JP3728509B2 - Polyimide composite material - Google Patents

Polyimide composite material Download PDF

Info

Publication number
JP3728509B2
JP3728509B2 JP2003045067A JP2003045067A JP3728509B2 JP 3728509 B2 JP3728509 B2 JP 3728509B2 JP 2003045067 A JP2003045067 A JP 2003045067A JP 2003045067 A JP2003045067 A JP 2003045067A JP 3728509 B2 JP3728509 B2 JP 3728509B2
Authority
JP
Japan
Prior art keywords
composite material
polyimide
cnt
chemical formula
polyimide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003045067A
Other languages
Japanese (ja)
Other versions
JP2004250646A (en
Inventor
俊夫 小笠原
隆司 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2003045067A priority Critical patent/JP3728509B2/en
Publication of JP2004250646A publication Critical patent/JP2004250646A/en
Application granted granted Critical
Publication of JP3728509B2 publication Critical patent/JP3728509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、耐熱性及び力学特性に優れたポリイミド複合材料に関する。
【0002】
【従来の技術】
カーボンナノチューブ(CNT)及びカーボンナノファイバー(CNF)は、1970年代には既にその存在を見出されていたが、1991年の飯島による透過電子顕微鏡観察の結果(”Helical microtubules ofgraphitic carbon”、Nature誌、1991年、第354巻、p56−58)が発表されて以降、その優れた機能、物理的特性、機械的特性等が矢継ぎ早に明らかになっている。例えば、単層CNTでは、弾性率1TPa以上、引張り強さ500〜1000GPaという驚異的な力学特性が報告されている。このようなCNTの優れた力学特性を利用して、CNTをポリマーに分散させることによってポリマーの力学特性を大きく向上させることが試みられている。
【0003】
CNTやCNFを分散したポリマーに関する研究は、ポリプロピレン(PP)、ポリスチレン(PS)、ポリメタアクリル(PMMA)、ポリエーテルエーテルケトン(PEEK)、ナイロン12、ポリエステル、ポリイミドなどを対象としてこれまでにも数多く行われており、ベースポリマーの弾性率や強度を大きく向上できることが報告されている。また、熱可塑性樹脂との複合化ではあるが、CNTやCNFの添加により導電性を付与したポリマーについての技術が開示されている(例えば、特許文献1、特許文献2参照)。
【0004】
しかしながら、従来の研究では、CNTやCNFを分散することで弾性率や強度の上昇が認められるにも関わらず、耐熱性の指標であるガラス転移温度は上昇しないことが報告されている(例えば、J.Sandlerら、「カーボンナノファイバー/ポリエーテルエーテルケトン複合材料」、Composites誌、エルゼビア出版、2002年、パートA、第33巻、p1033−1039)。これは、CNTやCNFがガラス転移点を上昇させるために必要な高温での分子運動を抑制する効果が十分に発現しないためと考えられる。
【0005】
【特許文献1】
特開2002−226713号公報(段落[0010]及び[0020]〜[0023])
【特許文献2】
特開2002−67209号公報(段落[0009])
【0006】
【発明が解決しようとする課題】
そこで、カーボンナノチューブと複合化されて耐熱性をも向上させる材料を見いだして、ガラス転移温度を向上して耐熱性のある複合材料を提供する点で解決すべき課題がある。
【0007】
この発明の目的は、上述の従来技術に対して、ナノチューブを複合化することによって、弾性率、強度、導電性などの力学的・電気的特性ばかりでなく、耐熱性を向上させ、優れた特性を発現するポリイミド複合材を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、この発明は、平均直径が250nm以下、望ましくは150nm以下のカーボンから成る単層又は多層のナノチューブ、気相成長されたナノファイバーの少なくとも1つ以上を、熱硬化型のイミドオリゴマーに分散させた後、熱硬化させることによって、ガラス転移温度を前記イミドオリゴマーのみを熱硬化して得られる母材樹脂よりも4℃以上上昇させてなるポリイミド複合材料を得ることを特徴とする。カーボンナノチューブの直径の原理上の最小値は、0.3nm程度であることが知られている。この発明によるポリイミド複合材では、このような極小径のカーボンナノチューブやナノファイバーも適用可能であるが、上記特性の十分な向上を得るには、平均直径については1nm以上のものが望ましい。
【0009】
このポリイミド複合材料において、下記化学式(5)に示すフェニルエチニル基、下記化学式(6)に示すナジイミド基、下記化学式(7)に示すマレイミド基、下記化学式(8)に示すアセチレン基から選ばれるのいずれか一つの末端基以上を含むイミドオリゴマーを用いることができる。
【化5】

Figure 0003728509
【化6】
Figure 0003728509
【化7】
Figure 0003728509
【化8】
Figure 0003728509
【0010】
イミドオリゴマーとしては、少なくとも主構造にイミド環を含み、かつ末端又は主鎖内にフェニルエチニル基、ナジイミド基、マレイミド基、アセチレン基等から選ばれるいずれか一つ以上を含むことが必要であるが、それ以外の化学構造や分子量については限定されない。また、イミドオリゴマーのモノマー溶液、ハーフエステル溶液、アミド酸及びアミド酸溶液等、熱処理等によって上記と同様のイミドオリゴマーが得られる前駆体にナノチューブ及びナノファイバーを分散することも、本ポリイミド複合材料に含まれる。
【0011】
このポリイミド複合材料において、ポリイミド複合材料中における、上述のナノチューブ又はナノファイバーの重量比率は、望ましくは、0.1重量%以上、60重量%以下であることを特徴とする。ナノチューブ又はナノファイバーの重量比率については、0.1重量%以上を含むことで、上記の特性の向上が期待できる。また、上記重量比率が60重量%を超えると、ポリイミド複合材料としての成形が困難となる。
【0012】
またこのポリイミド複合材料において、酸素及び窒素をあわせて、0.2分子%以上含有させたナノチューブ又はナノファイバーを用いることで、より効果的に本発明の機能を発現することが可能となる。酸素原子及び窒素原子の導入方法としては、具体的な方法については限定されず、熱酸化処理、窒化処理、酸浸漬処理など様々な方法を用いることができる。なお、酸素及び窒素の含有率については、ナノチューブ又はナノファイバーの構造維持の観点から、30分子%以下とするのが好ましい。
【0013】
更に、上記のポリイミド複合材料を母材とし、直径1μm以上の長繊維又は短繊維を強化体とする繊維強化複合材料を得ることができる。強化体である長繊維又は短繊維の直径については、複合材料の特性強化上、通常は10μm程度、大きくても50μm以下とするのが好ましい。
【0014】
【実施例】
以下、この発明によるポリイミド複合材及び繊維強化複合材料の実施例について具体的に説明する。
この実施例において使用したCNT及びCNFは、CVD法によって合成された多層CNT(以下、「MW−CNT」という)と、2種類の気相成長されたナノファイバー(以下、「CNF1」、「CNF2」とする)である。比較のため、チョップした炭素繊維(以下、「CF」という)も用意した。MW−CNT、CNF1、CNF2、CFは、いずれも長さ数百μmであって、チューブやファイバーは互いに絡み合っており、かつランダムに配向している。直径は、MW−CNTは20〜100nm、CNF1は80〜150nm、CNF2は250〜300nm、CFは8μmである。X線光電子分光分析(XPS)を行った結果、CNT、CNF1、CNF2では、C−C及びC=C結合に由来するピークと、π結合特有な291eV付近のシェイクアップピークが観察され、ナノチューブの特徴であるsp2結合が主体的であることが確認された。
【0015】
イミドオリゴマーとしては以下に示す5種類を用意した。即ち、化学式9に示すフェニルエチニル基を含む熱硬化型ポリイミドPI−1、化学式10に示すナジイミド基を含む熱硬化型ポリイミドPI−2、化学式11に示すマレイミド基を含む熱硬化型ビスマレイミドPI−3、化学式12に示すアセチレン基を含む熱硬化型ポリイミドPI−4、及び熱可塑性ポリイミドであるPI−A、PI−Rの2種類である。
【化9】
Figure 0003728509
【化10】
Figure 0003728509
【化11】
Figure 0003728509
【化12】
Figure 0003728509
【0016】
フェニルエチニル末端型イミドオリゴマーPI−1は、モノマーとして、2,3,3’,4’−ビフェニルテトラカルボン酸(a−BPDA)、4,4’オキシジアニリン(4,4’−ODA)、4−(2−フェニルエチニル)無水フタル酸(PEPA)を用いた計算分子量(Mw)約1500g/molのオリゴマーである。化学構造を化学式13に示す。
【化13】
Figure 0003728509
【0017】
ナジイミド末端型イミドオリゴマーPI−2は、モノマーとして、ベンゾフェノンテトラカルボン酸(BTDE)、メチレンジアニリン(MDA)、ナジイミド(NE)を用いた計算分子量(Mw)約1500g/molのものであり、化学構造を化学式14に示す。
【化14】
Figure 0003728509
【0018】
マレイミド基を含む熱硬化型ポリイミドPI−3は、いわゆるビスマレイミド樹脂と呼ばれているものであり、化学構造を化学式15に示すビスマレイミド(BMI)とメチレンジアニリン(MDA)の反応によって得られる。
【化15】
Figure 0003728509
【0019】
アセチレン基を含む熱硬化型ポリイミドPI−4は、ベンゾフェノンテトラカルボン酸無水物(BTDA)、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB)、3−アミノフェニルアセチレン(ACT)を用いたオリゴマーであり、その化学構造を化学式16に示す。また、PI−A及びPI−Rは市販されている熱可塑性ポリイミドであり、それぞれの化学構造を化学式17及び18に示す。
【化16】
Figure 0003728509
【化17】
Figure 0003728509
【化18】
Figure 0003728509
【0020】
フェニルエチニル基を有する付加型ポリイミドPI−1とCNTとの複合化は、以下の手順によって行った。まず、所定の重量を秤量したCNTとイミドオリゴマー粉末を、機械式ブレンダーによって乾燥状態で数分間混合した。次に300℃に加熱したホットプレート上に、80×40mmの窓をくり抜いた厚さ1mmのポリテトラフロロエチレン(PTFE)板を置き、この枠の中にCNTとイミドオリゴマーの混合粉末を乗せて約30分間溶融させた。その後、わずかに圧力を掛けながら約5℃/minで370℃まで昇温させて1時間の硬化を行った。なお離型のためホットプレスと複合材の間には、厚さ25μmのポリイミドフィルム(Upilex−R、宇部興産株式会社製)を使用した。
【0021】
ナジイミド基を含む熱硬化型ポリイミドPI−2とCNTとの複合化は、以下の手順によって行った。まず、所定の重量を秤量したCNTと、モノマーのハーフエステル溶液中で分散し、210℃の熱処理によってCNTとオリゴマーの混合物を得た後、320℃に加熱したホットプレスを用いて上記と同様の方法によって樹脂を硬化した。
【0022】
マレイミド基を含む熱硬化型ポリイミドPI−3、アセチレン基を含む熱硬化型ポリイミドPI−4とCNTの複合材料についても、PI−1と同様に原料粉末の混合によって作製した。なお、PI−4については、熱硬化後、370℃で8時間の後処理を実施した。
【0023】
一方、熱可塑性ポリイミドPI−A及びPI−RとCNTとの複合化は、以下の手順によって行った。まず、所定の重量を秤量したCNTとポリイミド粉末を二軸混練機によって混練した後、これをペレット化した。さらに、これらのペレットを400℃に加熱したホットプレート上に置き、厚さ1mmのスペーサーを用いてホットプレス成形を行った。
【0024】
試作した複合材料に対して、動的粘弾性測定装置(RSAII,Rheometrics Scientific,USA)により、動的粘弾性の測定(DMA)を行った。DMA測定に用いた試験片の形状は、幅5mm、厚さ1.1mm、長さ56mmであり、これにスパン幅48mmの三点曲げ負荷を与えた。試験条件は、周波数1Hz、ひずみ0.02%、昇温速度3.75℃/minである。得られた結果から、貯蔵弾性率(E’)、損失弾性率(E”)及びtanδを算出した。また、貯蔵弾性率の低下開始温度をガラス転移温度Tgとして、それぞれの複合材料におけるガラス転移温度Tgを求めた。更に、幅5mm、厚さ1.1mm、長さ80mmの試験片にガラスFRP製のタブを接着し、材料試験機(インストロン製4502型)を用いた引張り試験を行って、引張り弾性率の測定も行った。
【0025】
本発明におけるポリイミド複合材の実施例を表1、比較例を表2にまとめて示す。比較例1〜6は、ポリイミド樹脂単体である。比較例7は、熱可塑性ポリイミドPI−1とMW−CNTとの複合材料、比較例8〜10は、熱可塑性ポリイミドPI−AとMW−CNTとの複合材料、比較例11〜13は、熱可塑性ポリイミドPI−RとMW−CNTとの複合材料であり、MW−CNT添加とともに引張り弾性率の上昇が認められるが、ガラス転移温度Tgに変化がないことがわかる。これは、従来からPEEKなどで報告されている通りである。
【表1】
Figure 0003728509
【表2】
Figure 0003728509
【0026】
実施例1〜11は、フェニルエチニル末端、ナジイミド末端、マレイミド末端、又はアセチレン末端を有する付加形のポリイミドPI−1〜PI−4と、MW−CNTとの複合材料であり、MW−CNT添加によってガラス転移点及び引張り弾性率の向上が認められる。即ち、この組合せにおいてはじめて耐熱性が大きく向上することが認められる。また実施例12〜15に示されるように、ポリイミドPI−1とMW−CNTよりも直径の大きなCNF−1との複合材料においても引張り弾性率とガラス転移温度の上昇が確認される。直径が大きいCNFを用いた方が引張り弾性率の増加分は大きくなるが、ガラス転移温度Tgの上昇率は若干小さくなっている。
【0027】
比較例14〜16は、直径が250〜300nmのCNF2を添加した例である。この場合には、引張り弾性率の向上は大きいが、ガラス転移温度Tgは変化しないことがわかる。同様に、比較例17〜19は、直径8μmの炭素繊維CFを添加した例で、やはりガラス転移温度Tgには変化はない。即ち、本発明によれば、平均直径が250nm以下、望ましくは150nm以下のナノチューブやナノファイバーを、フェニルエチニル基やナジイミド基、マレイミド基、アセチレン基等を含む熱硬化型のイミドオリゴマーに分散させることが必要である。また、CNT又はCNFの重量比率としては、0.1wt%以上、望ましくは1重量%以上が好適である。ただし、CNT又はCNFの重量比率が60重量%を超えると、ポリイミド複合材料としての成形が著しく困難となるので、望ましくない。
【0028】
次に、MW−CNTの表面に官能基を形成する目的で、高温大気中での熱酸化処理を行った。X線光電子分光分析(XPS)を行った結果、酸化処理したMW−CNTからは、約2.2〜9.8分子%の酸素が検出され、スペクトルのケミカルシフトからもC=O又はC−O−Cのピークが認められた。XPSでは表面から数nmの深さからの情報が得られるので、MW−CNTの表面がわずかに酸化しているものと思われる。実施例16〜18は、酸化したMW−CNTとポリイミドPI−1との複合材料である。同じMW−CNTの重量比率で比較した場合、引張り弾性率に大きな変化はないが、ガラス転移温度Tgの上昇が大きくなっていることがわかる。これは、官能基の導入によりMW−CNTとポリイミドの界面の一部に化学的な結合が形成され、高温におけるポリイミドの分子運動を大きく阻害しているためと考えられる。
【0029】
続いて、MW−CNTに対して、硝酸/硫酸よる酸窒化処理を行った。X線光電子分光分析を行った結果、窒化処理したMW−CNTからは、約1.7〜9.2分子%の酸素+窒素が検出された。実施例19〜21は、酸窒化処理したMW−CNTとポリイミドPI−1との複合材料である。酸素と同様に、窒素の導入によってもMW−CNT中に官能基が形成され、結果として本発明の機能がより発現することがわかる。
以上のように、本発明の実施例1〜21の何れの場合も、ガラス転移温度が、表2に比較例1〜6として示すイミドオリゴマーのみを熱硬化して得られる母材樹脂(P1−1〜P1−4)の場合と比較して、4℃以上上昇していることが認められる。即ち、母材樹脂のみの場合のガラス転移温度は、P1−1の場合が340℃(比較例1)、P1−2の場合が338℃(比較例2)、P1−3の場合が256℃(比較例3)、P1−4の場合が309℃(比較例4)であるのに対し、それぞれ樹脂において最もガラス転移温度の上昇が低い実施例においてもP1−1の場合が344℃(実施例1)、P1−2の場合が342℃(実施例5)、P1−3の場合が261℃(実施例8)、P1−4の場合が315℃(実施例10)であり、全ての実施例において、4℃以上の上昇が認められる。
【0030】
本発明によるポリイミド複合材料は、炭素繊維やガラス繊維等を強化体とする繊維強化複合材料のマトリクスとしても好適に使用することができる。表3に、炭素繊維(東レ株式会社製、T800)の5枚朱子織物を用いた複合材料の耐熱性及び力学特性を示す。繊維体積率は約50%である。比較例20は、熱硬化型ポリイミドPI−1をマトリクスとして使用したもの、実施例23、24は本発明によるMW−CNTとPI−1との複合材料をマトリクスとして使用したものである。本発明によるポリイミド複合材料をマトリクスとして使用することにより、マトリクスの弾性率上昇による圧縮強度の増加や、ガラス転移温度Tgの上昇が達成される。
【表3】
Figure 0003728509
【0031】
【発明の効果】
以上説明したように、本発明によれば、平均直径が250nm以下、望ましくは150nm以下のカーボンからなる単層又は多層のナノチューブ、気相成長されたナノファイバーの少なくとも1つ以上を、フェニルエチニル基、ナジイミド基、マレイミド基、アセチレン基から選ばれるいずれか一つ以上を含む熱硬化型のイミドオリゴマーに分散させた後、熱硬化させることによって、電気伝導性の付与、弾性率や強度の向上に加えて、耐熱性の指標であるガラス転移温度も向上させたポリイミド複合材料を得ることができる。
【0032】
同様に、このポリイミド複合材料において、分散するナノチューブ又はナノファイバーの複合材料中における重量比率を0.1wt%以上60wt%以下とすること、また、ナノチューブ又はナノファイバー中に、酸素及び窒素をあわせて0.2分子%以上含有させることによって、より効果的に上記の機能を発現することが可能となる。
【0033】
更に、このポリイミド複合材料は、直径1μm以上の連続繊維又は短繊維を強化材として併用することによって、より好適な特性を発現することができる。[0001]
[Industrial application fields]
The present invention relates to a polyimide composite material having excellent heat resistance and mechanical properties.
[0002]
[Prior art]
Carbon nanotubes (CNT) and carbon nanofibers (CNF) were already found in the 1970s. As a result of transmission electron microscopy by Iijima in 1991 ("Helical microtubes of graphite carbon", Nature magazine). 1991, vol. 354, p. 56-58), the excellent functions, physical characteristics, mechanical characteristics, etc. have been quickly revealed. For example, in the case of single-walled CNTs, amazing mechanical properties such as an elastic modulus of 1 TPa or more and a tensile strength of 500 to 1000 GPa have been reported. Attempts have been made to greatly improve the mechanical properties of polymers by dispersing the CNTs in the polymer using such excellent mechanical properties of CNTs.
[0003]
Research on polymers with dispersed CNTs and CNFs has been focused on polypropylene (PP), polystyrene (PS), polymethacrylic (PMMA), polyetheretherketone (PEEK), nylon 12, polyester, polyimide, etc. Many studies have been conducted, and it has been reported that the elastic modulus and strength of the base polymer can be greatly improved. Moreover, although it is compounding with a thermoplastic resin, the technique about the polymer which provided electroconductivity by addition of CNT and CNF is disclosed (for example, refer patent document 1, patent document 2).
[0004]
However, in the conventional research, it has been reported that the glass transition temperature, which is an index of heat resistance, does not increase in spite of the increase in elastic modulus and strength by dispersing CNT and CNF (for example, J. Sandler et al., “Carbon Nanofiber / Polyether Ether Ketone Composite”, Composites, Elsevier Publishing, 2002, Part A, 33, pp 1033-1039). This is presumably because CNT and CNF do not sufficiently exhibit the effect of suppressing molecular motion at a high temperature necessary for raising the glass transition point.
[0005]
[Patent Document 1]
JP 2002-226713 A (paragraphs [0010] and [0020] to [0023])
[Patent Document 2]
JP 2002-67209 A (paragraph [0009])
[0006]
[Problems to be solved by the invention]
Thus, there is a problem to be solved in terms of finding a material that is combined with carbon nanotubes to improve heat resistance and providing a heat-resistant composite material by improving the glass transition temperature.
[0007]
The object of the present invention is to improve heat resistance as well as mechanical and electrical characteristics such as elastic modulus, strength, conductivity, etc. It is providing the polyimide composite material which expresses.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a thermosetting type at least one or more of single-walled or multi-walled nanotubes and vapor-grown nanofibers made of carbon having an average diameter of 250 nm or less, preferably 150 nm or less. It is characterized by obtaining a polyimide composite material in which the glass transition temperature is increased by 4 ° C. or more than a base material resin obtained by thermosetting only the imide oligomer, by dispersing in an imide oligomer and then thermosetting. To do. It is known that the minimum value in principle of the diameter of the carbon nanotube is about 0.3 nm. In the polyimide composite material according to the present invention, such carbon nanotubes and nanofibers having such a small diameter can be applied. However, in order to sufficiently improve the above characteristics, an average diameter of 1 nm or more is desirable.
[0009]
The polyimide composite material is selected from a phenylethynyl group represented by the following chemical formula (5), a nadiimide group represented by the following chemical formula (6), a maleimide group represented by the following chemical formula (7), and an acetylene group represented by the following chemical formula (8). Imide oligomers containing any one or more terminal groups can be used.
[Chemical formula 5]
Figure 0003728509
[Chemical 6]
Figure 0003728509
[Chemical 7]
Figure 0003728509
[Chemical 8]
Figure 0003728509
[0010]
As the imide oligomer, it is necessary that at least the main structure contains an imide ring, and the terminal or main chain contains any one or more selected from phenylethynyl group, nadiimide group, maleimide group, acetylene group and the like. The other chemical structures and molecular weights are not limited. In addition, it is also possible to disperse nanotubes and nanofibers in a precursor in which an imide oligomer similar to the above is obtained by heat treatment, such as an imide oligomer monomer solution, a half ester solution, an amide acid solution or an amide acid solution. included.
[0011]
In this polyimide composite material, the weight ratio of the above-mentioned nanotubes or nanofibers in the polyimide composite material is preferably 0.1 wt% or more and 60 wt% or less. About the weight ratio of a nanotube or a nanofiber, improvement of said characteristic can be anticipated by including 0.1 weight% or more. Moreover, when the said weight ratio exceeds 60 weight%, shaping | molding as a polyimide composite material will become difficult.
[0012]
Further, in this polyimide composite material, the function of the present invention can be expressed more effectively by using nanotubes or nanofibers containing 0.2 molecule% or more of oxygen and nitrogen. As a method for introducing oxygen atoms and nitrogen atoms, specific methods are not limited, and various methods such as thermal oxidation treatment, nitriding treatment, and acid dipping treatment can be used. The oxygen and nitrogen content is preferably 30% or less from the viewpoint of maintaining the structure of the nanotube or nanofiber.
[0013]
Furthermore, a fiber-reinforced composite material having the above polyimide composite material as a base material and long fibers or short fibers having a diameter of 1 μm or more as reinforcements can be obtained. About the diameter of the long fiber or short fiber which is a reinforcement body, it is preferable to set it as about 10 micrometers at most normally and 50 micrometers or less at the maximum for the characteristic reinforcement of a composite material.
[0014]
【Example】
Examples of the polyimide composite material and fiber reinforced composite material according to the present invention will be specifically described below.
The CNT and CNF used in this example are a multi-layer CNT synthesized by a CVD method (hereinafter referred to as “MW-CNT”) and two kinds of vapor grown nanofibers (hereinafter referred to as “CNF1”, “CNF2”). ”). For comparison, a chopped carbon fiber (hereinafter referred to as “CF”) was also prepared. MW-CNT, CNF1, CNF2, and CF are all several hundred μm in length, and the tubes and fibers are intertwined with each other and randomly oriented. The diameter is 20 to 100 nm for MW-CNT, 80 to 150 nm for CNF1, 250 to 300 nm for CNF2, and 8 μm for CF. As a result of X-ray photoelectron spectroscopy (XPS), in CNT, CNF1, and CNF2, a peak derived from C—C and C═C bonds and a shake-up peak near 291 eV peculiar to π bonds were observed. It was confirmed that the characteristic sp2 bond is dominant.
[0015]
The following five types of imide oligomers were prepared. That is, thermosetting polyimide PI-1 containing a phenylethynyl group represented by Chemical Formula 9, thermosetting polyimide PI-2 containing a nadiimide group represented by Chemical Formula 10, and thermosetting bismaleimide PI- containing a maleimide group represented by Chemical Formula 11 3. Thermosetting polyimide PI-4 containing an acetylene group represented by Chemical Formula 12 and PI-A and PI-R which are thermoplastic polyimides.
[Chemical 9]
Figure 0003728509
[Chemical Formula 10]
Figure 0003728509
Embedded image
Figure 0003728509
Embedded image
Figure 0003728509
[0016]
Phenylethynyl-terminated imide oligomer PI-1 includes 2,3,3 ′, 4′-biphenyltetracarboxylic acid (a-BPDA), 4,4′oxydianiline (4,4′-ODA), as monomers. It is an oligomer having a calculated molecular weight (Mw) of about 1500 g / mol using 4- (2-phenylethynyl) phthalic anhydride (PEPA). The chemical structure is shown in Chemical Formula 13.
Embedded image
Figure 0003728509
[0017]
Nadiimide-terminated imide oligomer PI-2 has a calculated molecular weight (Mw) of about 1500 g / mol using benzophenonetetracarboxylic acid (BTDE), methylenedianiline (MDA), and nadiimide (NE) as monomers. The structure is shown in Chemical Formula 14.
Embedded image
Figure 0003728509
[0018]
Thermosetting polyimide PI-3 containing a maleimide group is a so-called bismaleimide resin, and is obtained by a reaction of bismaleimide (BMI) and methylenedianiline (MDA) whose chemical structure is shown in Chemical Formula 15. .
Embedded image
Figure 0003728509
[0019]
As thermosetting polyimide PI-4 containing an acetylene group, benzophenonetetracarboxylic anhydride (BTDA), 1,3-bis (3-aminophenoxy) benzene (APB), 3-aminophenylacetylene (ACT) was used. It is an oligomer, and its chemical structure is shown in Formula 16. PI-A and PI-R are commercially available thermoplastic polyimides, and their chemical structures are shown in chemical formulas 17 and 18, respectively.
Embedded image
Figure 0003728509
Embedded image
Figure 0003728509
Embedded image
Figure 0003728509
[0020]
The composite of addition type polyimide PI-1 having a phenylethynyl group and CNT was performed by the following procedure. First, a predetermined weight of CNT and imide oligomer powder were mixed for several minutes in a dry state by a mechanical blender. Next, a polytetrafluoroethylene (PTFE) plate having a thickness of 1 mm obtained by hollowing out an 80 × 40 mm window is placed on a hot plate heated to 300 ° C., and a mixed powder of CNT and imide oligomer is placed in this frame. It was melted for about 30 minutes. Then, it heated up to 370 degreeC at about 5 degree-C / min, applying a little pressure, and hardened for 1 hour. For mold release, a 25 μm thick polyimide film (Upilex-R, manufactured by Ube Industries) was used between the hot press and the composite material.
[0021]
The composite of thermosetting polyimide PI-2 containing a nadiimide group and CNT was performed by the following procedure. First, CNTs weighed in a predetermined weight and dispersed in a half-ester solution of monomers, and after obtaining a mixture of CNTs and oligomers by heat treatment at 210 ° C., the same as above using a hot press heated to 320 ° C. The resin was cured by the method.
[0022]
A thermosetting polyimide PI-3 containing maleimide group and a thermosetting polyimide PI-4 containing acetylene group and a composite material of CNT were also prepared by mixing raw material powders in the same manner as PI-1. In addition, about PI-4, the post-process was implemented at 370 degreeC for 8 hours after thermosetting.
[0023]
On the other hand, the composite of the thermoplastic polyimides PI-A and PI-R and CNTs was performed by the following procedure. First, CNTs weighed in a predetermined weight and polyimide powder were kneaded with a biaxial kneader, and then pelletized. Further, these pellets were placed on a hot plate heated to 400 ° C., and hot press molding was performed using a spacer having a thickness of 1 mm.
[0024]
Dynamic viscoelasticity measurement (DMA) was performed on the prototype composite material using a dynamic viscoelasticity measurement apparatus (RSAII, Rheometrics Scientific, USA). The shape of the test piece used for the DMA measurement was 5 mm wide, 1.1 mm thick, and 56 mm long, and a three-point bending load having a span width of 48 mm was applied thereto. The test conditions are a frequency of 1 Hz, a strain of 0.02%, and a heating rate of 3.75 ° C./min. From the obtained results, the storage elastic modulus (E ′), loss elastic modulus (E ″) and tan δ were calculated. Further, the glass transition temperature in each composite material was determined with the temperature at which the storage elastic modulus began to decrease as the glass transition temperature Tg. The temperature Tg was determined, and a glass FRP tab was bonded to a test piece having a width of 5 mm, a thickness of 1.1 mm, and a length of 80 mm, and a tensile test was performed using a material testing machine (Instron type 4502). The tensile modulus was also measured.
[0025]
Examples of polyimide composites according to the present invention are summarized in Table 1 and Comparative Examples are shown in Table 2. Comparative Examples 1-6 are polyimide resin simple substance. Comparative Example 7 is a composite material of thermoplastic polyimide PI-1 and MW-CNT, Comparative Examples 8 to 10 are composite materials of thermoplastic polyimide PI-A and MW-CNT, and Comparative Examples 11 to 13 are heat It is a composite material of plastic polyimide PI-R and MW-CNT, and an increase in tensile elastic modulus is observed with the addition of MW-CNT, but it can be seen that there is no change in glass transition temperature Tg. This is as reported in PEEK and the like.
[Table 1]
Figure 0003728509
[Table 2]
Figure 0003728509
[0026]
Examples 1 to 11 are composite materials of addition type polyimides PI-1 to PI-4 having phenylethynyl terminal, nadiimide terminal, maleimide terminal, or acetylene terminal, and MW-CNT. By adding MW-CNT, An improvement in glass transition point and tensile modulus is observed. That is, it is recognized that the heat resistance is greatly improved only in this combination. Further, as shown in Examples 12 to 15 , an increase in tensile modulus and glass transition temperature is confirmed even in a composite material of polyimide PI-1 and CNF-1 having a diameter larger than that of MW-CNT. When CNF having a large diameter is used, the increase in the tensile elastic modulus is increased, but the rate of increase in the glass transition temperature Tg is slightly reduced.
[0027]
Comparative Examples 14 to 16 are examples in which CNF2 having a diameter of 250 to 300 nm was added. In this case, the tensile modulus is greatly improved, but the glass transition temperature Tg does not change. Similarly, Comparative Examples 17 to 19 are examples in which carbon fiber CF having a diameter of 8 μm is added, and the glass transition temperature Tg is not changed. That is, according to the present invention, nanotubes and nanofibers having an average diameter of 250 nm or less, desirably 150 nm or less, are dispersed in a thermosetting imide oligomer containing a phenylethynyl group, a nadiimide group, a maleimide group, an acetylene group, or the like. is necessary. The weight ratio of CNT or CNF is 0.1 wt% or more, preferably 1 wt% or more. However, when the weight ratio of CNT or CNF exceeds 60% by weight, molding as a polyimide composite material becomes extremely difficult, which is not desirable.
[0028]
Next, for the purpose of forming a functional group on the surface of MW-CNT, thermal oxidation treatment was performed in high-temperature air. As a result of X-ray photoelectron spectroscopy (XPS), about 2.2 to 9.8 molecule% of oxygen was detected from the oxidized MW-CNT, and C = O or C- An O-C peak was observed. Since XPS can obtain information from a depth of several nm from the surface, the surface of MW-CNT seems to be slightly oxidized. Examples 16 to 18 are composite materials of oxidized MW-CNT and polyimide PI-1. When the weight ratio of the same MW-CNT is compared, it can be seen that there is no significant change in the tensile elastic modulus, but the increase in the glass transition temperature Tg is increased. This is presumably because a chemical bond is formed at a part of the interface between MW-CNT and polyimide due to the introduction of the functional group, which greatly inhibits the molecular motion of polyimide at high temperature.
[0029]
Subsequently, oxynitriding treatment with nitric acid / sulfuric acid was performed on MW-CNT. As a result of X-ray photoelectron spectroscopic analysis, about 1.7 to 9.2 molecule% oxygen + nitrogen was detected from the nitrided MW-CNT. Examples 19 to 21 are composite materials of MW-CNT subjected to oxynitriding treatment and polyimide PI-1. As with oxygen, it can be seen that functional groups are formed in the MW-CNT by introducing nitrogen, and as a result, the functions of the present invention are more manifested.
As described above, in any case of Examples 1 to 21 of the present invention, the glass transition temperature is a base material resin (P1−) obtained by thermosetting only imide oligomers shown as Comparative Examples 1 to 6 in Table 2. It is recognized that the temperature is increased by 4 ° C. or more as compared with the case of 1 to P1-4). That is, the glass transition temperature in the case of only the base resin is 340 ° C. (Comparative Example 1) for P1-1, 338 ° C. (Comparative Example 2) for P1-2, and 256 ° C. for P1-3. (Comparative Example 3) In the case of P1-4, the temperature is 309 ° C. (Comparative Example 4), whereas in the examples where the increase in the glass transition temperature is the lowest in each resin, the case of P1-1 is 344 ° C. Example 1), P1-2 was 342 ° C. (Example 5), P1-3 was 261 ° C. (Example 8), P1-4 was 315 ° C. (Example 10), In the examples, an increase of 4 ° C. or higher is observed.
[0030]
The polyimide composite material by this invention can be used conveniently also as a matrix of the fiber reinforced composite material which uses carbon fiber, glass fiber, etc. as a reinforcement. Table 3 shows the heat resistance and mechanical properties of a composite material using five satin fabrics of carbon fiber (T800, manufactured by Toray Industries, Inc.). The fiber volume fraction is about 50%. Comparative Example 20 uses thermosetting polyimide PI-1 as a matrix, and Examples 23 and 24 use a composite material of MW-CNT and PI-1 according to the present invention as a matrix. By using the polyimide composite material according to the present invention as a matrix, an increase in compressive strength due to an increase in the elastic modulus of the matrix and an increase in the glass transition temperature Tg are achieved.
[Table 3]
Figure 0003728509
[0031]
【The invention's effect】
As described above, according to the present invention, at least one or more of single-walled or multi-walled nanotubes and vapor-grown nanofibers made of carbon having an average diameter of 250 nm or less, preferably 150 nm or less, are converted to phenylethynyl groups. , By dispersing in a thermosetting imide oligomer containing at least one selected from a nadiimide group, a maleimide group, and an acetylene group, and then thermosetting, thereby imparting electrical conductivity, improving elastic modulus and strength In addition, a polyimide composite material having an improved glass transition temperature, which is an index of heat resistance, can be obtained.
[0032]
Similarly, in this polyimide composite material, the weight ratio of the dispersed nanotube or nanofiber in the composite material is 0.1 wt% or more and 60 wt% or less, and oxygen and nitrogen are combined in the nanotube or nanofiber. By containing 0.2 molecule% or more, the above function can be expressed more effectively.
[0033]
Furthermore, this polyimide composite material can express a more suitable characteristic by using together the continuous fiber or short fiber of a diameter of 1 micrometer or more as a reinforcing material.

Claims (3)

平均直径が1nm以上、250nm以下のカーボンから成る単層又は多層のナノチューブ、気相成長によって形成されたナノファイバーの少なくとも1つ以上を重量比率が1重量%以上、60重量%以下の範囲内で、下記化学式(1)に示すフェニルエチニル基、下記化学式(2)に示すナジイミド基、下記化学式(3)に示すマレイミド基、下記化学式(4)に示すアセチレン基のいずれか一つ以上を含む熱硬化型のイミドオリゴマーに分散させた後に熱硬化させ、ガラス転移温度を前記イミドオリゴマーのみを熱硬化して得られる母材樹脂よりも4℃以上上昇させてなることを特徴とするポリイミド複合材料。
Figure 0003728509
Figure 0003728509
Figure 0003728509
Figure 0003728509
Single- or multi-walled nanotubes composed of carbon having an average diameter of 1 nm or more and 250 nm or less, and at least one of nanofibers formed by vapor phase growth within a weight ratio of 1% by weight to 60% by weight A heat containing any one or more of a phenylethynyl group represented by the following chemical formula (1), a nadiimide group represented by the following chemical formula (2), a maleimide group represented by the following chemical formula (3), and an acetylene group represented by the following chemical formula (4). A polyimide composite material, wherein the polyimide composite material is obtained by dispersing in a curable imide oligomer and then thermosetting and raising the glass transition temperature by 4 ° C. or more than a base resin obtained by thermosetting only the imide oligomer .
Figure 0003728509
Figure 0003728509
Figure 0003728509
Figure 0003728509
前記ナノチューブ又は前記ナノファイバーは、酸素及び窒素をあわせて0.2分子%以上含有していることを特徴とする請求項1に記載のポリイミド複合材料。  2. The polyimide composite material according to claim 1, wherein the nanotube or the nanofiber contains 0.2 molecule% or more in combination of oxygen and nitrogen. 直径1μm以上の連続繊維又は短繊維を強化材とし,請求項1又は2に記載したポリイミド複合材料を母材とする繊維強化複合材料。A fiber-reinforced composite material having a continuous material or a short fiber having a diameter of 1 µm or more as a reinforcing material and the polyimide composite material according to claim 1 or 2 as a base material.
JP2003045067A 2003-02-21 2003-02-21 Polyimide composite material Expired - Lifetime JP3728509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045067A JP3728509B2 (en) 2003-02-21 2003-02-21 Polyimide composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045067A JP3728509B2 (en) 2003-02-21 2003-02-21 Polyimide composite material

Publications (2)

Publication Number Publication Date
JP2004250646A JP2004250646A (en) 2004-09-09
JP3728509B2 true JP3728509B2 (en) 2005-12-21

Family

ID=33027583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045067A Expired - Lifetime JP3728509B2 (en) 2003-02-21 2003-02-21 Polyimide composite material

Country Status (1)

Country Link
JP (1) JP3728509B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572362B2 (en) * 2004-04-15 2010-11-04 独立行政法人産業技術総合研究所 Carbon material-containing polyimide composite material for friction material and its manufacturing method
WO2006041186A1 (en) * 2004-10-12 2006-04-20 Showa Denko K.K Resin composition containing vapor grown carbon fiber and use thereof
CN100357355C (en) * 2005-06-30 2007-12-26 北京航空航天大学 Inorganic nano combined fiber reinforced polyimide composite material and its preparing method
KR100691837B1 (en) 2006-02-03 2007-03-12 한국화학연구원 Composites of carbon nanofibers and polyimide, and production method thereof
JP5229488B2 (en) * 2008-03-24 2013-07-03 株式会社豊田中央研究所 Carbon nanocomposite, dispersion and resin composition containing the same, and method for producing carbon nanocomposite
US9315633B2 (en) * 2014-08-29 2016-04-19 The Boeing Company Nanomodified backbones for polyimides with difunctional and mixed-functionality endcaps
CN115322135A (en) * 2019-08-28 2022-11-11 东华大学 Aromatic thermosetting liquid crystal fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2004250646A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
Xiong et al. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite
Prolongo et al. Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites
Singh et al. Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites
Chen et al. Multiwalled carbon nanotube/polybenzoxazine nanocomposites: preparation, characterization and properties
Coleman et al. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites
Feng et al. Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity
Wang et al. Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: Functionalization, preparation and characterization
Yang et al. Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes
Yang et al. Polybenzoxazine-core shell rubber–carbon nanotube nanocomposites
Chou et al. Preparation of CFRP with modified MWCNT to improve the mechanical properties and torsional fatigue of epoxy/polybenzoxazine copolymer
TW201005012A (en) Carbon nanotube-reinforced nanocomposites
Xiong et al. Microstructure and properties of polyurethane nanocomposites reinforced with methylene-bis-ortho-chloroanilline-grafted multi-walled carbon nanotubes
KR100665130B1 (en) Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby
Min et al. Oxidative stabilization of PAN/SWNT composite fiber
Gu et al. Bismaleimide/carbon nanotube hybrids for potential aerospace application: I. Static and dynamic mechanical properties
JP3728509B2 (en) Polyimide composite material
KR20120129040A (en) Carbon nanotube fibers and method of preparing the same
Chávez‐Medellín et al. Polyamide‐12/Functionalized Carbon Nanofiber Composites: Evaluation of Thermal and Mechanical Properties
CN111286194A (en) Wear-resistant self-lubricating polyimide resin and preparation method thereof
Jain et al. Polyacrylonitrile/carbon nanofiber nanocomposite fibers
Bîru et al. Developing polybenzoxazine composites based on various carbon structures
Zhang et al. Polyamide 66 and amino-functionalized multi-walled carbon nanotube composites and their melt-spun fibers
Ghose et al. Incorporation of multi-walled carbon nanotubes into high temperature resin using dry mixing techniques
Mourad et al. Wet lay-up technique for manufacturing of advanced laminated composites
Kausar A study on high-performance poly (azo-pyridine-benzophenone-imide) nanocomposites via self-reinforcement of electrospun nanofibers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050418

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Ref document number: 3728509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term