【0023】
−実施例−
先ず、PZT系圧電体粉末に、ポリアクリル系のバインダーを混合して得られたスラリーを、ドクターブレード法により膜厚150μmのグリーンシートに成形した。
【0024】
次に、成形したグリーンシートの所定の位置に、直径150μmの貫通孔を複数穿設し、該貫通孔にスクリーン印刷法により導電ペーストを充填することにより層間配線を形成すると共に、そのグリーンシートの板面に四分割電極を導電ペーストを用いて同じくスクリーン印刷法により複数形成した。
導電材料には、Ag−Pdを用いた。
【0025】
次に、電極及び層間配線が印刷された上記グリーンシートを、必要枚数(ここでは25枚)、所定の順番で積み上げ、90℃、250Kg/cm2、5分間の熱プレスを行い、グリーンシート積層体を得た。
グリーンシート積層体は、縦横100mmサイズで、その中に直径13mmの積層圧電体素子となる部分が、縦6列、横6列、合計36個配置されている(図1参照)。但し図1には、表面電極となる層間配線、及び四分割電極のみを記載し、他の層間配線は省略してある。
【0026】
続いて、グリーンシート積層体の各々の素子となる部分の間に、厚さ0.2mmの金属刃を用いて溝入れ加工を行い、分割溝を積層体の片面に深さ0.3mmで形成した(図2参照)。
分割溝は、金属刃を積層体の板面に垂直に押し当てることにより形成した。
【0027】
次に、焼成前の積層体を上記分割溝に沿って4分割し、得られた縦横50mmの積層体を気密性のさや内において焼成した。焼成条件は、温度1200℃、時間2hr程度で行なった。
【0028】
焼成後に、上記分割溝に沿って焼結体を各素子部分に全て分割し、得られた36個の四角板形状の焼結体の1個づつの素子6を、各々図3に示したように分極装置8のステージ9上に形成された凹部10に搭載し、素子6の内部に存在する電極及び層間配線と導通する表面電極1と、分極装置8の分極用端子ピン11とを位置合わせし、140℃の空気雰囲気中において直流電圧500Vを30分間印加し、分極処理を行なった。
【0029】
分極処理の終了後、本実施例の積層圧電体素子は円板状で使用するため、角部を削り落とすための外径加工を円筒研削盤を用いて行ない、36個の円板状のセラミックス積層圧電体素子を得た。
【0030】
得られた円板状のセラミックス積層圧電体素子は、36個の全てが分極されており、また、素子の反りを測定したところ、その全てが10μm以下で、良好な平面度を有する素子であった。
【0031】
また別に、上記実施例において9個の素子部分を含む縦横50mmの焼結体4枚を、分割することなくそのままの状態で分極処理を9個同時分極が可能な分極装置を用いて各々分極処理を行い、その後各素子部分毎に分割し、上記実施例と同様に各々の素子について外形加工を行って得られた36個の円板状セラミックス積層圧電体素子について、その反りを測定したところ、全て20μm以下で、良好な平面度を有する素子であった。
【0032】
−比較例−
比較例として、外径を焼成工程前に製品形状である円板状に剪断加工により形成し、その後に焼成及び分極を行ない、円板状のセラミックス積層圧電体素子を製造した。
実施例と異なる点は以上の点のみで、使用材料、その他各工程条件等は、実施例と同様にして行なった。
【0033】
得られた円板状のセラミックス積層圧電体素子は、分極処理時の分極用端子ピンの位置合わせ不良により、36個中3個の分極不良が発生し、しかも分極時の位置合わせは困難なものであった。また、素子の反りを測定したところ、その全ての素子において100μm〜130μmの大きな反りが発生していた。
【0034】
【発明の効果】
以上、説明した本発明にかかるセラミックス積層圧電体素子の製造方法は、最終的製品形状である円板状に加工する工程を、焼成及び分極工程の後に行なうこととしたことに特徴を有するものであり、この方法を採ることにより、分極工程の際の位置合わせが容易で、しかも平面度の高い素子を製造することが可能となると共に、簡単に仮加工が行え、さらに焼成及び分極時に1個毎に焼成或いは分極することなく、多数個一体の状態で焼成及び分極することも可能となるため、焼成及び分極作業が容易となる効果も有する。
【図面の簡単な説明】
【図1】本発明にかかるセラミックス積層圧電体素子の製造工程中、グリーンシートの積層工程を示した概念的な斜視図である。
【図2】本発明にかかるセラミックス積層圧電体素子の製造工程中、グリーンシートの積層体に溝を形成した状態を示した概念的な平面図と側面図である。
【図3】本発明にかかるセラミックス積層圧電体素子の製造工程中、分極工程を示した概念的な斜視図である。
【図4】従来のセラミックス積層圧電体素子の製造工程中、分極工程を示した概念的な斜視図である。
【符号の説明】
1 表面電極及び層間配線
2 グリーンシート
3 四分割電極及び層間配線
4 グリーンシート
5 グリーンシート積層体
6 素子
7 分割溝
8 分極装置
9 分極装置のステージ
10 ステージ上に形成された四角凹部
11 分極装置の分極用端子ピン
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a ceramic multilayer piezoelectric element, and more particularly to a method for manufacturing a ceramic multilayer piezoelectric element that can be easily aligned at the time of a polarization process and that can be manufactured with high flatness. It is.
[0002]
[Prior art]
Conventionally, when manufacturing a ceramic laminated piezoelectric element used as an element for an ultrasonic motor, for example, first, a slurry obtained by mixing a binder with a piezoelectric powder is thinned by extrusion molding or a doctor blade method. Form a green sheet, drill through holes in the green sheet and fill it with conductive paste to form interlayer wiring, and use a conductive paste with two- or four-divided electrodes on the surface of the green sheet And formed by a screen printing method or the like.
[0003]
Next, the above-mentioned green sheets on which electrodes and interlayer wiring are formed are stacked in the required number and in a predetermined order, and an appropriate temperature and pressure are applied so that a plurality of green sheets stacked by the binder in the green sheets are integrated. After the addition, the above-mentioned green sheet in which a plurality of sheets are integrated into a product shape, for example, a disk shape, is processed by a shearing process using, for example, a punching press or the like with a dimension allowing for firing shrinkage.
[0004]
Subsequently, the laminate of the green sheets processed into the product shape is fired in an airtight sheath, and then the disk-shaped ceramic sintered body 101 is converted into a polarization device 102 as shown in FIG. The surface electrode 105 that is mounted on the circular recess 104 formed on the stage 103 and is electrically connected to the above-described electrodes and interlayer wirings in the ceramic sintered body 101 and the polarization terminal pin 106 of the polarization device 102 are positioned. In addition, ceramics were polarized under appropriate polarization conditions (temperature, voltage, time) obtained through experiments to produce a ceramic laminated piezoelectric element.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional manufacturing method, when the product shape is a disk shape during the polarization step, the disk-shaped element material 101 is replaced with the polarization device 102 as shown in FIG. In the circular recess 104, the alignment is difficult, because the disk-shaped element material 101 easily rotates in the circular recess 104, and it takes a lot of time for the polarization processing work. It was necessary.
[0006]
In addition, since the conventional manufacturing method is to process the element material into a product shape by shearing at the stage of the green sheet laminate before firing, the stress and strain at the time of the shearing process are applied to the outer peripheral part of the processed product. The remaining stress and strain cause warping of the sintered ceramic body after firing, and distortion caused by the subsequent polarization treatment is also added to the warp of the ceramic sintered body, and the finished ceramic laminated piezoelectric element Flatness was bad.
[0007]
The present invention has been made in view of the problems of the above-described conventional method for manufacturing a ceramic laminated piezoelectric element, and its purpose is to provide an element that can be easily aligned during the polarization step and has a high degree of flatness. It is an object of the present invention to provide a method for manufacturing a ceramic laminated piezoelectric element capable of manufacturing the above.
[0008]
[Means for Solving the Problems]
In the present invention, in order to achieve the above-described object, the step of processing into a product shape is performed after the step of polarizing.
That is, the present invention comprises forming an interlayer wiring in a through hole provided in a green sheet, forming an electrode on a plate surface of the green sheet, laminating a plurality of green sheets on which the electrode and the interlayer wiring are formed, After the laminated body is fired and integrated, the obtained sintered body is in the form of a polygonal plate , and the surface electrode is the uppermost interlayer wiring that is electrically connected to the above-described electrode and interlayer wiring. The method of manufacturing a ceramic laminated piezoelectric element is obtained by polarization using the above and then processed into a disk shape as a product shape.
[0009]
The present invention also provides a method for producing a ceramic laminated piezoelectric element in which the polarization step using at least the surface electrode is performed in a state of being processed into a square plate shape including one or a plurality of ceramic laminated piezoelectric elements. It was a method.
[0010]
[Action]
The above-described method for manufacturing a ceramic laminated piezoelectric element according to the present invention is characterized in that the step of processing into a product shape is performed after the polarization step, and the effect of adopting this method is as follows: This will be described below.
[0011]
In the conventional method for manufacturing a ceramic laminated piezoelectric element, as described in the above-mentioned section “Prior Art”, green sheets laminated before firing and polarization steps are processed into a product shape by shearing.
[0012]
In the case where the interlayer wiring is not formed by the conductive paste filled in the through holes in each green sheet before the lamination of the green sheets, this process sequence is performed using the side surfaces of the laminated green sheets. However, when the interlayer wiring is already formed together with the electrode on the green sheet before lamination, it is conducted to the electrode and the interlayer wiring. Since the polarization treatment is possible even before product shape processing using the surface electrode (the uppermost interlayer wiring), this process is performed when such an interlayer wiring is already formed on the laminated green sheet. It is not always necessary to follow the order.
[0013]
In addition, the biggest cause of warping of the sintered ceramic body after firing is that when the laminated green sheet is sheared into a product shape, the stress and strain during the shearing process remain in the outer periphery of the processed product, Due to this residual stress and strain, warpage occurred in the sintered ceramic body after firing.
[0014]
Furthermore, the cause of the difficulty in alignment during polarization is that the ceramic laminated piezoelectric element usually needs to be connected to two or more surface electrodes during polarization, and the positioning of the element in the polarization device is considerable. However, in an element that has already been processed into a disk shape that is a product shape at the time of polarization, for example, it is rotated by slight vibration even after being positioned in the polarization device. This is because the alignment had to be repeated many times.
[0015]
Therefore, in the present invention, an interlayer wiring is formed in advance together with an electrode on the green sheet before lamination, and processing of the laminated body formed with the electrode and the interlayer wiring into a product shape is performed after the firing and polarization steps. by, as in the green sheet before firing stress and strain do not occur, as well as solve the problem of warping after firing, the product shape is a disc-shaped element, the polarization is the product shape before processing polygon By using a plate shape made of, for example, a square plate shape, alignment at the time of polarization could be facilitated.
[0016]
Further, in the present invention, since the element material is processed into a product shape after the polarization process, the finishing work is an operation that does not require more care than the conventional technique performed at the soft green sheet stage. In addition, since the ceramic used as the piezoelectric body is usually hard enough to be processed even after firing, it can be processed without increasing the cost.
In addition, as a processing method to this product shape, it can carry out also by laser processing etc. besides mechanical processing, such as grinding.
[0017]
In addition, it is preferable that at least the polarization step before the product shape processing is performed in a state of being preliminarily processed into a quadrangular plate shape from the viewpoint of ensuring positioning during polarization.
This is because , in the manufacturing method according to the present invention, the element material is processed into a product shape after the firing and polarization steps, so any shape can be used as long as the alignment is easy in the polarization step, for example, A triangular plate shape other than the square plate shape or a pentagonal plate shape may be used. However, when considering how to make the plate shape, it is best to perform temporary processing into a square plate shape.
[0018]
In addition, as a method of temporarily processing the element material into a square plate shape before the polarization step, as shown in FIG. 2, the green sheet laminate 5 in which a required number of green sheets are integrated by thermocompression bonding is formed into a square plate shape. A parting groove 7 (shown by a broken line in the figure) having an appropriate depth on one side or both sides using a metal blade or the like between a plurality of vertically and horizontally arranged elements 6 and elements 6 present in the laminated body, for example, ), And after being fired or after firing, for example, it is bent by hand and divided.
In this case, the depth of the groove varies depending on the piezoelectric material used, the thickness of the element material, or the firing conditions, and therefore, the depth of the groove is accurately determined by experiment, but is approximately 1/10 of the thickness of the element material. A groove having a depth may be formed.
In addition, the grooving process for forming the divided grooves is formed by pressing the blade vertically against the laminated body, or by so-called cutting or pressing. A stripper for pressing the laminate is attached to both sides of the blade, and the stripper is used under the proper conditions of the pressing force of the laminate and the vertical drive of the blade.
[0019]
Of course, it is not necessary to form the dividing groove with a metal blade as described above, and the groove may be formed with a ceramic blade or a laser beam. In addition, firing the laminated body with the groove as it is and then dividing it along the groove gives the cleanest fracture surface, and since multiple elements can be handled simultaneously and integrally before firing, workability is also good It becomes. Of course, all may be divided along the groove before firing. In addition, without forming the above-described grooves in the laminate, the sintered body, which is an element material, may be temporarily processed into a square plate by dicing or laser processing after the laminate is fired. Has poor processability and high processing costs.
[0020]
In the unlikely event that provisional processing is performed into this square plate shape, even if stress strain remains in the outer peripheral portion of the processed product, and this residual stress causes warping in the sintered ceramic body, Peripheral warpage can be cut off during subsequent processing into a product shape, and does not cause a problem.
[0021]
As described above, the manufacturing method of the ceramic laminated piezoelectric element described above is such that the processing step into the product shape is performed after the firing and polarization steps, so that the warped elements after firing and the difficulty in alignment during polarization. Thus, it is possible to solve the above-mentioned problems of the prior art at the same time, and it is possible to provide a method for manufacturing a ceramic laminated piezoelectric element that can be easily processed temporarily and can improve firing workability.
[0022]
[Examples and Comparative Examples]
Hereinafter, examples of the present invention described above will be described in detail together with comparative examples.
[0023]
-Example-
First, a slurry obtained by mixing a polyacrylic binder with PZT piezoelectric powder was formed into a green sheet having a thickness of 150 μm by a doctor blade method.
[0024]
Next, a plurality of through holes having a diameter of 150 μm are formed at predetermined positions of the formed green sheet, and an interlayer wiring is formed by filling the through holes with a conductive paste by a screen printing method. A plurality of quadrant electrodes were formed on the plate surface by the same screen printing method using a conductive paste.
Ag—Pd was used as the conductive material.
[0025]
Next, the above-mentioned green sheets on which electrodes and interlayer wiring are printed are stacked in the required number (here 25 sheets) in a predetermined order, and subjected to hot pressing at 90 ° C., 250 kg / cm 2 for 5 minutes to laminate the green sheets. Got the body.
The green sheet laminate has a size of 100 mm in length and breadth, and a portion of the green sheet laminate having a diameter of 13 mm is arranged in a total of 36 rows in 6 rows and 6 rows (see FIG. 1). However, FIG. 1 shows only the interlayer wiring to be the surface electrode and the quadrant electrode, and other interlayer wiring is omitted.
[0026]
Subsequently, a grooving process is performed between each element portion of the green sheet laminate using a metal blade having a thickness of 0.2 mm to form a division groove with a depth of 0.3 mm on one side of the laminate. (See FIG. 2).
The dividing groove was formed by pressing a metal blade perpendicularly to the plate surface of the laminate.
[0027]
Next, the laminated body before firing was divided into four along the dividing grooves, and the obtained laminated body having a length and width of 50 mm was fired in an airtight sheath. The firing conditions were a temperature of 1200 ° C. and a time of about 2 hours.
[0028]
After firing, the sintered body is all divided into the element portions along the dividing grooves, and the obtained element 6 of each of the 36 square plate-shaped sintered bodies is as shown in FIG. Are mounted in a recess 10 formed on the stage 9 of the polarization device 8, and the surface electrode 1 that is electrically connected to the electrodes and interlayer wiring existing inside the element 6 is aligned with the terminal pin 11 for polarization of the polarization device 8. Then, a DC voltage of 500 V was applied for 30 minutes in an air atmosphere at 140 ° C. to perform polarization treatment.
[0029]
After the polarization process is completed, the laminated piezoelectric element of this example is used in a disk shape, so that outer diameter processing for scraping off the corners is performed using a cylindrical grinder, and 36 disk-shaped ceramics A laminated piezoelectric element was obtained.
[0030]
In the obtained disk-shaped ceramic laminated piezoelectric element, all 36 were polarized, and when the warpage of the element was measured, all of them were elements having a flatness of 10 μm or less. It was.
[0031]
Separately, in each of the above-described embodiments, each of the four sintered bodies having a length and width of 50 mm each including nine element portions is subjected to polarization treatment using a polarization apparatus capable of simultaneously polarizing nine pieces without being divided. And then dividing each element part, and measuring the warpage of 36 disk-shaped ceramic laminated piezoelectric elements obtained by performing external processing on each element in the same manner as in the above example, All of the devices had a flatness of 20 μm or less.
[0032]
-Comparative example-
As a comparative example, the outer diameter was formed into a disk shape which is a product shape before the firing step by shearing, and then fired and polarized to produce a disk-shaped ceramic laminated piezoelectric element.
The difference from the example was only the above point, and the materials used and other process conditions were the same as in the example.
[0033]
The obtained disk-shaped ceramic laminated piezoelectric element has 3 out of 36 polarization defects due to misalignment of the polarization terminal pins during the polarization treatment, and is difficult to align during polarization. Met. Further, when the warpage of the element was measured, a large warp of 100 μm to 130 μm was generated in all the elements.
[0034]
【The invention's effect】
As described above, the method for manufacturing a ceramic laminated piezoelectric element according to the present invention is characterized in that the step of processing into a disk shape which is the final product shape is performed after the firing and polarization steps. By adopting this method, it is easy to align during the polarization step, and it is possible to manufacture an element with high flatness, and it is possible to easily perform temporary processing, and further to 1 during firing and polarization. Since it is possible to perform firing and polarization in a state where many pieces are integrated without firing or polarization for each piece, there is also an effect that the firing and polarization operations are facilitated.
[Brief description of the drawings]
FIG. 1 is a conceptual perspective view showing a green sheet laminating process during a manufacturing process of a ceramic laminated piezoelectric element according to the present invention.
FIGS. 2A and 2B are a conceptual plan view and a side view showing a state in which grooves are formed in the green sheet laminate during the manufacturing process of the ceramic laminated piezoelectric element according to the present invention.
FIG. 3 is a conceptual perspective view showing a polarization step during the manufacturing process of the ceramic laminated piezoelectric element according to the present invention.
FIG. 4 is a conceptual perspective view showing a polarization step during the manufacturing process of a conventional ceramic laminated piezoelectric element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Surface electrode and interlayer wiring 2 Green sheet 3 Quadrant electrode and interlayer wiring 4 Green sheet 5 Green sheet laminated body 6 Element 7 Dividing groove 8 Polarizing device 9 Polarizing device stage 10 Square recessed part 11 formed on stage 11 Polarizing device Terminal pin for polarization

Claims (4)

グリーンシートに設けられた貫通孔に層間配線を、該グリーンシートの板面に電極を形成し、該電極及び層間配線が形成された複数枚のグリーンシートを積層し、該積層体を焼成して一体化させた後、得られた焼結体を多角形からなる板形状の状態でその内部に存在する上記電極及び層間配線と導通する最上部の層間配線である表面電極を利用して分極し、その後製品形状である円板状に加工することを特徴とする、セラミックス積層圧電体素子の製造方法。 An interlayer wiring is formed in a through-hole provided in the green sheet, an electrode is formed on a plate surface of the green sheet, a plurality of green sheets on which the electrode and the interlayer wiring are formed are stacked , and the stacked body is fired. After the integration, the obtained sintered body is polarized in the form of a polygonal plate using the above-described electrode existing inside and a surface electrode which is the uppermost interlayer wiring that is electrically connected to the interlayer wiring. Then, a method for producing a ceramic laminated piezoelectric element, which is then processed into a disk shape that is a product shape. 少なくとも上記表面電極を利用して分極する工程が、1個或いは複数個のセラミックス積層圧電体素子が含まれる四角板形状に加工された状態で成されることを特徴とする、請求項1記載のセラミックス積層圧電体素子の製造方法。The polarization process using at least the surface electrode is performed in a state of being processed into a square plate shape including one or a plurality of ceramic laminated piezoelectric elements. Manufacturing method of ceramic laminated piezoelectric element. 上記加工が、焼成前のグリーンシートの積層体の状態で先ずセラミックス積層圧電体素子とセラミックス積層圧電体素子の間に溝入れ加工を行い、該溝入れ加工後、この溝部に沿って積層体を分割することにより、1個或いは複数個のセラミックス積層圧電体素子が含まれる四角板形状に加工するものであることを特徴とする、請求項2記載のセラミックス積層圧電体素子の製造方法。The processing performs first grooving between the ceramic multilayer piezoelectric element and the ceramic multilayer piezoelectric element in the state of the laminate of green sheets before firing, after the groove insertion process, the laminate along the groove 3. The method of manufacturing a ceramic laminated piezoelectric element according to claim 2, wherein the ceramic laminated piezoelectric element is processed into a square plate shape including one or a plurality of ceramic laminated piezoelectric elements by dividing. 上記加工が、複数個のセラミックス積層圧電体素子が含まれる四角板形状に分割されたグリーンシートの積層体を、四角板形状のまま焼成し、その後上記溝部に沿って更に焼結体を分割することにより、1個或いは複数個のセラミックス積層圧電体素子が含まれる四角板形状に加工するものであることを特徴とする、請求項3記載のセラミックス積層圧電体素子の製造方法。The processing, the stack of green sheets that are divided into a square plate shape that includes a plurality of stacked ceramic piezoelectric element, and fired remains rectangular plate, then further divides the sintered body along the groove 4. The method for producing a ceramic laminated piezoelectric element according to claim 3, wherein the ceramic laminated piezoelectric element is processed into a square plate shape including one or a plurality of ceramic laminated piezoelectric elements.
JP3430995A 1995-01-31 1995-01-31 Manufacturing method of ceramic laminated piezoelectric element Expired - Fee Related JP3731916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3430995A JP3731916B2 (en) 1995-01-31 1995-01-31 Manufacturing method of ceramic laminated piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3430995A JP3731916B2 (en) 1995-01-31 1995-01-31 Manufacturing method of ceramic laminated piezoelectric element

Publications (2)

Publication Number Publication Date
JPH08213667A JPH08213667A (en) 1996-08-20
JP3731916B2 true JP3731916B2 (en) 2006-01-05

Family

ID=12410566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3430995A Expired - Fee Related JP3731916B2 (en) 1995-01-31 1995-01-31 Manufacturing method of ceramic laminated piezoelectric element

Country Status (1)

Country Link
JP (1) JP3731916B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065657A1 (en) * 2011-10-31 2013-05-10 株式会社村田製作所 Stacked piezoelectric element, ultrasound transducer, and method of manufacturing stacked piezoelectric element

Also Published As

Publication number Publication date
JPH08213667A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
US6260248B1 (en) Method for producing a monolithic multilayer piezo actuator
US6721163B2 (en) Stacked ceramic body and production method thereof
JPH04214686A (en) Electrostrictive effect element
US20010017502A1 (en) Multilayer piezoactuator and method for manufacturing same
JP4867276B2 (en) Manufacturing method of ceramic substrate
JPH07335478A (en) Manufacture of layered ceramic electronic component
JP2850718B2 (en) Manufacturing method of piezoelectric actuator
JP3731916B2 (en) Manufacturing method of ceramic laminated piezoelectric element
JP4771649B2 (en) Manufacturing method of multilayer electronic component
JP2856045B2 (en) Manufacturing method of ceramic substrate
JP2016219691A (en) Manufacturing method for multilayer ceramic electronic component
JP4674397B2 (en) Manufacturing method of ceramic body
JPH06151999A (en) Manufacture of laminated piezoelectric/electrostrictive actuator element
JP2539106B2 (en) Piezoelectric actuator and manufacturing method thereof
JPH08316542A (en) Manufacture of laminated piezoelectric actuator
KR20150042953A (en) Piezoelectric device and method of fabricating the piezoelectric device
JP2000332312A (en) Manufacture of laminated piezoelectric ceramic part
JPH04145674A (en) Electrostrictive effect element and production of the same
JP2002118303A (en) Piezoelectric actuator
JP2005216997A (en) Manufacturing method for laminated electronic component
JPH09266332A (en) Lamination type piezoelectric element, its manufacturing method and polarization
JPH11233846A (en) Method for manufacturing laminate piezoelectric element
JP4249465B2 (en) Multilayer piezoelectric element
JPH11274590A (en) Piezoelectric unit and its manufacture
JPH10158070A (en) Ceramic sintering jig and production of ceramic parts

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees