JP3729225B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3729225B2
JP3729225B2 JP24471997A JP24471997A JP3729225B2 JP 3729225 B2 JP3729225 B2 JP 3729225B2 JP 24471997 A JP24471997 A JP 24471997A JP 24471997 A JP24471997 A JP 24471997A JP 3729225 B2 JP3729225 B2 JP 3729225B2
Authority
JP
Japan
Prior art keywords
epoxy resin
viscosity
particle size
less
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24471997A
Other languages
Japanese (ja)
Other versions
JPH10120878A (en
Inventor
徳昌 樋口
隼明 福本
利夫 塩原
英一 浅野
和俊 富吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP24471997A priority Critical patent/JP3729225B2/en
Publication of JPH10120878A publication Critical patent/JPH10120878A/en
Application granted granted Critical
Publication of JP3729225B2 publication Critical patent/JP3729225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、溶融粘度が低く、成形性に優れ、特に薄型で多ピンの半導体装置を封止した場合における半導体装置の損傷を防止し得るエポキシ樹脂組成物の硬化物で封止された半導体装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
最近の薄型パッケージ用封止材としてのエポキシ樹脂組成物においては、充填性の向上と低吸水化の両立を図るため、非常に細かな平均粒径が1μm以下、望ましくは0.5μm以下の充填剤を多量に添加する傾向にある。このため、充填剤の比表面積が従来品に比べ非常に大きくなり、樹脂と充填剤界面の濡れが著しく悪くなり、その結果として組成物の粘度が異常に高くなり、成形性の低下を引き起こす。
【0003】
一方最近、耐半田リフロー性を改善するため、低吸水化を目的に充填剤を高充填化する方向にある。特に充填量を85重量%以上とする場合、従来より用いていた球状の充填剤では低せん断領域における粘度が非常に高くなり、ダイパッド変形やワイヤー変形、場合によっては断線を引き起こしている。
【0004】
本発明は、上記事情を改善するためになされたもので、溶融粘度が低く、成形性が高く、ダイパッド変形やワイヤー変形等の損傷のない半導体封止が可能なエポキシ樹脂組成物の硬化物で封止された半導体装置を提供することを目的とする。
【0005】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため、エポキシ樹脂組成物に高充填する無機質充填剤について鋭意検討を行った。即ち、一般に従来から製造されている無機質充填剤では微細領域の粉体粒度や比表面積が制御されていないため、充填剤を多量に配合した場合において、低せん断領域で樹脂組成物の粘度が急激に増粘しワイヤー変形を引き起こすといった問題が最近大きな課題となっており、本発明者らは、この種の不良を改善し、かつ無機質充填剤の高充填時における低粘度化を両立させる目的で、従来から提案されているように、無機質充填剤の粒度分布、比表面積及び形状について検討した。つまり、従来の無機質充填剤についての提案は、いずれも成形特性が無機質充填剤の粒度分布、比表面積、形状等の特性によって規定されているものであり、本発明者らもこれに従ったものである。しかし、従来においても充填剤の諸特性と成形性との関係が完全に把握されているわけではなく、無機質充填剤の粒度分布、比表面積及び形状のみでは最近の薄型で多ピンの大型パッケージで発生しやすい上述したような不良を防止することは困難であった。
【0006】
そこで、更に検討を進めた結果、特定の粒度と比表面積をもった充填剤を配合した組成物を作成し、せん断速度を変更して粘度を測定し、特定の粘度比となった充填剤を用いることで、成形性の良好な組成物を得ることができることを見出した。
【0007】
即ち、エポキシ樹脂と硬化剤と無機質充填剤とを必須成分とするエポキシ樹脂組成物において、無機質充填剤として、無機質充填剤全体の10〜40重量%が3μm以下の微細粒子であり、粒径0.05〜0.3μmの充填剤が充填剤全体の1〜10重量%、0.4〜0.7μmの充填剤が充填剤全体の5〜20重量%、0.8〜3μmの充填剤が充填剤全体の5〜20重量%であり、無機質充填剤全体としてのBET法(窒素吸着法)による比表面積が2.5m2/g以下であると共に、25℃のガードナーホルト法で測定したときの粘度が30〜45ポイズであるビスフェノールF型液状エポキシ樹脂に該無機質充填剤75重量%を混練した混練物を25℃においてE型粘度計を用いて測定した場合のせん断速度0.6/秒と10/秒との粘度比が2.5以下であり、かつ0.6/秒での粘度が50,000ポイズ以下である無機質充填剤を使用し、これを組成物全体の76.46〜88.52重量%配合することにより、このように無機質充填剤を高充填しても溶融粘度が低く、成形性に優れ、かつワイヤー変形等の不都合なく薄型、多ピンの半導体装置を封止し得ることを知見し、本発明をなすに至ったものである。
【0008】
従って、本発明は、エポキシ樹脂、硬化剤、無機質充填剤を必須成分とするエポキシ樹脂組成物の硬化物で封止された半導体装置において、エポキシ樹脂が、ナフタレン型エポキシ樹脂及びビフェニル型エポキシ樹脂から選ばれるものであり、無機質充填剤が、粒径0.05〜0.3μmのシリカ1〜10重量%、粒径0.4〜0.7μmのシリカ5〜20重量%、粒径0.8〜3μmのシリカ5〜20重量%を含有し、かつ粒径が3μm以下のシリカ含有量が10〜40重量%で、無機質充填剤全体としてのBET法(窒素吸着法)による比表面積が2.5m 2 /g以下、平均粒径が4〜30μmのシリカであると共に、25℃のガードナーホルト法で測定したときの粘度が30〜45ポイズであるビスフェノールF型液状エポキシ樹脂に該無機質充填剤75重量%を混練した混練物を25℃においてE型粘度計を用いて測定した場合のせん断速度0.6/秒と10/秒との粘度比が2.5以下であり、かつ0.6/秒での粘度が50,000ポイズ以下である無機質充填剤を組成物全体の76.46〜88.52重量%配合したことを特徴とするエポキシ樹脂組成物の硬化物で封止された半導体装置を提供するものである。
【0009】
以下、本発明について更に詳しく説明する。
本発明のエポキシ樹脂組成物はエポキシ樹脂、硬化剤、無機質充填剤を必須成分とする。
【0010】
本発明で使用するエポキシ樹脂としては、従来から公知の1分子あたり2個以上のエポキシ基を持ったものであ、特にビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂などが例示される。これらエポキシ樹脂の中でもナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、下記構造式で示される液晶構造を有するものが望ましい。
【0011】
【化1】

Figure 0003729225
【0012】
これらエポキシ樹脂中の全塩素含有量は1,500ppm以下、望ましくは1,000ppm以下であり、また、120℃で50%エポキシ樹脂濃度における20時間での抽出水塩素が5ppm以下であることが好ましい。全塩素含有量が1,500ppmより多く、抽出水塩素が5ppmより多いと、半導体の耐湿信頼性が低下するおそれがある。
【0013】
本発明の硬化剤としては、フェノール化合物、アミン化合物、酸無水物系化合物などエポキシ樹脂の硬化剤として従来より知られているものであればいずれのものも使用できるが、特に1分子中にフェノール性の水酸基を2個以上有するフェノール樹脂が好ましい。フェノール樹脂としては、特に、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ナフタレン型フェノール樹脂、シクロペンタジエン型フェノール樹脂や下記構造式で示されるフェノール性水酸基を含有するものなどが例示される。
【0014】
【化2】
Figure 0003729225
(式中、Rは水素原子又は炭素数1〜4のアルキル基、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基を示す。nは0〜5の整数である。)
【0015】
フェノール樹脂もエポキシ樹脂同様、120℃の温度で抽出される塩素イオンやナトリウムイオンなどはいずれも10ppm以下、望ましくは5ppm以下であることが好ましい。
【0016】
硬化剤の配合量は、エポキシ樹脂を硬化させ得る量であり、例えばフェノール樹脂を用いた場合、エポキシ樹脂とフェノール樹脂の混合割合は、エポキシ基1モルに対しフェノール性水酸基が0.5〜1.6モル、望ましくは0.6〜1.4モルであることが好適である。0.5モル未満では水酸基が不足し、エポキシ基の単独重合の割合が多くなり、ガラス転移温度が低くなる。また、1.6モルを超えるとフェノール性水酸基の比率が高くなり、反応性が低下するほか、架橋密度が低く、十分な強度が得られないものとなるおそれがある。
【0017】
本発明のエポキシ樹脂組成物には硬化促進剤を配合することができる。硬化促進剤としてはリン系、イミダゾール誘導体、シクロアミジン系誘導体などを使用することができる。硬化促進剤の量としては、エポキシ樹脂とフェノール樹脂の合計量100重量部に対し、0.01〜10重量部であることが好ましい。
【0018】
次に、本発明においては、無機質充填剤として、無機質充填剤全体の10〜40重量%が3μm以下の微細粒子であり、無機質充填剤全体としてのBET法(窒素吸着法)による比表面積が2.5m2/g以下であると共に、25℃のガードナーホルト法で測定したときの粘度が30〜45ポイズであるビスフェノールF型液状エポキシ樹脂に無機質充填剤75重量%を混練した混練物を25℃においてE型粘度計を用いて測定した場合のせん断速度0.6/秒と10/秒との粘度比が2.5以下であり、かつ0.6/秒での粘度が50,000ポイズ以下である無機質充填剤を使用するものである。
【0019】
更に詳述すると、本発明で用いる無機質充填剤の粒度分布は粒径が3μm以下の微細な粒径の充填剤が10〜40%、より望ましくは粒径0.05〜0.3μmの充填剤が1〜10%、0.4〜0.7μmの充填剤が5〜20%、0.8〜3μmの充填剤が5〜20%のものである。3μm以下の充填剤が10%未満では細密充填化が不十分のため十分に組成物の溶融粘度が低下せず、また40%を超えると微粉が多くなりすぎて樹脂と充填剤界面が十分に濡れないため逆に組成物の粘度が高くなってしまう。望ましくは10〜30%の範囲で3μm以下の充填剤が含まれることである。
【0020】
この場合、充填剤全体としては平均粒径が4〜30μmであることが好ましい。平均粒径が4μmより小さいと粘度が高くなりすぎて多量に充填できず、30μmより大きいと粗い粒径が多くなり、ゲート詰まりとなるおそれがある。また最大粒径が100μm以下、より望ましくは74μm以下の粒度分布を持つことが好ましい。
【0021】
なお、本発明においては、充填剤の最密充填化とチキソ性付与による組成物の低粘度化と樹脂組成物の流動性制御に粒径0.7μm以下の充填剤が非常に重要な役割を演ずる。より望ましい充填剤は0.05〜0.3μmの微粉の充填剤である。この種の充填剤は球状が望ましく、比表面積が10〜50m2/gのものがよい。より望ましい充填剤の比表面積は15〜40m2/gである。
【0022】
この場合、従来はチキソ性付与にはアエロジルで代表される乾式あるいは湿式の比表面積が100〜300m2/gと非常に大きな超微粉シリカが主に用いられてきたが、このものは比表面積が大きいため微量添加においても流動性に大きく影響を及ぼすことから、非常に使いづらいものである。
【0023】
なお、本発明において粒度分布及び平均粒径はレーザー回折式粒度分布測定装置(例えばシーラス社製Granulometer920など)による測定値(例えば重量平均値)である。
【0024】
次に、本発明の無機質充填剤は、その全体のBET法(窒素吸着法)による比表面積が2.5m2/g以下、望ましくは1〜2m2/gである。比表面積が2.5m2/gより大きいと、チキソ性が大きくなり、本発明で目的としている良好な成形特性が得られなくなる。
【0025】
また、本発明の無機質充填剤は、25℃(±0.05℃)におけるガードナーホルト法で測定した粘度が30〜45ポイズのビスフェノールF型液状エポキシ樹脂に75重量%混練した混練物について、E型粘度計を用いて25℃(±0.05℃)で測定したせん断速度0.6/秒の粘度V1とせん断速度10/秒の粘度V2との粘度比V1/V2が2.5以下のものを使用する。V1/V2が2.5を超えるものを使用した場合、キャビティ中を流動する際の樹脂粘度が非常に高くなり、ワイヤー変形やダイパッドシフトを引き起こす結果となる。中でも粘度比が0.5〜2.5、とりわけ0.8〜2.2の充填剤を使用すれば低せん断領域での急激な樹脂粘度の増大を防止できる。この場合、せん断速度0.6/秒での粘度V1は50,000ポイズ以下、特に5,000〜30,000ポイズであり、この粘度が50,000ポイズを超えたものはエポキシ樹脂組成物としての粘度が非常に高くなり成形性が悪くなる。
【0026】
この種の無機質充填剤を配合することで175℃におけるエポキシ樹脂組成物の溶融粘度は200ポイズ以下となり、成形特性の良好な組成物を得ることができるものである。
【0027】
なお、無機質充填剤の比表面積は高せん断速度における粘度と低せん断速度における粘度比に大きく影響している。即ち、比表面積が2.5m2/g以下であれば粘度比を2.5以下とすることが可能であることを見出した。これ以上では樹脂と充填剤界面の濡れが不十分となり、粘度が著しく高く、粘度比も2.5を超えるものとなってしまう。また、この粘度比は粒径0.7μm以下、特に0.05〜0.3μmの微細充填剤によって影響される。この領域の充填剤は容易に振動等で凝集しやすい性質を持っており、2次凝集しているような場合は影響が特に顕著になる。この2次凝集を防止したり、樹脂と充填剤界面を十分に濡らすため、予め樹脂と混練しておくことが望ましい。
【0028】
本発明に使用される充填剤としては、ボールミルなどで粉砕した溶融シリカや火炎溶融することで得られる球状シリカ、ゾルゲル法などで製造される球状シリカ、結晶シリカなどが使用される。この場合、充填剤の形状に特に限定はなく、フレーク状、樹枝状、球状等のフィラーを単独で又は混合して用いることができる。中でも球状のものが低粘度化、高充填化には最も望ましいものである。これらの充填剤は予めシランカップリング剤やチタン系カップリング剤などで表面処理したものを使用することが好ましい。
【0029】
上記無機質充填剤の配合量は、組成物全体の76.46〜88.52重量%であり、通常、エポキシ樹脂と硬化剤の総量100重量部に対し400〜1,000重量部である。配合量が少なすぎると膨張係数を十分に下げることができない上、吸水率も多くなり、半田リフローの際の温度でパッケージにクラックが入ってしまう。一方、多すぎる場合は粘度が高くなりすぎ、成形できなくなってしまう。
【0030】
本発明の組成物には、従来から公知のシリコーンゴムやゲルなどの粉末、シリコーン変性エポキシ樹脂やシリコーン変性フェノール樹脂、メタクリル酸メチル−ブタジエン−スチレンよりなる熱可塑性樹脂などを低応力化剤として添加してもよい。
【0031】
また、粘度を下げる目的のために、従来より公知のn−ブチルグリシジルエーテル、フェニルグリシジルエーテル、スチレンオキサイド、tert−ブチルフェニルグリシジルエーテル、ジシクロペンタジエンジエポキシド、フェノール、クレゾール、tert−ブチルフェノールのようなエポキシ基やフェノール性水酸基を有する希釈剤を添加することができる。
【0032】
更に、シランカップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤などのカップリング剤やカーボンブラックなどの着色剤、ノニオン系界面活性剤、フッ素系界面活性剤、シリコーンオイルなどの濡れ向上剤や消泡剤なども場合によっては添加することができる。
【0033】
製造方法としては、液状エポキシ樹脂組成物の場合は、上記した諸原料を品川ミキサーなどの撹拌混合装置を用い十分混練することで製造することができる。混練温度としては20〜50℃が望ましい。一方、粉体の場合は、高速混合機などを用い、均一に混合した後、二本ロールや連続混練装置などで十分混練すればよい。混練温度としては50〜110℃が望ましい。
【0034】
混練後、薄くシート化し冷却、粉砕することでエポキシ樹脂組成物を製造することができる。本発明の樹脂組成物は一般成形材料として、更に半導体封止材料として利用される。
【0035】
なお、成形方法としては、トランスファー成形、圧縮成形、インジェクション成形等の方法が採用でき、また成形温度は150〜185℃が好ましい。
【0036】
また、本発明のエポキシ樹脂組成物で好適に封止される半導体装置としてはデスクリートデバイス、ICやLSI、超LSIなどの高集積デバイス等が挙げられる。
【0037】
【発明の効果】
本発明のエポキシ樹脂組成物は、溶融粘度が低く、成形性もよく、この組成物で封止した半導体装置はダイパッド変形、ワイヤー変形等もなく、信頼性の高いものである。
【0038】
【実施例】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0039】
〔実施例1〜3、比較例1〜5〕
下記表1で示される充填剤(シリカ)A〜Hを充填剤の0.5重量%のγ−グリシジルオキシプロピルトリメトキシシラン;KBM403(信越化学(株)製)で表面処理した後、充填剤の特性を評価した。また、このシリカを表2の配合で混合、混練することでエポキシ樹脂組成物を作成した。更に、この樹脂組成物を用い、各種評価を行った。結果を表2に示す。
【0040】
【表1】
Figure 0003729225
【0041】
粒度分布及び平均粒径:
レーザー回折/散乱式粒度分布測定装置を用い、粒度分布を測定した。
比表面積:
上記比率で混合した充填剤の比表面積を比表面積測定装置(BET法、窒素吸着法)で測定した。
粘度比及び0.6/秒での粘度:
エポキシ当量168,粘度38ポイズ(25℃)のビスフェノールF型エポキシ樹脂;エピコート807(シェル(株)製)1gとシリカ3gをはかりとり、ガラスシャーレ上で十分に混練した後、ローターコーンとしてR−Uを備えたE型粘度計(東機産業製)を用い、25℃±0.05℃でせん断速度0.6/秒(V1)と10/秒(V2)で粘度を測定し、その比率V1/V2をとった。
【0042】
【表2】
Figure 0003729225
*1 ビフェニル型エポキシ樹脂(油化シェル(株)製)
*2 ナフタレン型エポキシ樹脂(日本化薬(株)製)
*3 フェノールノボラック樹脂(大日本インキ化学工業(株)製)
*4 ブロム化ノボラック型エポキシ樹脂(日本化薬(株)製)
【0043】
スパイラルフロー:
成形温度175℃、成形圧力70kg/cm2でトランスファー成形することでスパイラルフローを測定した。
ゲル化時間:
175℃の熱板でエポキシ樹脂組成物がゲルになるまでの時間を測定した。
内部ボイド及び外部ボイド:
QFPパッケージ(サンプル数=5)を用い、成形温度175℃、成形圧力70kgf/cm2でトランスファー成形した後、超音波探傷装置を用い、内部ボイドの数を数えた。また、外部ボイドは目視観察することでボイドの数を数えた。ボイドの数は5サンプルの合計数である。
ワイヤー変形:
3mm長の金線を接続したQFPパッケージを用い、成形温度175℃、成形圧力70kgf/cm2でトランスファー成形し、その後軟X線装置を用いて金線の変形具合を観察した。
ダイパッド変形:
QFPパッケージを用い、成形温度175℃、成形圧力70kgf/cm2でトランスファー成形した後、パッケージを切断し、ダイパッドの変形状態を観察した。
【0044】
〔実施例4,5、比較例6〕
下記表3で示される配合組成で実施例1と同様にしてエポキシ樹脂組成物を製造し、実施例1と同様に評価を行った。結果を表3に併記する。
【0045】
【表3】
Figure 0003729225
*5 フェノールアラルキル樹脂(三井東圧化学(株)製)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device sealed with a cured product of an epoxy resin composition having a low melt viscosity, excellent moldability, and particularly capable of preventing damage to a semiconductor device when a thin and multi-pin semiconductor device is sealed. About.
[0002]
[Prior art and problems to be solved by the invention]
In recent epoxy resin compositions as thin package encapsulants, a very fine average particle size of 1 μm or less, preferably 0.5 μm or less is used in order to achieve both improved fillability and low water absorption. There is a tendency to add a large amount of agent. For this reason, the specific surface area of the filler becomes very large as compared with the conventional product, and the wetting of the interface between the resin and the filler is remarkably deteriorated.
[0003]
On the other hand, recently, in order to improve the solder reflow resistance, there is a tendency to increase the filler with the aim of reducing water absorption. In particular, when the filling amount is 85% by weight or more, the conventionally used spherical filler has a very high viscosity in a low shear region, which causes die pad deformation, wire deformation, and sometimes disconnection.
[0004]
The present invention was made to improve the above situation, and is a cured product of an epoxy resin composition having a low melt viscosity, a high moldability, and capable of semiconductor sealing without damage such as die pad deformation and wire deformation. It is an object to provide a sealed semiconductor device.
[0005]
Means for Solving the Problem and Embodiment of the Invention
In order to achieve the above-mentioned object, the present inventors have intensively studied an inorganic filler that is highly filled in an epoxy resin composition. That is, in general, conventionally produced inorganic fillers do not have a fine particle size or specific surface area controlled, so when a large amount of filler is blended, the viscosity of the resin composition is sharp in the low shear region. Recently, the problem of increasing the viscosity and causing wire deformation has become a major issue, and the present inventors have aimed at improving this kind of defect and at the same time reducing the viscosity at the time of high filling of the inorganic filler. As previously proposed, the particle size distribution, specific surface area, and shape of the inorganic filler were examined. In other words, all of the proposals for conventional inorganic fillers are such that the molding characteristics are defined by the characteristics such as particle size distribution, specific surface area, and shape of the inorganic filler, and the present inventors also followed this. It is. However, in the past, the relationship between various properties of fillers and moldability has not been fully grasped, and the particle size distribution, specific surface area, and shape of inorganic fillers are the latest in thin, multi-pin large packages. It has been difficult to prevent the above-described defects that are likely to occur.
[0006]
Therefore, as a result of further investigation, a composition containing a filler having a specific particle size and specific surface area was prepared, the viscosity was measured by changing the shear rate, and a filler having a specific viscosity ratio was obtained. It has been found that a composition having good moldability can be obtained by using it.
[0007]
That is, in an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler as essential components, 10 to 40% by weight of the entire inorganic filler is fine particles having a particle size of 3 μm or less as the inorganic filler, and a particle size of 0 0.05 to 0.3 μm filler is 1 to 10% by weight of the whole filler, 0.4 to 0.7 μm filler is 5 to 20% by weight of the whole filler, and 0.8 to 3 μm filler. When it is 5 to 20% by weight of the whole filler, the specific surface area by the BET method (nitrogen adsorption method) as a whole inorganic filler is 2.5 m 2 / g or less, and measured by the Gardner-Holt method at 25 ° C. A shear rate of 0.6 / second when a kneaded product obtained by kneading 75% by weight of the inorganic filler with a bisphenol F type liquid epoxy resin having a viscosity of 30 to 45 poises was measured at 25 ° C. using an E type viscometer And 10 / second And a degree ratio is 2.5 or less, and 0.6 / viscosity at seconds using an inorganic filler is 50,000 poise, which from 76.46 to 88.52% by weight of the total composition formulation In this way, even when highly filled with an inorganic filler in this way, it has been found that melt viscosity is low, excellent moldability, and thin, multi-pin semiconductor devices can be sealed without inconvenience such as wire deformation, The present invention has been achieved.
[0008]
Therefore, the present invention provides a semiconductor device encapsulated with a cured product of an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler as essential components, wherein the epoxy resin is a naphthalene type epoxy resin and a biphenyl type epoxy resin. The inorganic filler is 1 to 10% by weight of silica having a particle size of 0.05 to 0.3 μm, 5 to 20% by weight of silica having a particle size of 0.4 to 0.7 μm, and a particle size of 0.8. It contains 5 to 20% by weight of silica having a particle size of 3 μm, and the silica content with a particle size of 3 μm or less is 10 to 40% by weight, and the specific surface area by the BET method (nitrogen adsorption method) as the whole inorganic filler is 2. The bisphenol F-type liquid epoxy resin has a viscosity of 30 to 45 poise when measured by a Gardner-Holt method at 25 ° C. and having a silica particle size of 5 m 2 / g or less and an average particle size of 4 to 30 μm. The viscosity ratio of shear rate 0.6 / second and 10 / second when the kneaded material kneaded 75% by weight of the filler is measured at 25 ° C. using an E-type viscometer is 2.5 or less, And an inorganic filler having a viscosity at 0.6 / sec of 50,000 poise or less was blended with a cured product of an epoxy resin composition characterized by containing 76.46 to 88.52% by weight of the entire composition. A stopped semiconductor device is provided.
[0009]
Hereinafter, the present invention will be described in more detail.
The epoxy resin composition of the present invention contains an epoxy resin, a curing agent, and an inorganic filler as essential components.
[0010]
The epoxy resin used in the present invention, der those with known two or more epoxy groups per molecule conventionally is, in particular, bisphenol A type epoxy resin, bisphenol F type epoxy resins, phenol novolak type epoxy resin, Examples include cresol novolac type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, phenol aralkyl type epoxy resins, and cyclopentadiene type epoxy resins. Among these epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, and those having a liquid crystal structure represented by the following structural formula are desirable.
[0011]
[Chemical 1]
Figure 0003729225
[0012]
The total chlorine content in these epoxy resins is 1,500 ppm or less, desirably 1,000 ppm or less, and the extracted water chlorine at 20 ° C. in a 50% epoxy resin concentration at 120 ° C. is preferably 5 ppm or less. . If the total chlorine content is more than 1,500 ppm and the extracted water chlorine is more than 5 ppm, the moisture resistance reliability of the semiconductor may be lowered.
[0013]
As the curing agent of the present invention, any of those conventionally known as curing agents for epoxy resins such as phenol compounds, amine compounds, and acid anhydride compounds can be used. A phenol resin having two or more functional hydroxyl groups is preferred. Examples of the phenolic resin include phenol novolak resins, cresol novolac resins, phenol aralkyl resins, naphthalene type phenol resins, cyclopentadiene type phenol resins and those containing a phenolic hydroxyl group represented by the following structural formula.
[0014]
[Chemical formula 2]
Figure 0003729225
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group. (It is an integer.)
[0015]
Similarly to the epoxy resin, the phenol resin and chlorine ions and sodium ions extracted at a temperature of 120 ° C. are all 10 ppm or less, preferably 5 ppm or less.
[0016]
The blending amount of the curing agent is an amount capable of curing the epoxy resin. For example, when a phenol resin is used, the mixing ratio of the epoxy resin and the phenol resin is such that the phenolic hydroxyl group is 0.5 to 1 with respect to 1 mol of the epoxy group. .6 mol, preferably 0.6 to 1.4 mol is suitable. If it is less than 0.5 mol, the hydroxyl group is insufficient, the proportion of homopolymerization of the epoxy group is increased, and the glass transition temperature is lowered. On the other hand, when the amount exceeds 1.6 mol, the ratio of phenolic hydroxyl groups increases, the reactivity decreases, and the crosslinking density is low, so that sufficient strength may not be obtained.
[0017]
A hardening accelerator can be mix | blended with the epoxy resin composition of this invention. As the curing accelerator, phosphorus, imidazole derivatives, cycloamidine derivatives and the like can be used. As a quantity of a hardening accelerator, it is preferable that it is 0.01-10 weight part with respect to 100 weight part of total amounts of an epoxy resin and a phenol resin.
[0018]
Next, in the present invention, as the inorganic filler, 10 to 40% by weight of the whole inorganic filler is fine particles of 3 μm or less, and the specific surface area by the BET method (nitrogen adsorption method) as the whole inorganic filler is 2 A kneaded product obtained by kneading 75% by weight of an inorganic filler with a bisphenol F type liquid epoxy resin having a viscosity of 30 to 45 poise when measured by a Gardner-Holt method at 25 ° C. and not more than 0.5 m 2 / g The viscosity ratio between the shear rate of 0.6 / second and 10 / second when measured using an E-type viscometer is 2.5 or less, and the viscosity at 0.6 / second is 50,000 poise or less. An inorganic filler is used.
[0019]
More specifically, the particle size distribution of the inorganic filler used in the present invention is 10 to 40% of a fine particle size filler having a particle size of 3 μm or less, more desirably a filler having a particle size of 0.05 to 0.3 μm. 1 to 10%, 0.4 to 0.7 μm filler is 5 to 20%, and 0.8 to 3 μm filler is 5 to 20%. If the filler of 3 μm or less is less than 10%, the fine packing is insufficient, so that the melt viscosity of the composition does not decrease sufficiently, and if it exceeds 40%, the amount of fine powder increases so that the interface between the resin and the filler is sufficient. On the contrary, the viscosity of the composition increases because it does not get wet. Desirably, a filler of 3 μm or less is contained in the range of 10 to 30%.
[0020]
In this case, the average particle size of the filler as a whole is preferably 4 to 30 μm. When the average particle size is smaller than 4 μm, the viscosity becomes too high to be filled in a large amount, and when the average particle size is larger than 30 μm, the coarse particle size increases and gate clogging may occur. The maximum particle size is preferably 100 μm or less, more preferably 74 μm or less.
[0021]
In the present invention, the filler having a particle size of 0.7 μm or less plays a very important role in the close-packing of the filler and the low viscosity of the composition by imparting thixotropy and the flowability control of the resin composition. play. A more desirable filler is a fine powder filler of 0.05 to 0.3 μm. This type of filler is preferably spherical and has a specific surface area of 10 to 50 m 2 / g. A more preferable specific surface area of the filler is 15 to 40 m 2 / g.
[0022]
In this case, conventionally, very large fine silica having a dry or wet specific surface area represented by Aerosil of 100 to 300 m 2 / g has been mainly used for imparting thixotropy. Since it is large, it has a great influence on the fluidity even when added in a small amount, so it is very difficult to use.
[0023]
In the present invention, the particle size distribution and the average particle size are measured values (for example, weight average values) using a laser diffraction particle size distribution measuring apparatus (for example, Granulometer 920 manufactured by Cirrus).
[0024]
Next, the inorganic filler of the present invention has a specific surface area of 2.5 m 2 / g or less, desirably 1 to 2 m 2 / g, as a whole by the BET method (nitrogen adsorption method). When the specific surface area is larger than 2.5 m 2 / g, the thixotropy is increased, and the good molding characteristics intended in the present invention cannot be obtained.
[0025]
In addition, the inorganic filler of the present invention is a kneaded product obtained by kneading 75% by weight with a bisphenol F type liquid epoxy resin having a viscosity of 30 to 45 poise measured at 25 ° C. (± 0.05 ° C.) by the Gardner-Holt method. with a mold viscometer 25 ° C. the viscosity ratio V 1 / V 2 between shear rate 0.6 / sec viscosity V 1 of the measured shear rate of 10 / sec viscosity V 2 at (± 0.05 ° C.) is 2 Use 5 or less. When a material having V 1 / V 2 exceeding 2.5 is used, the resin viscosity when flowing in the cavity becomes very high, resulting in wire deformation and die pad shift. In particular, if a filler having a viscosity ratio of 0.5 to 2.5, particularly 0.8 to 2.2, is used, it is possible to prevent a rapid increase in resin viscosity in a low shear region. In this case, the viscosity V 1 at a shear rate of 0.6 / sec is 50,000 poises or less, particularly 5,000 to 30,000 poises, and those having a viscosity exceeding 50,000 poises are epoxy resin compositions. As a result, the viscosity becomes extremely high and the moldability becomes poor.
[0026]
By blending this kind of inorganic filler, the melt viscosity of the epoxy resin composition at 175 ° C. is 200 poises or less, and a composition having good molding characteristics can be obtained.
[0027]
The specific surface area of the inorganic filler greatly affects the viscosity ratio at a high shear rate and the viscosity ratio at a low shear rate. That is, it has been found that if the specific surface area is 2.5 m 2 / g or less, the viscosity ratio can be 2.5 or less. Above this, the wetting of the interface between the resin and the filler becomes insufficient, the viscosity is remarkably high, and the viscosity ratio exceeds 2.5. Further, this viscosity ratio is influenced by a fine filler having a particle size of 0.7 μm or less, particularly 0.05 to 0.3 μm. The filler in this region has the property of easily agglomerating due to vibration or the like, and the influence is particularly remarkable when secondary agglomeration occurs. In order to prevent this secondary aggregation or to sufficiently wet the interface between the resin and the filler, it is desirable to knead with the resin in advance.
[0028]
The filler used in the present invention, such as in ground fused silica or flame fused spherical silica obtained by a ball mill, spherical silica produced by a sol-gel method, etc. crystal silicon mosquito is used. In this case, no particular limitation to the shape of the filler, flake, dendritic, can be used a filler of spherical shape alone or in combination. Of these, spherical ones are most desirable for reducing the viscosity and increasing the filling. It is preferable to use those fillers that have been surface-treated with a silane coupling agent or a titanium coupling agent in advance.
[0029]
The compounding quantity of the said inorganic filler is 76.46-88.52 weight% of the whole composition, and is 400-1,000 weight part normally with respect to 100 weight part of total amounts of an epoxy resin and a hardening | curing agent. If the blending amount is too small, the expansion coefficient cannot be lowered sufficiently, the water absorption rate increases, and the package cracks at the temperature during solder reflow. On the other hand, if the amount is too large, the viscosity becomes too high and molding becomes impossible.
[0030]
To the composition of the present invention, conventionally known powders such as silicone rubber and gel, silicone-modified epoxy resin, silicone-modified phenol resin, thermoplastic resin composed of methyl methacrylate-butadiene-styrene are added as a low stress agent. May be.
[0031]
For the purpose of decreasing the viscosity, conventionally known n-butyl glycidyl ether, phenyl glycidyl ether, styrene oxide, tert-butylphenyl glycidyl ether, dicyclopentadiene diepoxide, phenol, cresol, tert-butylphenol, etc. A diluent having an epoxy group or a phenolic hydroxyl group can be added.
[0032]
Furthermore, wetting improvers such as silane coupling agents, titanium coupling agents, coupling agents such as aluminum coupling agents, colorants such as carbon black, nonionic surfactants, fluorosurfactants, and silicone oils. In some cases, an antifoaming agent or the like can be added.
[0033]
As a production method, in the case of a liquid epoxy resin composition, it can be produced by sufficiently kneading the above-mentioned raw materials using a stirring and mixing device such as a Shinagawa mixer. The kneading temperature is preferably 20 to 50 ° C. On the other hand, in the case of powder, after mixing uniformly using a high-speed mixer or the like, it may be sufficiently kneaded with a two-roll or continuous kneader. The kneading temperature is preferably 50 to 110 ° C.
[0034]
After kneading, the epoxy resin composition can be produced by forming a thin sheet, cooling and grinding. The resin composition of the present invention is used as a general molding material and further as a semiconductor sealing material.
[0035]
In addition, as a shaping | molding method, methods, such as transfer shaping | molding, compression shaping | molding, injection shaping | molding, can be employ | adopted, and 150-185 degreeC is preferable for shaping | molding temperature.
[0036]
Examples of the semiconductor device that is preferably sealed with the epoxy resin composition of the present invention include discrete devices, highly integrated devices such as IC, LSI, and VLSI.
[0037]
【The invention's effect】
The epoxy resin composition of the present invention has a low melt viscosity and good moldability, and a semiconductor device encapsulated with this composition has no die pad deformation, wire deformation, etc. and is highly reliable.
[0038]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0039]
[Examples 1 to 3, Comparative Examples 1 to 5]
The fillers (silica) A to H shown in Table 1 below were surface treated with 0.5% by weight of γ-glycidyloxypropyltrimethoxysilane; KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.), and then the filler. The characteristics were evaluated. Moreover, an epoxy resin composition was prepared by mixing and kneading this silica with the formulation shown in Table 2. Furthermore, various evaluation was performed using this resin composition. The results are shown in Table 2.
[0040]
[Table 1]
Figure 0003729225
[0041]
Particle size distribution and average particle size:
The particle size distribution was measured using a laser diffraction / scattering particle size distribution measuring apparatus.
Specific surface area:
The specific surface area of the filler mixed at the above ratio was measured with a specific surface area measuring device (BET method, nitrogen adsorption method).
Viscosity ratio and viscosity at 0.6 / sec:
A bisphenol F type epoxy resin having an epoxy equivalent of 168 and a viscosity of 38 poise (25 ° C.); 1 g of Epicoat 807 (manufactured by Shell Co., Ltd.) and 3 g of silica are weighed and sufficiently kneaded on a glass petri dish. Using an E-type viscometer (manufactured by Toki Sangyo) equipped with U, the viscosity was measured at 25 ° C. ± 0.05 ° C. with shear rates of 0.6 / sec (V 1 ) and 10 / sec (V 2 ), The ratio V 1 / V 2 was taken.
[0042]
[Table 2]
Figure 0003729225
* 1 Biphenyl type epoxy resin (manufactured by Yuka Shell Co., Ltd.)
* 2 Naphthalene type epoxy resin (Nippon Kayaku Co., Ltd.)
* 3 Phenol novolac resin (Dainippon Ink Chemical Co., Ltd.)
* 4 Brominated novolak epoxy resin (Nippon Kayaku Co., Ltd.)
[0043]
Spiral flow:
Spiral flow was measured by transfer molding at a molding temperature of 175 ° C. and a molding pressure of 70 kg / cm 2 .
Gelation time:
The time until the epoxy resin composition became a gel was measured with a hot plate at 175 ° C.
Internal and external voids:
After transfer molding using a QFP package (number of samples = 5) at a molding temperature of 175 ° C. and a molding pressure of 70 kgf / cm 2 , the number of internal voids was counted using an ultrasonic flaw detector. Moreover, the number of voids was counted by visually observing external voids. The number of voids is the total number of 5 samples.
Wire deformation:
Using a QFP package to which a 3 mm long gold wire was connected, transfer molding was performed at a molding temperature of 175 ° C. and a molding pressure of 70 kgf / cm 2 , and then the deformation of the gold wire was observed using a soft X-ray apparatus.
Die pad deformation:
Using a QFP package, transfer molding was performed at a molding temperature of 175 ° C. and a molding pressure of 70 kgf / cm 2 , the package was cut, and the deformation state of the die pad was observed.
[0044]
[Examples 4 and 5, Comparative Example 6]
An epoxy resin composition was produced in the same manner as in Example 1 with the composition shown in Table 3 below, and evaluated in the same manner as in Example 1. The results are also shown in Table 3.
[0045]
[Table 3]
Figure 0003729225
* 5 Phenol aralkyl resin (Mitsui Toatsu Chemical Co., Ltd.)

Claims (1)

エポキシ樹脂、硬化剤、無機質充填剤を必須成分とするエポキシ樹脂組成物の硬化物で封止された半導体装置において、エポキシ樹脂が、ナフタレン型エポキシ樹脂及びビフェニル型エポキシ樹脂から選ばれるものであり、無機質充填剤が、粒径0.05〜0.3μmのシリカ1〜10重量%、粒径0.4〜0.7μmのシリカ5〜20重量%、粒径0.8〜3μmのシリカ5〜20重量%を含有し、かつ粒径が3μm以下のシリカ含有量が10〜40重量%で、無機質充填剤全体としてのBET法(窒素吸着法)による比表面積が2.5m2/g以下、平均粒径が4〜30μmのシリカであると共に、25℃のガードナーホルト法で測定したときの粘度が30〜45ポイズであるビスフェノールF型液状エポキシ樹脂に該無機質充填剤75重量%を混練した混練物を25℃においてE型粘度計を用いて測定した場合のせん断速度0.6/秒と10/秒との粘度比が2.5以下であり、かつ0.6/秒での粘度が50,000ポイズ以下である無機質充填剤を組成物全体の76.46〜88.52重量%配合したことを特徴とするエポキシ樹脂組成物の硬化物で封止された半導体装置。In a semiconductor device sealed with a cured product of an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler as essential components, the epoxy resin is selected from a naphthalene type epoxy resin and a biphenyl type epoxy resin, The inorganic filler is 1 to 10% by weight of silica having a particle size of 0.05 to 0.3 μm, 5 to 20% by weight of silica having a particle size of 0.4 to 0.7 μm, and 5 to 5% of silica having a particle size of 0.8 to 3 μm. The silica content of 20 wt% and the particle size of 3 μm or less is 10 to 40 wt%, and the specific surface area by the BET method (nitrogen adsorption method) as the whole inorganic filler is 2.5 m 2 / g or less , 75 wt. % Of the inorganic filler is added to bisphenol F type liquid epoxy resin having an average particle diameter of 4 to 30 μm and a viscosity of 30 to 45 poise when measured by the Gardner-Holt method at 25 ° C. %, The viscosity ratio between the shear rate of 0.6 / sec and 10 / sec when measured using an E-type viscometer at 25 ° C. is 2.5 or less, and 0.6 / sec. A semiconductor device sealed with a cured product of an epoxy resin composition, wherein an inorganic filler having a viscosity of 50,000 poise or less is blended in an amount of 76.46 to 88.52% by weight of the total composition.
JP24471997A 1996-08-29 1997-08-26 Semiconductor device Expired - Fee Related JP3729225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24471997A JP3729225B2 (en) 1996-08-29 1997-08-26 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-247024 1996-08-29
JP24702496 1996-08-29
JP24471997A JP3729225B2 (en) 1996-08-29 1997-08-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH10120878A JPH10120878A (en) 1998-05-12
JP3729225B2 true JP3729225B2 (en) 2005-12-21

Family

ID=26536875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24471997A Expired - Fee Related JP3729225B2 (en) 1996-08-29 1997-08-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3729225B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113083C (en) 1998-06-09 2003-07-02 日东电工株式会社 Semiconductor sealing epoxy resin compsn. and semiconductor device using same
JP2009057575A (en) * 2008-12-01 2009-03-19 Hitachi Chem Co Ltd Liquid epoxy resin composition and electronic component device
JP5708666B2 (en) * 2013-01-08 2015-04-30 日立化成株式会社 Liquid epoxy resin composition and electronic component device
JP5804479B2 (en) * 2013-01-08 2015-11-04 日立化成株式会社 Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device
JP5929977B2 (en) * 2014-07-25 2016-06-08 日立化成株式会社 Liquid epoxy resin composition and electronic component device
JP2015110803A (en) * 2015-02-26 2015-06-18 日立化成株式会社 Liquid epoxy resin composition and electronic part device
JP5924443B2 (en) * 2015-07-22 2016-05-25 日立化成株式会社 Liquid epoxy resin composition and electronic component device
JP2016040393A (en) * 2015-12-28 2016-03-24 日立化成株式会社 Liquid epoxy resin composition, and electronic component device
JP6233441B2 (en) * 2016-04-15 2017-11-22 日立化成株式会社 Liquid epoxy resin composition and electronic component device
JP6292334B1 (en) * 2017-03-31 2018-03-14 日立化成株式会社 Electronic circuit protective material, electronic circuit protective material sealing material, sealing method, and semiconductor device manufacturing method
CN113345813A (en) * 2017-03-31 2021-09-03 日立化成株式会社 Protective material for electronic circuit, sealing material for protective material for electronic circuit, sealing method, and method for manufacturing semiconductor device
JP6288344B1 (en) * 2017-03-31 2018-03-07 日立化成株式会社 Electronic circuit protective material, electronic circuit protective material sealing material, sealing method, and semiconductor device manufacturing method
DE112018004093T5 (en) * 2017-08-10 2020-05-20 Hitachi Chemical Company, Ltd. Semiconductor device and manufacturing method thereof
JP6930555B2 (en) * 2017-12-14 2021-09-01 昭和電工マテリアルズ株式会社 Protective material for electronic circuits, encapsulant for protective material for electronic circuits, encapsulation method and manufacturing method of semiconductor devices
JP6870706B2 (en) * 2019-06-27 2021-05-12 昭和電工マテリアルズ株式会社 Protective material for electronic circuits, encapsulant for protective material for electronic circuits, encapsulation method and manufacturing method of semiconductor devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2864584B2 (en) * 1989-12-05 1999-03-03 日立化成工業株式会社 Epoxy resin composition for semiconductor and method for manufacturing semiconductor device
JPH05206333A (en) * 1992-01-27 1993-08-13 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and hardened one thereof
JP2639275B2 (en) * 1992-01-27 1997-08-06 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and cured product thereof
JPH065743A (en) * 1992-06-16 1994-01-14 Tonen Chem Corp Liquid epoxy resin composition for sealing semiconductor

Also Published As

Publication number Publication date
JPH10120878A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
JP3611066B2 (en) Inorganic filler and method for producing epoxy resin composition
JP3821173B2 (en) Epoxy resin composition
US5940688A (en) Epoxy resin composition and semiconductor device encapsulated therewith
JP3729225B2 (en) Semiconductor device
US6221509B1 (en) Semiconductor encapsulating epoxy resin compositions, and semiconductor devices encapsulated therewith
JP3351974B2 (en) Liquid injection underfill material
JP3192953B2 (en) Epoxy resin molding material for semiconductor encapsulation and method for producing the same
JP2000063636A (en) Epoxy resin composition for semiconductor sealing and semiconductor sealed therewith
JP3568653B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3565118B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2690795B2 (en) Epoxy resin composition
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JP2003213095A (en) Epoxy resin composition and semiconductor device
JP3211620B2 (en) Epoxy resin composition for sealing and semiconductor device using the same
JP4794706B2 (en) Epoxy resin composition and semiconductor device
JP3537859B2 (en) Semiconductor device and epoxy resin composition used therein
JPH05156126A (en) Epoxy resin composition and its cured article
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition
JPH10204258A (en) Epoxy resin composition and semiconductor device
JPH08109246A (en) Epoxy resin composition for sealing of semiconductor
JPH0794641A (en) Semiconductor device
JPH1053693A (en) Production of epoxy resin composition
JPH05160302A (en) Resin composition for sealing semiconductor
JP2003206393A (en) Epoxy resin molding material and semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees