JP3728272B2 - Hot water mixing unit - Google Patents

Hot water mixing unit Download PDF

Info

Publication number
JP3728272B2
JP3728272B2 JP2002135926A JP2002135926A JP3728272B2 JP 3728272 B2 JP3728272 B2 JP 3728272B2 JP 2002135926 A JP2002135926 A JP 2002135926A JP 2002135926 A JP2002135926 A JP 2002135926A JP 3728272 B2 JP3728272 B2 JP 3728272B2
Authority
JP
Japan
Prior art keywords
water
hot water
mixing
solar
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135926A
Other languages
Japanese (ja)
Other versions
JP2003083610A (en
Inventor
宏明 佐々木
錦司 森
正和 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2002135926A priority Critical patent/JP3728272B2/en
Publication of JP2003083610A publication Critical patent/JP2003083610A/en
Application granted granted Critical
Publication of JP3728272B2 publication Critical patent/JP3728272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自然エネルギーを利用した太陽熱温水器等や廃熱を利用した温水器等で構成される温水供給器を給湯器等の補助熱源機に接続するための湯水混合ユニットに関し、異常時においても温水供給器からの温水を有効利用できるようにすると共に、この異常時に補助熱源機から高温のお湯が出湯されることがないようにする技術に関するものである。
【0002】
【従来の技術】
従来より、例えば、湯水混合ユニットによって温水供給器としての太陽熱温水器を補助熱源機としての給湯器に接続し、上記太陽熱温水器からのソーラ温水を利用するようにしたソーラ給湯システムが、特開平10−196983号公報に開示されている。
【0003】
この公報に記載のソーラ給湯システムは、図4に示すように、湯水混合ユニットCにおいては、太陽熱温水器B側に接続されるソーラ温水路470と、上水道側に接続される冷水路480と、これらソーラ温水路470および冷水路480が合流されて給湯器A側に接続される混合水路421と、上記各水路470,480,421の合流点に設けられてソーラ温水路470のソーラ温水(温水)と冷水路480の水道水とを混合調節する混合調節弁461と、この混合調節弁461の動作制御を行うコントローラ460とを備える。
このものは、給湯器Aの使用者が給湯カラン422等を操作し給湯器A側で最低作動水量以上となったときにコントローラ460の指示によって混合調節弁461での混合動作が開始され、これによって、ソーラ温水が利用されるようになるというものである。また、上記コントローラ460は、給湯設定温度が入力されるリモコン450と接続された給湯器Aの主コントローラ430と接続されており、この主コントローラ430からの情報を受け取って上記混合調節弁461の動作制御を行う。
【0004】
一方、上記湯水混合ユニットCは、以下の安全措置が講じられている。
すなわち、上記ソーラ温水路470に電磁開閉弁462が設けられ、上記混合調節弁461が故障した場合にコントローラ460からの指示でこの電磁開閉弁462を全閉状態にしてソーラ温水路470を完全に遮断する。これによって、混合調節弁461が故障してソーラ温水と水道水の混合制御が出来ない異常の場合は、高温のソーラ温水が給湯器A側に供給されないようにし、給湯器Aの使用者が火傷を負わないようにしている。
【0005】
また、混合調節弁461は故障していないが、水温センサ463,464,465が故障してソーラ温水と水道水の混合制御が出来ない異常の場合は、コントローラ460からの指示で混合調節弁461を水側全開状態とするとともにソーラ温水側を全閉状態とする。これによっても、上記の異常の場合、給湯器A側に高温のソーラ温水が供給されないので、使用者の安全が確保されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記混合調節弁461が故障等した異常が起こった場合は、太陽熱温水器Bのソーラ温水が全く使用されなくなるので、このような異常時においては太陽熱温水器Bのソーラ温水を有効利用できないという問題がある。
【0007】
また、上記ソーラ温水路470に電磁開閉弁462が設けられているため、このソーラ温水路470を流れるソーラ温水は、上記電磁開閉弁462によって通水抵抗を受けるので、冷水路480に比してソーラ温水路470側の通水抵抗が大きくなる。その結果、上記異常がなく正常な場合であっても、水道水に比してソーラ温水の方が流れ難くなるため、太陽熱温水器Bからのソーラ温水供給が円滑に行われ難く、給湯器A側でソーラ温水を十分に利用できなくなってしまう。
【0008】
そして、給湯器Aでの給湯設定温度が太陽熱温水器Bのソーラ温水温度と等しい場合は、上記混合調節弁461が冷水路480を閉じてソーラ温水だけが給湯器Aの出湯口から出るようにされる。従って、この場合は、ソーラ温水がソーラ温水路470を流れるときに上記電磁開閉弁462によって通水抵抗を受けるため、給湯器Aの出湯口からの出湯量を多く確保できない。
【0009】
また、上記電磁開閉弁462は、ソーラ温水路470に設けられているので、高温のソーラ温水に耐える耐熱性が要求され、耐熱性材料でこの電磁開閉弁462を構成する必要があり、コスト高となる。耐熱性材料で電磁開閉弁462を構成しないと、電磁開閉弁462は、高温のソーラ温水の熱的負荷に耐えきれず直ぐに故障してしまうおそれがあるからである。
【0010】
本発明は、このような事情に鑑みてなされたものであり、湯水混合ユニットにおいて、温水と水との混合制御の出来ない異常が起こった場合でも、必ず温水供給器からの温水を利用できるようにすると共に補助熱源機からは火傷を負う程の高温のお湯が出湯されないようにすることを課題とする。
【0011】
【課題を解決するための手段】
(1)本発明に係る湯水混合ユニットは、温水供給器を補助熱源機に接続するための湯水混合ユニットであって、上記温水供給器の温水出湯路がその流入口に接続される温水路と、水源の給水路がその流入口に接続される冷水路と、上記温水路および上記冷水路が合流されると共にその流出口に上記補助熱源機の入水路が接続される混合水路と、上記混合水路に流入される温水と水の混合割合を調整する混合調整器とを有し、
上記冷水路から分岐されて上記混合水路に至るバイパス通路と、
上記バイパス通路に設けられ、温水と水の混合制御の出来ない異常が起こった場合に上記冷水路内の水が上記バイパス通路を通して上記混合水路に流れ込むように全閉状態から全開状態となる開閉弁とを備えることを特徴とする。
【0012】
上記手段によると、上記混合調整器によって温水と水の混合制御が出来ない異常が起こった場合、温水は温水路から混合水路にそのまま流される状態にあるが、バイパス通路に設けた開閉弁が全開されてバイパス通路から混合水路に水が送り込まれる。
【0013】
しかも、上記異常の場合に混合調整器での温水の量と水の量との混合比がどのような状態であってもバイパス通路から送り込まれる水によって混合水路内の温水が所定温度以下の安全温度域まで冷まされることとなる。
【0014】
また、上記開閉弁は、水の流れるバイパス通路に設けられているので、この開閉弁としては高温耐熱性が要求されることもない。
また、温水路には、従来例のような電磁開閉弁が設けられていないので温水に対する通水抵抗が小さい。
【0015】
なお、上記異常がない場合は、バイパス通路が完全に閉じられるので、水源からの水はすべて冷水路を通って混合水路に送り込まれ、このとき、混合調整器によって温水と水とが所定の混合割合に調整され、そして、この調整後の混合水が混合水路から補助熱源機の入水路に送られるので、温水供給器の温水を十分に利用することができる。
【0016】
(2)また、上記湯水混合ユニットにおいて、上記バイパス通路は、混合水路内に送り込まれる温水を所定温度以下に冷ませる水量の水を供給可能とする構成であることを特徴とする。
上記手段によると、温水と水との混合制御の出来ない異常が起こった場合、混合水路内に送り込まれる温水はバイパス通路からの水で所定温度以下の安全温度域まで確実に冷まされるので、高温の混合水が補助熱源機に供給されることはなく補助熱源機の使用者が火傷等を負うようなことも確実に防止できる。
【0017】
(3)また、上記湯水混合ユニットにおいて、上記バイパス通路の下流端は、上記混合水路における上記温水路および上記冷水路の合流点よりも下流側に接続されることを特徴とする。
【0018】
上記手段によると、温水と水との混合制御の出来ない異常として、例えば、混合調整器の調節弁が破損等して上記温水路または上記冷水路が閉塞されても、バイパス通路の下流端が上記温水路および上記冷水路の合流点よりも下流側に接続されているので、上記合流点を迂回した状態でバイパス通路から水を混合水路、ひいては補助熱源機の入水路に確実に供給することができる。従って、たとえ上記温水路または上記冷水路が閉塞されても補助熱源機には水、あるいは低温の混合水が確実に供給されるので、補助熱源機からの出湯を絶やすようなことがなく、安定した給湯を実現できる。
【0019】
【発明の効果】
以上のように、本発明によれば、温水と水との混合制御の出来ない異常が起こっても、温水路は遮断されないので、温水供給器からの温水を有効に利用することができ、しかも、混合水路内の温水はバイパス通路からの水で所定温度以下の安全温度域まで冷まされるので、高温の混合水が補助熱源機に供給されることはなく補助熱源機の使用者が火傷等を負うようなこともない。従って、上記のような異常が起こっても、温水供給器の温水を有効利用できると共に給湯使用者の安全も十分に確保できる。
【0020】
しかも、安全温度域にまで冷まされた混合水が補助熱源機に供給される結果、この低温の混合水を補助熱源機で給湯設定温度に加熱して出湯されるので、安定した給湯をも同時に実現できる。
【0021】
また、温水路には、従来例のような電磁開閉弁が設けられておらず通水抵抗が小さいので、補助熱源機側への温水の供給を多く確保できる。
また、上記開閉弁が水の通るバイパス通路に設けられ、この開閉弁には高温耐熱性が要求されないので、開閉弁を耐熱材料で構成する必要もなく低コストに製作でき、しかも、この開閉弁に対する熱的負荷が小さいので故障率も一段と低くできる。
【0022】
このように、本発明による湯水混合ユニットでは、温水供給器の温水が有効利用でき、温水路での通水抵抗が小さいため補助熱源機や給湯システムの性能が十分に引出せ、しかも安全性および耐久性に優れた信頼の高いものを実現できる。
【0023】
【発明の実施の形態】
以下に、本発明の実施の形態について添付図面を参照しながら説明する。なお、以下の実施の形態では、温水供給器として太陽熱温水器を、本発明の湯水混合ユニットによって補助熱源機としての給湯器に接続したソーラ給湯システムを例に挙げて説明する。
図1は、本発明の実施の形態による湯水混合ユニット1を用いたソーラ給湯システムの全体構成図であり、太陽熱温水器5は湯水混合ユニット1を介して給湯器7に配管接続されている。なお、このソーラ給湯システムにおける給湯器7としては、太陽熱温水器5の接続を予定していない既設のものでもよいし、太陽熱温水器5との接続を予定して作製されたものでもよい。
【0024】
まず、図1を参照して、このソーラ給湯システムの各部の構成から説明する。(太陽熱温水器)
上記太陽熱温水器5は、太陽熱を吸収する集熱器50と貯湯タンク51内とを循環するように形成された蓄熱循環路52を具備しており、この蓄熱循環路52にはホッパ53と循環ポンプ54とが配設されている。また、貯湯タンク51の底部には、上水道等の水源の給水路60から延設されて水を供給するソーラ用給水路55と、水抜栓57を具備する水抜路58とが接続されていると共に、貯湯タンク51の頂部には、この貯湯タンク51のソーラ温水(温水)を取出すソーラ出湯路56が引き出されている。そして、上記循環ポンプ54を駆動させ畜熱循環路52内の液状媒体を循環させると、上記集熱器50で加熱された液状媒体が畜熱循環路52を通じて貯湯タンク51内へ導かれて貯湯タンク51内の水を熱交換加熱してソーラ温水とし、この貯湯タンク51内のソーラ温水がソーラ出湯路56を経て上記湯水混合ユニット1側に送り込まれる。
【0025】
(給湯器)
上記給湯器7は、図示しないバーナで加熱される熱交換器73が内蔵された給湯器本体70と、各種操作部等(運転スイッチ、浴槽の湯張りスイッチ・追い炊きスイッチ、湯温設定器、表示部等)が配置されたリモコン71と、このリモコン71と配線ケーブル78で接続されて浴槽81や出湯蛇口85での給湯を制御する給湯制御部72とを備える。また、上記熱交換器73には、入水路76と出湯路84が接続されると共に、浴槽81との間で湯張り及び追焚きに使用される往き管82と戻り管83が接続されている。そして、出湯路84には、往き管82との間に浴槽81へお湯を供給するための風呂落とし込み路74が設けられ、この風呂落とし込み路74には、落とし込み開閉弁75が設けられ、その下流の往き管82との接続点には三方弁80が設けられている。また、出湯路84の末端には出湯蛇口85が設けられている。なお、この他に、図示しないが、入水路76、出湯路84、往き管82および戻り管83には、温度センサが設けられており、さらに、入水路76および往き管82には、ポンプ、水量センサが設けられている。
【0026】
(湯水混合ユニット)
上記湯水混合ユニット1は、上記太陽熱温水器5を上記給湯器7に接続するための装置であり、太陽熱温水器5からのソーラ温水が通されるソーラ温水路14と、上水道等の水源からの水が通される冷水路15と、これらソーラ温水路14と冷水路15とが合流されてソーラ温水(温水)と水との混合水が通される混合水路29と、上記混合水路29に流入されるソーラ温水と水の混合割合を調整する混合調整器3と、この湯水混合ユニット1の制御を行う混合制御部11とを備える。
【0027】
上記ソーラ温水路14は、その流入口16に上記太陽熱温水器5のソーラ出湯路56が接続され、その下流端で上記混合水路29に接続されている。このソーラ温水路14には、上流側から順に、ソーラ温水の除塵機能を兼ねたフィルタ付き水抜き栓21、バキュームブレーカ12、逆止弁13、ソーラ温水温センサ19がそれぞれ配設されている。そして、このソーラ温水路14には、従来例のような電磁開閉弁(図4中、符号462)が設けられておらず通水抵抗が小さいので、給湯器7側へのソーラ温水供給を多く確保できる。
【0028】
上記冷水路15は、その流入口17に給水路60の一部が減圧弁61の下流から分岐されて延設された給水分岐路10が接続され、その下流端で上記混合水路29に接続されている。この冷水路15には、上流側から順に、水中の除塵機能を兼ねたフィルタ付き水抜き栓30、逆止弁22、冷水温センサ23がそれぞれ配設されている。
【0029】
上記混合水路29は、上記ソーラ温水路14および上記冷水路15が合流されると共にその流出口18に給湯器7の入水路76が接続される。この混合水路29には、上流側から順に、給水量調節弁24、温水量調節弁25、水量センサ32、混合水温センサ33、混合水路29の水圧が過剰上昇したときに開弁し圧力開放を行う機能を兼ねた逃し弁兼水抜き栓35がそれぞれ配設されている。そして、上述のように温水量調節弁25を給水量調節弁24の下流位置に設けるのは、上流の給水量調節弁24の開弁によって流れる水でこの温水量調節弁25を覆うことで温水量調節弁25の耐熱性を確保させるようにするためである。すなわち、温水量調節弁25には常に高温のソーラ温水が当たりその高温耐久性が必要となるが、冷水路15からの水によってソーラ温水による熱的負荷を緩和させている。
【0030】
上記混合調整器3は、混合水路29におけるソーラ温水路14との接続点に設けられた上記温水量調節弁25と、混合水路29における冷水路15との接続点に設けられた上記給水量調節弁24とから構成されている。
【0031】
上記混合制御部11は、上記給湯器7の給湯制御部72と配線ケーブル77で接続されてリモコン71からの設定温度信号が入力される他に、上記ソーラ温水温センサ19、冷水温センサ23、混合水温センサ33、水量センサ32等からの各検知信号の入力を受けると共に、上記混合調整器3における上記給水量調節弁24および上記温水量調節弁25、後述するバイパス通路28の開閉弁31に対してそれぞれ制御信号を出力し、これらの動作制御を行う。
【0032】
上記の給水量調節弁24および温水量調節弁25は、上記混合制御部11からの制御信号で動作制御されるモータと、このモータの回転量に応じて進退するニードル弁とから構成される。そして、例えば、温水量調節弁25におけるニードル弁が後退するにつれソーラ温水路14から混合水路29へ流れ込むソーラ温水の量が増し、逆にニードル弁が進退するにつれソーラ温水の量が減少し、さらにニードル弁が前進限位置に達してソーラ温水路14下流端の弁座口を塞いでしまうと、ソーラ温水の供給が遮断される。上記給水量調節弁24についても同様のことが言える。なお、上記温水量調節弁25と上記給水量調節弁24として、それぞれのニードル弁を、共通の(単一の)モータで駆動させるようにしてもよく、この場合、例えば歯車機構を介して単一のモータと各ニードル弁を連結し、一方のニードル弁が開弁動作すると他方のニードル弁が閉弁動作する構造にすればよい。
【0033】
また、この湯水混合ユニット1には、上記冷水路15から分岐されて上記混合水路29に至るバイパス通路28が設けられると共に、このバイパス通路28には開閉弁31が設けられている。この開閉弁31としては、電磁開閉弁等が使用され、弁体と、この弁体を閉動作させるソレノイドと、この弁体を全開状態に付勢保持させるバネ等の弾性部材とを備える。この開閉弁31は、そのソレノイドへの電圧供給が停止されると弾性部材で付勢されて弁体が全開状態になる、いわゆる常開の開閉弁である。上記開閉弁31は、水の流れるバイパス通路28に設けられているので、高温耐熱性が要求されることもない。従って、この開閉弁31を耐熱材料で構成する必要もなく低コストに製作でき、しかも、この開閉弁31に対する熱的負荷が小さいので故障率も一段と低くできる。
【0034】
そして、この開閉弁31における開閉動作も、上述したように上記混合制御部11からの制御信号によって動作制御される。すなわち、この湯水混合ユニット1が正常に機能されている場合は、上記混合制御部11からの制御信号によって開閉弁31におけるソレノイドへの電圧供給が行われ、この開閉弁31を全閉状態とし、この場合は、上記バイパス通路28が遮断されている。
【0035】
一方、上記給水量調節弁24や上記温水量調節弁25の故障、上記各温度センサ19,23,33の故障等によってソーラ温水と水との混合制御の出来ない異常が起こった場合に、上記混合制御部11からの制御信号によって開閉弁31におけるソレノイドへの電圧供給が停止され、この開閉弁31を全閉状態から全開状態とし、上記冷水路15内の水が上記バイパス通路28を通して上記混合水路29に流れ込むようにする。
【0036】
また、停電が起こった場合も、上記開閉弁31のソレノイドへの電圧供給が停止されるので、開閉弁31が全開状態となってバイパス通路28から水が混合水路29に流れ込むようになる。
【0037】
また、上記バイパス通路28は、混合水路29内に送り込まれるソーラ温水を所定温度以下に冷ませる水量の水を供給可能とする構成を有する。例えば、バイパス通路28の口径サイズとして、例えソーラ温水路14から100℃のソーラ温水が最大供給量で上記混合水路29に流れ込んで来てもこのソーラ温水を所定温度以下に冷ませる水量の水を供給可能とするように設定すればよい。ここで、上記所定温度とは、給湯器7の使用者が火傷を負うようなことがない上限温度を意味し、例えば、約60℃程度に設定される。
【0038】
このように、停電、給水量調節弁24や温水量調節弁25の故障、各温度センサ19,23,33の故障等が発生し、ソーラ温水と水との混合制御の出来ない異常が起こった場合に、給水量調節弁24および温水量調節弁25でのソーラ温水の量と水の量の混合比がどのような状態であってもバイパス通路28から送り込まれる水によって混合水路29内のソーラ温水が所定温度(約60℃)以下の安全温度域まで冷まされることとなる。従って、ソーラ温水と水との混合制御の出来ない上記異常が起こっても、ソーラ温水路14は遮断されないので、ソーラ温水を有効に利用することができ、しかも、混合水路29内の混合水はバイパス通路28からの水で所定温度(約60℃)以下の安全温度域まで冷まされるので、高温の混合水が給湯器7に供給されることはなく給湯器7の使用者が火傷等を負うようなこともない。
【0039】
また、上記バイパス通路28の下流端が上記ソーラ温水路14および上記冷水路15の接続点よりも下流側に接続されているので、仮に、温水量調節弁25あるいは水量調節弁24が破損等して混合水路29における上記ソーラ温水路14または上記冷水路15の接続点が閉塞されても、上記接続点を迂回した状態でバイパス通路28から水を混合水路29、ひいては給湯器7の入水路76に確実に供給することができる。従って、たとえ上記接続点が閉塞されても給湯器7には水、あるいは低温の混合水が確実に供給されるので、給湯器7からの出湯を絶やすようなことがなく、安定した給湯を実現できる。
【0040】
(湯水混合ユニットにおける動作)
次に、上記湯水混合ユニット1における動作を説明する。
以下に、この湯水混合ユニット1の動作を、図2に示したフローチャート従って説明する。
図2を参照して、湯水混合ユニット1に電源が入れられると、上記バイパス通路28の開閉弁31が全閉状態にされ(ステップS1)、ステップS2において混合水路29の水量センサ32の出力を監視する。そして、給湯蛇口85や浴槽の湯張り弁が開かれて給湯動作が始まると混合水路29の通水を検知して水量センサ32がON信号を混合制御部11に出力する。
すると、ソーラ温水温センサ19で検知されたソーラ温水温度が、給湯器7のリモコン71に入力された給湯設定温度より高い場合は、混合水の混合目標設定温度が上記給湯設定温度となるように混合制御部11の制御によって混合調整器3の混合割合が決定される。一方、上記ソーラ温水温度が上記給湯設定温度より低い場合は、混合水の混合目標設定温度が上記給湯設定温度から給湯器7の燃焼による上昇温度分だけ減算した温度となるように混合制御部11の制御によって混合調整器3の混合割合が決定される。このように混合調整器3の混合割合が予め決定され、次のステップS3に移行する。
【0041】
ステップS3において、混合制御部11は、混合水路29内の混合水温度である混合水温センサ33の検知温度と、上記混合水の混合目標設定温度とを比較する(なお、図2のS3中で「設定温度」とは、上記混合水の混合目標設定温度を示す。)。そして、上記混合水の温度が上記混合目標設定温度より低温状態にある場合は、太陽熱温水器5から供給されるソーラ温水の混合量を増加させるか、または水源から給水される水の混合量を減少させる制御を、ステップS4〜S7で実行する。
【0042】
すなわち、ステップS4で温水量調節弁25が全開状態に無いことが確認されると、ステップS5で温水量調節弁25の開度レベルを1つ(例えば最大開度の10分の1)だけ増加させる。上記ステップS4を実行したときに温水量調節弁25が全開状態になっているときは、ステップS6で給水量調節弁24の開度を判断し、これが全閉状態に無いときは、ステップS7で給水量調節弁24の開度レベルを1つ(例えば最大開度の10分の1)だけ絞る。
【0043】
一方、上記ステップS3で、混合水の温度が上記混合目標設定温度より高い場合は、太陽熱温水器5から供給されるソーラ温水の混合量を減少させるか、または水源から給水される水の混合量を増加させる制御を、ステップS8〜S11で実行する。
【0044】
すなわち、ステップS8で温水量調節弁25が全閉で無いことが確認されると、ステップS9で温水量調節弁25の開度レベルを1つ絞る。上記ステップS8で温水量調節弁25が全閉状態にあることが確認されると、ステップS10で給水量調節弁24の開度を判断し、これが全開状態に無いときは、ステップS11で給水量調節弁24の開度レベルを1つ増加させる。
【0045】
このようにして、太陽熱温水器5からのソーラ温水と水源からの水の混合割合を調整することにより、太陽熱温水器5から供給されるソーラ温水の温度がリモコン71での給湯設定温度より高い場合は、上記給湯設定温度のお湯が湯水混合ユニット1からの混合水として給湯器7へ流出するように制御される。すると、この給湯設定温度のお湯が給湯器7の出湯蛇口85等から出湯される。
【0046】
一方、太陽熱温水器5から供給されるソーラ温水の温度がリモコン71での給湯設定温度より低い場合は、上記給湯設定温度から給湯器7の燃焼による上昇温度分だけ減算した温度となった混合水が給湯器7に送り込まれる。すると、給湯器7のバーナが燃焼して温度不足状態にある混合水が熱交換器73で加熱昇温される。すなわち、給湯器7内において出湯路84に配設された温度センサ(図示せず)の検知する出湯温度がリモコン71での給湯設定温度に等しくなるように給湯器7の給湯制御部72がバーナの燃焼量をコントロールすることから、この給湯器7の機能によって上記混合水が給湯設定温度まで加熱昇温され、上記給湯設定温度のお湯が出湯蛇口85や浴槽81に送られる。
【0047】
(異常時の動作)
次に、このソーラ給湯システムに異常が起こった場合の動作を説明する。
このような異常として、例えば、正常運転中に停電が発生した場合、温水量調節弁25や給水量調節弁24が故障した場合、各温度センサ19,23,33,が故障した場合等が挙げられるが、まずは、温水量調節弁25または給水量調節弁24が故障し、ソーラ温水と水との混合制御が出来なくなって高温のソーラ温水が混合水路29から流出してしまう場合の動作を、図2に基づいて説明する。この異常時の制御動作は、図2のフローチャートにおけるステップS12〜S14で行われる。
すなわち、上記ステップS5、S7、S9、S11において、温水量調節弁25あるいは給水量調節弁24を動作させた後に、ステップS12に移行させる。
【0048】
そして、ステップS12において、混合制御部11は、混合水路29の混合水温センサ33での混合水温度において給湯設定温度から一定の温度上昇(+α℃)が見られるか否かを監視し、一定の温度上昇(+α℃)が検出されると、次のステップS13に進み、この温度上昇の継続時間の計測を開始する。なお、図2のS12中で、「設定」とはリモコン71での上記給湯設定温度を示し、「α温度」とは、上記一定の温度上昇(+α℃)相当の温度を示す。そして、この状態が、例えばX時間継続した場合には、混合調整器3における温水量調節弁25あるいは給水量調節弁24が故障し、ソーラ温水と水との混合制御が出来なくなった異常が起こったと判断し、次のステップS14に進む。なお、上記温度上昇値α℃や経過時間X等は、太陽熱温水器5や給湯器7の能力等に応じて適宜に決定すればよい。
【0049】
そして、ステップS14において、混合制御部11は、バイパス通路28に設けた開閉弁31に対し、この開閉弁31への電圧供給を停止させる制御信号を出力し、この開閉弁31を全開状態とすると同時に、異常報知(ブザー、図示しない表示部への異常表示など)を行う。これによって、バイパス通路28が全開され、このバイパス通路28から冷水路15内の水が混合水路29に直接送り込まれる。従って、上記異常の場合に温水量調節弁25および給水量調節弁24でのソーラ温水の量と水の量との混合比がどのような状態であってもバイパス通路28から送り込まれる水によって混合水路29内のソーラ温水が所定温度(約60℃)以下の安全温度域まで冷まされることとなる。
【0050】
このようにして、温水量調節弁25または給水量調節弁24が故障し、ソーラ温水と水との混合制御の出来ない異常が起こった場合、ソーラ温水路14は遮断されないので、太陽熱温水器5のソーラ温水を有効に利用することができ、しかも、混合水路29内のソーラ温水はバイパス通路28からの水で安全温度域まで冷まされるので、高温の混合水が給湯器7に供給されることはなく給湯器7の使用者が火傷等を負うようなこともない。そして、使用者は、上記異常報知によってシステム異常が知らされるので、異常復旧のメンテナンスに直ちに取りかかれる。
【0051】
また、仮に、温水量調節弁25あるいは給水量調節弁24が破損等して混合水路29における上記ソーラ温水路14または上記冷水路15の接続点が閉塞されても、上記バイパス通路28の下流端がこれら接続点よりも下流側に接続されているので、上記接続点を迂回した状態でバイパス通路28から水を混合水路29、ひいては給湯器7の入水路76に確実に供給することができる。従って、たとえ上記接続点が閉塞されても給湯器7には水、あるいは低温の混合水が確実に供給されるので、給湯器7からの出湯を絶やすようなことがなく、安定した給湯を実現できる。
【0052】
なお、上記ステップS12で混合水温度の給湯設定温度から一定の温度上昇(+α℃)が検出されない場合や、上記ステップS13でX時間の継続が検出されない場合は、上記異常は無しとしてステップS2へ戻される。
【0053】
一方、このソーラ給湯システムの運転中等に、停電が発生したような場合は、上記湯水混合ユニット1がどのような制御状態にあっても、上記開閉弁31への電圧供給が停止される結果、この場合も、開閉弁31が全開状態となってバイパス通路29が開けられ、このバイパス通路29から冷水路15内の水が混合水路29に直接送り込まれる。従って、停電が発生し、ソーラ温水と水との混合制御の出来ない異常が起こった場合でも、太陽熱温水器5のソーラ温水を有効に利用でき、しかも、高温水が給湯器7に供給されることはなく給湯器7の使用者が火傷等を負うようなことも起こらない。
【0054】
また、各温度センサ19,23,33が故障しいずれかの温度センサ19,23,33からの信号が混合制御部11に出力されなくなった場合も、上記湯水混合ユニット1がどのような制御状態にあっても、上記混合制御部11は、上記ステップS14で行った動作と同じように、開閉弁31への電圧供給を停止させる制御信号を出力し、開閉弁31を全開状態とすると同時に、異常報知(ブザー、図示しない表示板への異常表示など)を行う。従って、各温度センサ19,23,33のどれかが故障し、ソーラ温水と水との混合制御の出来ない異常が起こった場合でも、太陽熱温水器5のソーラ温水を有効に利用でき、しかも、高温の温水が給湯器7に供給されることはなく給湯器7の使用者が火傷等を負うようなことも起こらない。
【0055】
以上のように、本実施の形態による湯水混合ユニット1によれば、ソーラ温水と水との混合制御の出来ない異常が起こっても、ソーラ温水路14は遮断されないので、太陽熱温水器5のソーラ温水を有効に利用することができ、しかも、混合水路29内のソーラ温水はバイパス通路28からの水で所定温度(例えば、約60℃)以下の安全温度域まで冷まされるので、高温の混合水が給湯器7に供給されることはなく給湯器7の使用者が火傷等を負うようなこともない。従って、上記のような異常が起こっても、ソーラ温水を有効利用できると共に給湯器7使用者の安全も十分に確保できる。
【0056】
加えて、安全温度域にまで冷まされた混合水が給湯器7に供給される結果、この低温の混合水を給湯器7で給湯設定温度に加熱して供給されるので、安定した給湯をも同時に実現できる。
このように、上記湯水混合ユニット1は、ソーラ温水が有効利用でき、ソーラ温水路14での通水抵抗が小さいため給湯器7やソーラ給湯システムの性能が十分に引出せ、しかも安全性および耐久性に優れた信頼の高いものを実現できる。
【0057】
なお、本発明は、上記実施の形態に限られず、例えば、上記実施の形態では、混合調整器3として、ソーラ温水と水との混合を上記温水量調節弁25と上記給水量調節弁24とによる2軸制御で行っているが、1軸制御で行うものでもよい。この1軸制御で行う混合調整器としては、例えば、図3に示す混合調整弁2のように、ソーラ温水路14と冷水路15の合流点に単一の弁体20を具備するものであり、この弁体20を図示しないモータで回動させ角度調節することにより、ソーラ温水路14からのソーラ温水と冷水路15からの水の混合割合を調整することによる。
【0058】
また、図2に示した上記ステップS12、S13における異常検出においては、混合水路29の混合水温センサ33が一定時間以上の高温状態を検出した場合に異常を判断するようにしているが、これを高温水の積算流量を基にして異常を判断するようにしてもよいし、また、上記混合水の温度検出を、給湯器7の入水路76に設けた温度センサ(図示せず)の出力信号を給湯制御部72から配線ケーブル77を通じて混合制御部11へ入力するようにしてこの信号を利用するようにし、上記混合水温センサ33を不要とする構成にしてもよい。
【0059】
また、図2に示した上記ステップS2における水量検出を湯水混合ユニット1内の水量センサ32で行うようにしたが、給湯器7における入水路76や往き管82に配設された水量センサ(図示せず)の出力信号を給湯制御部72から配線ケーブル77を通じて混合制御部11へ入力するようにしてこの信号を利用するようにしてもよく、この場合、湯水混合ユニット1内の水量センサ32を不要とすることができ、必要部品数を少なくすることができる。
【0060】
また、湯水混合ユニット1への電源供給は、給湯器7の給湯制御部72から配線ケーブル77を通じて行うようにしてもよいし、給湯器7とは別個独立に外部電源から供給を受けるようにしてもよい。
【0061】
また、上記実施の形態では、ステップS12での異常判断のため、しきい値として混合水温度が給湯設定温度+α℃より上昇した場合で説明したが、その他の方法として混合水温度が一定の上限値、例えば、給湯設定温度に応じ予め定められた固定値より上昇したときに異常と判断し、バイパス通路15における開閉弁31を開弁させるようにしてもよい。
さらに、上記実施の形態では、上記温水供給器として太陽熱温水器5を用いているが、これに限らず、例えば廃熱利用の温水器等その他種々の温水供給器であってもよい。
【図面の簡単な説明】
【図1】本発明の実施の形態による湯水混合ユニットを用いたソーラ給湯システムの全体構成を示す構成図である。
【図2】湯水混合ユニットにおける動作制御を示すフローチャートである。
【図3】他の実施の形態における、1軸制御の混合調節弁を示す断面図である。
【図4】従来の湯水混合ユニットを用いた給湯システムの全体構成を示す構成図である。
【符号の説明】
1 湯水混合ユニット
3 混合調整器
5 太陽熱温水器(温水供給器)
7 給湯器(補助熱源機)
10 給水分岐路
11 混合制御部
12 バキュームブレーカ
13 逆止弁
14 ソーラ温水路
15 冷水路
16 ソーラ温水路の流入口
17 冷水路の流入口
18 混合水路の流出口
19 ソーラ温水温センサ
21 フィルタ付き水抜き栓
22 逆止弁
23 冷水温センサ
24 給水量調節弁
25 温水量調節弁
28 バイパス通路
29 混合水路
30 フィルタ付き水抜き栓
31 開閉弁
32 水量センサ
33 混合水温センサ
35 逃し弁兼水抜き栓
56 太陽熱温水器のソーラ出湯路
76 給湯器の入水路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot and cold water mixing unit for connecting a hot water supply device composed of, for example, a solar water heater using natural energy or a water heater using waste heat to an auxiliary heat source machine such as a water heater. The present invention relates to a technique for making it possible to effectively use hot water from a hot water supply device even at times, and to prevent hot water from being discharged from an auxiliary heat source device at the time of this abnormality.
[0002]
[Prior art]
Conventionally, for example, a solar hot water supply system in which a solar water heater as a hot water supply device is connected to a hot water heater as an auxiliary heat source device by using a hot water mixing unit and solar hot water from the solar water heater is used is disclosed in Japanese Patent Application Laid-Open No. Hei. 10-1969883.
[0003]
As shown in FIG. 4, in the hot water mixing unit C, the solar hot water supply system described in this publication includes a solar hot water channel 470 connected to the solar water heater B side, a cold water channel 480 connected to the water supply side, The solar hot water (hot water) of the solar hot water channel 470 is provided at the confluence of the mixed water channel 421 connected to the hot water heater A side and the water channels 470, 480, 421. ) And the tap water in the cold water channel 480, and a controller 460 for controlling the operation of the mixing control valve 461.
In this case, when the user of the water heater A operates the hot water supply curan 422 or the like and the amount of water exceeds the minimum operating water amount on the side of the water heater A, the mixing operation at the mixing control valve 461 is started by an instruction from the controller 460. By this, solar hot water will be used. The controller 460 is connected to the main controller 430 of the water heater A connected to the remote controller 450 to which the hot water set temperature is input. The controller 460 receives information from the main controller 430 and operates the mixing control valve 461. Take control.
[0004]
On the other hand, the hot water mixing unit C has the following safety measures.
That is, the solenoid hot water passage 470 is provided with an electromagnetic on / off valve 462. When the mixing control valve 461 fails, the solenoid on / off valve 462 is fully closed in response to an instruction from the controller 460 to completely open the solar hot water passage 470. Cut off. As a result, when the mixing control valve 461 fails and the mixing control of the solar hot water and the tap water cannot be performed, the hot water is not supplied to the hot water heater A, and the user of the hot water heater A is burned. Is not incurred.
[0005]
In addition, when the mixing control valve 461 is not broken, but the water temperature sensors 463, 464, and 465 are broken and it is not possible to control the mixing of solar hot water and tap water, the mixing control valve 461 is instructed by the controller 460. Is set to the water side fully open state and the solar hot water side is set to the fully closed state. Even in this case, in the case of the above-described abnormality, the high temperature solar hot water is not supplied to the hot water heater A side, so that the safety of the user is ensured.
[0006]
[Problems to be solved by the invention]
However, when an abnormality such as a malfunction of the mixing control valve 461 occurs, the solar hot water of the solar water heater B is not used at all. Therefore, the solar hot water of the solar water heater B cannot be effectively used in such an abnormality. There is a problem.
[0007]
In addition, since the solenoid on / off valve 462 is provided in the solar hot water passage 470, the solar hot water flowing through the solar hot water passage 470 is subjected to water resistance by the electromagnetic on / off valve 462, and therefore, compared to the cold water passage 480. The water flow resistance on the solar warm water passage 470 side is increased. As a result, even if there is no abnormality and is normal, the solar hot water is less likely to flow compared to the tap water, so the solar hot water supply from the solar water heater B is difficult to be performed smoothly. The solar hot water will not be fully available on the side.
[0008]
When the hot water supply set temperature in the water heater A is equal to the solar hot water temperature of the solar water heater B, the mixing control valve 461 closes the cold water passage 480 so that only the solar hot water exits from the outlet of the hot water heater A. Is done. Therefore, in this case, when the hot solar water flows through the hot solar water passage 470, the electromagnetic on / off valve 462 receives a water flow resistance, so that a large amount of hot water discharged from the hot water outlet of the water heater A cannot be secured.
[0009]
Further, since the electromagnetic on-off valve 462 is provided in the solar hot water passage 470, heat resistance that can withstand high-temperature solar hot water is required, and it is necessary to configure the electromagnetic on-off valve 462 with a heat-resistant material. It becomes. This is because if the electromagnetic on-off valve 462 is not made of a heat-resistant material, the electromagnetic on-off valve 462 cannot withstand the thermal load of high-temperature solar hot water and may fail immediately.
[0010]
The present invention has been made in view of such circumstances, and in the hot and cold water mixing unit, even when an abnormality in which mixing of hot water and water cannot be controlled occurs, hot water from the hot water supply device can be used without fail. In addition, an object is to prevent hot water hot enough to cause burns from the auxiliary heat source machine.
[0011]
[Means for Solving the Problems]
(1) A hot and cold water mixing unit according to the present invention is a hot and cold water mixing unit for connecting a hot water supply device to an auxiliary heat source unit, wherein the hot water supply water passage of the hot water supply device is connected to an inflow port thereof; A cooling water channel in which a water supply water channel is connected to the inlet, a mixed water channel in which the warm water channel and the cold water channel are merged, and an inlet water channel of the auxiliary heat source machine is connected to the outlet, and the mixing Having a mixing regulator for adjusting the mixing ratio of warm water flowing into the water channel and water,
A bypass passage branched from the cold water channel to the mixed water channel,
An on-off valve that is provided in the bypass passage and is changed from a fully closed state to a fully opened state so that water in the cold water passage flows into the mixed water passage through the bypass passage when an abnormality in which mixing of hot water and water cannot be controlled occurs It is characterized by providing.
[0012]
According to the above means, when an abnormality occurs in which mixing control of the hot water and water cannot be performed, the hot water is in a state of flowing directly from the hot water channel to the mixed water channel, but the on-off valve provided in the bypass passage is fully opened. Then, water is sent from the bypass passage to the mixed water channel.
[0013]
In addition, in the case of the above abnormality, the hot water in the mixed water channel is kept at a predetermined temperature or less by the water fed from the bypass passage whatever the mixing ratio of the amount of warm water and the amount of water in the mixing regulator. It will be cooled to the temperature range.
[0014]
Further, since the on-off valve is provided in a bypass passage through which water flows, the on-off valve does not require high temperature heat resistance.
In addition, since the electromagnetic opening / closing valve as in the conventional example is not provided in the hot water channel, the water flow resistance with respect to the hot water is small.
[0015]
If there is no abnormality, the bypass passage is completely closed, so all the water from the water source is sent to the mixing channel through the cold channel, and at this time, the mixing controller adjusts the warm water and water to the predetermined mixing ratio. Since the adjusted mixed water is sent from the mixed water channel to the inlet channel of the auxiliary heat source machine, the hot water of the hot water supply device can be fully utilized.
[0016]
(2) Moreover, in the hot water / water mixing unit, the bypass passage is configured to be able to supply water in an amount of water that cools warm water fed into the mixed water channel to a predetermined temperature or lower.
According to the above means, when there is an abnormality in which mixing of hot water and water cannot be controlled, the hot water fed into the mixed water channel is reliably cooled to a safe temperature range below a predetermined temperature with water from the bypass passage. Hot mixed water is not supplied to the auxiliary heat source device, and it is possible to reliably prevent the user of the auxiliary heat source device from being burned.
[0017]
(3) Further, in the hot water / water mixing unit, the downstream end of the bypass passage is connected to the downstream side of the junction of the hot water channel and the cold water channel in the mixed water channel.
[0018]
According to the above means, as an abnormality in which the mixing control of hot water and water cannot be performed, for example, even if the adjustment valve of the mixing regulator is damaged and the hot water channel or the cold water channel is blocked, the downstream end of the bypass passage is Since it is connected to the downstream side of the junction of the hot water channel and the cold water channel, water must be reliably supplied from the bypass passage to the mixed water channel and eventually to the water inlet of the auxiliary heat source unit while bypassing the junction. Can do. Therefore, even if the hot water channel or the cold water channel is blocked, water or low-temperature mixed water is reliably supplied to the auxiliary heat source unit, so that the hot water from the auxiliary heat source unit is not shut off and stable. Hot water can be realized.
[0019]
【The invention's effect】
As described above, according to the present invention, even if an abnormality in which mixing of hot water and water cannot be controlled occurs, the hot water channel is not blocked, so that the hot water from the hot water supply device can be used effectively, and The hot water in the mixed water channel is cooled to the safe temperature range below the specified temperature with the water from the bypass passage, so the high temperature mixed water is not supplied to the auxiliary heat source machine and the user of the auxiliary heat source machine is burned, etc. There is no such thing. Therefore, even if the above abnormalities occur, the hot water of the hot water supply device can be effectively used and the safety of the hot water user can be sufficiently ensured.
[0020]
In addition, as a result of the mixed water cooled to the safe temperature range being supplied to the auxiliary heat source machine, this low-temperature mixed water is heated to the set hot water supply temperature by the auxiliary heat source machine, and the hot water is discharged. It can be realized at the same time.
[0021]
Moreover, since the electromagnetic on-off valve as in the conventional example is not provided in the hot water channel and the water flow resistance is small, a large amount of hot water can be secured to the auxiliary heat source machine side.
In addition, since the on-off valve is provided in a bypass passage through which water passes, and the on-off valve does not require high temperature heat resistance, the on-off valve can be manufactured at a low cost without the need to configure the on-off valve with a heat-resistant material. The failure rate can be further reduced because the thermal load on the battery is small.
[0022]
As described above, in the hot and cold water mixing unit according to the present invention, the hot water of the hot water supply device can be effectively used, and the resistance to water flow in the hot water channel is small, so that the performance of the auxiliary heat source machine and the hot water supply system can be sufficiently brought out, and safety and durability High reliability and high reliability can be realized.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following embodiments, a solar hot water supply system in which a solar water heater is connected as a hot water supply device to a hot water heater as an auxiliary heat source device by the hot water mixing unit of the present invention will be described as an example.
FIG. 1 is an overall configuration diagram of a solar hot water supply system using a hot water mixing unit 1 according to an embodiment of the present invention, and a solar water heater 5 is connected to a hot water heater 7 via a hot water mixing unit 1. In addition, as the hot water heater 7 in this solar hot water supply system, the existing thing which does not plan the connection of the solar water heater 5 may be sufficient, and the thing manufactured by planning the connection with the solar water heater 5 may be used.
[0024]
First, with reference to FIG. 1, it demonstrates from the structure of each part of this solar hot-water supply system. (Solar water heater)
The solar water heater 5 includes a heat storage circuit 52 formed so as to circulate between a heat collector 50 that absorbs solar heat and a hot water storage tank 51, and a hopper 53 and a circulation circuit are provided in the heat storage circuit 52. A pump 54 is provided. In addition, a solar water supply passage 55 that extends from a water supply passage 60 of a water source such as a water supply and supplies water and a water discharge passage 58 that includes a water drain plug 57 are connected to the bottom of the hot water storage tank 51. At the top of the hot water storage tank 51, a solar hot water outlet 56 for drawing out the solar hot water (hot water) of the hot water storage tank 51 is drawn out. When the circulation pump 54 is driven to circulate the liquid medium in the livestock heat circulation path 52, the liquid medium heated by the heat collector 50 is guided into the hot water storage tank 51 through the livestock heat circulation path 52. The water in the tank 51 is heat-exchanged and heated to make solar hot water, and the hot water in the hot water storage tank 51 is sent to the hot water mixing unit 1 side through the solar hot water outlet 56.
[0025]
(Water heater)
The water heater 7 includes a water heater body 70 having a built-in heat exchanger 73 heated by a burner (not shown), various operation units and the like (operating switch, hot water bath switch, additional cooking switch, hot water temperature setting device, A remote controller 71 provided with a display unit and the like, and a hot water supply control unit 72 connected to the remote controller 71 via a wiring cable 78 and controlling hot water supply in the bathtub 81 and the hot water tap 85. In addition, the heat exchanger 73 is connected to a water inlet 76 and a hot water outlet 84, and is connected to a forward pipe 82 and a return pipe 83 that are used for filling and chasing the bath 81. . The hot water supply channel 84 is provided with a bath dropping channel 74 for supplying hot water to the bathtub 81 between the outlet pipe 82 and the bath dropping channel 74 is provided with a dropping on / off valve 75, downstream thereof. A three-way valve 80 is provided at a connection point with the forward pipe 82. In addition, a tap tap 85 is provided at the end of the tap channel 84. In addition to this, although not shown, the water inlet 76, the hot water outlet 84, the forward pipe 82 and the return pipe 83 are provided with temperature sensors, and further, the water inlet 76 and the outgoing pipe 82 are provided with pumps, A water volume sensor is provided.
[0026]
(Hot water mixing unit)
The hot water mixing unit 1 is a device for connecting the solar water heater 5 to the water heater 7, and includes a solar hot water passage 14 through which solar hot water from the solar water heater 5 is passed, and a water source such as a water supply. A cold water channel 15 through which water passes, a mixed water channel 29 through which the solar hot water channel 14 and the cold water channel 15 are merged and mixed water of solar hot water (hot water) and water is passed, and the mixed water channel 29 flows The mixing adjuster 3 that adjusts the mixing ratio of the heated solar water and water and the mixing controller 11 that controls the hot water mixing unit 1 are provided.
[0027]
The solar hot water passage 14 is connected to the inlet 16 of the solar hot water supply passage 56 of the solar water heater 5 and connected to the mixed water passage 29 at the downstream end thereof. In the solar hot water passage 14, a drain plug 21 with a filter, a vacuum breaker 12, a check valve 13, and a solar hot water temperature sensor 19 that also function as a dust removal function for solar hot water are arranged in order from the upstream side. The solar hot water passage 14 is not provided with an electromagnetic on-off valve (symbol 462 in FIG. 4) as in the conventional example, and has a low water flow resistance. Therefore, a large amount of solar hot water is supplied to the hot water heater 7 side. It can be secured.
[0028]
The cold water passage 15 is connected to the inlet 17 of the water supply branch passage 10 which is partly extended from the downstream side of the pressure reducing valve 61 and connected to the mixed water passage 29 at the downstream end thereof. ing. In the cold water passage 15, a drain plug 30 with a filter, a check valve 22, and a cold water temperature sensor 23, which also function as an underwater dust removing function, are disposed in order from the upstream side.
[0029]
In the mixed water channel 29, the solar hot water channel 14 and the cold water channel 15 are joined, and a water inlet 76 of the water heater 7 is connected to the outlet 18 thereof. In this mixed water channel 29, the water supply amount adjusting valve 24, the hot water amount adjusting valve 25, the water amount sensor 32, the mixed water temperature sensor 33, and the mixed water channel 29 are opened to release the pressure in order from the upstream side. Relief valves and drain plugs 35 that also perform functions are provided. As described above, the hot water amount adjusting valve 25 is provided at the downstream position of the water supply amount adjusting valve 24 by covering the hot water amount adjusting valve 25 with the water flowing by opening the upstream water amount adjusting valve 24. This is to ensure the heat resistance of the quantity control valve 25. In other words, the hot water amount adjustment valve 25 is always exposed to high temperature solar hot water and requires high temperature durability, but the thermal load due to the solar hot water is reduced by the water from the cold water passage 15.
[0030]
The mixing adjuster 3 is configured to adjust the water supply amount provided at a connection point between the hot water amount adjusting valve 25 provided at the connection point of the mixed water passage 29 with the solar hot water passage 14 and the cold water passage 15 at the mixing water passage 29. And a valve 24.
[0031]
The mixing control unit 11 is connected to the hot water supply control unit 72 of the hot water heater 7 by a wiring cable 77 and receives a set temperature signal from the remote controller 71. In addition, the solar hot water temperature sensor 19, the cold water temperature sensor 23, In addition to receiving detection signals from the mixed water temperature sensor 33, the water amount sensor 32, etc., the water supply amount adjusting valve 24 and the warm water amount adjusting valve 25 in the mixing adjuster 3 and the on-off valve 31 of the bypass passage 28 described later are provided. Control signals are output to control each of these operations.
[0032]
The water supply amount adjustment valve 24 and the hot water amount adjustment valve 25 are composed of a motor that is controlled by a control signal from the mixing control unit 11 and a needle valve that moves forward and backward according to the rotation amount of the motor. For example, the amount of solar hot water flowing from the solar hot water passage 14 to the mixing water passage 29 increases as the needle valve in the hot water amount adjusting valve 25 moves backward, and conversely, the amount of solar hot water decreases as the needle valve advances and retreats. When the needle valve reaches the forward limit position and closes the valve seat at the downstream end of the solar hot water passage 14, the supply of solar hot water is shut off. The same applies to the water supply amount adjustment valve 24. In addition, each of the needle valves may be driven by a common (single) motor as the warm water amount adjusting valve 25 and the water supply amount adjusting valve 24. In this case, for example, a simple mechanism is provided via a gear mechanism. One motor and each needle valve may be connected so that when one needle valve opens, the other needle valve closes.
[0033]
The hot and cold water mixing unit 1 is provided with a bypass passage 28 that branches from the cold water passage 15 and reaches the mixing water passage 29, and an open / close valve 31 is provided in the bypass passage 28. As the on-off valve 31, an electromagnetic on-off valve or the like is used, and includes a valve body, a solenoid that closes the valve body, and an elastic member such as a spring that biases and holds the valve body in a fully opened state. The on-off valve 31 is a so-called normally-open on-off valve that is energized by an elastic member when the voltage supply to the solenoid is stopped and the valve body is fully opened. Since the on-off valve 31 is provided in the bypass passage 28 through which water flows, high temperature heat resistance is not required. Therefore, the on-off valve 31 need not be made of a heat-resistant material and can be manufactured at a low cost. Further, since the thermal load on the on-off valve 31 is small, the failure rate can be further reduced.
[0034]
The opening / closing operation of the opening / closing valve 31 is also controlled by the control signal from the mixing control unit 11 as described above. That is, when the hot and cold water mixing unit 1 is functioning normally, voltage is supplied to the solenoid in the on-off valve 31 by the control signal from the mixing control unit 11, and the on-off valve 31 is fully closed. In this case, the bypass passage 28 is blocked.
[0035]
On the other hand, when an abnormality in which the mixing of solar hot water and water cannot be controlled due to a failure of the water supply amount adjustment valve 24 or the warm water amount adjustment valve 25, failure of the temperature sensors 19, 23, 33, etc. The voltage supply to the solenoid in the on-off valve 31 is stopped by the control signal from the mixing control unit 11, the on-off valve 31 is changed from the fully closed state to the fully open state, and the water in the cold water passage 15 passes through the bypass passage 28 and the mixing is performed. It flows into the water channel 29.
[0036]
Further, even when a power failure occurs, the voltage supply to the solenoid of the on-off valve 31 is stopped, so that the on-off valve 31 is fully opened and water flows from the bypass passage 28 into the mixed water passage 29.
[0037]
Further, the bypass passage 28 has a configuration capable of supplying water in an amount sufficient to cool the solar hot water fed into the mixed water passage 29 to a predetermined temperature or lower. For example, as the size of the bypass passage 28, even if solar hot water at 100 ° C. flows from the solar hot water passage 14 into the mixed water passage 29 with the maximum supply amount, water of an amount that cools the solar hot water to a predetermined temperature or less is used. What is necessary is just to set so that supply is possible. Here, the predetermined temperature means an upper limit temperature at which the user of the water heater 7 is not burned, and is set to about 60 ° C., for example.
[0038]
As described above, a power failure, a failure of the water supply amount adjustment valve 24 or the hot water amount adjustment valve 25, a failure of each of the temperature sensors 19, 23, 33, etc. occurred, and an abnormality in which mixing of solar hot water and water could not be controlled occurred. In this case, the solar in the mixed water channel 29 is fed by the water fed from the bypass passage 28 regardless of the state of the mixing ratio between the amount of the hot water in the water supply amount adjusting valve 24 and the hot water amount adjusting valve 25 and the amount of the water. The hot water is cooled to a safe temperature range below a predetermined temperature (about 60 ° C.). Therefore, even if the above-described abnormality in which mixing of solar hot water and water cannot be controlled occurs, the solar hot water passage 14 is not shut off, so that the solar hot water can be used effectively, and the mixed water in the mixing water passage 29 Since the water from the bypass passage 28 is cooled to a safe temperature range of a predetermined temperature (about 60 ° C.) or less, the high-temperature mixed water is not supplied to the water heater 7, and the user of the water heater 7 is burned. There is nothing to bear.
[0039]
Further, since the downstream end of the bypass passage 28 is connected to the downstream side of the connection point between the solar hot water passage 14 and the cold water passage 15, the hot water amount adjusting valve 25 or the water amount adjusting valve 24 is temporarily damaged. Even if the connection point of the solar hot water channel 14 or the cold water channel 15 in the mixed water channel 29 is blocked, water is mixed from the bypass channel 28 in a state of bypassing the connection point, and thus the water channel 76 of the water heater 7. Can be reliably supplied. Therefore, even if the connection point is closed, water or low-temperature mixed water is reliably supplied to the hot water heater 7, so that the hot water from the hot water heater 7 is not shut off and stable hot water supply is realized. it can.
[0040]
(Operation in the hot water mixing unit)
Next, the operation in the hot water / water mixing unit 1 will be described.
Hereinafter, the operation of the hot and cold water mixing unit 1 will be described with reference to the flowchart shown in FIG.
Referring to FIG. 2, when the hot water mixing unit 1 is turned on, the on-off valve 31 of the bypass passage 28 is fully closed (step S1), and the output of the water amount sensor 32 of the mixing water passage 29 is output in step S2. Monitor. When the hot water supply faucet 85 or the hot water filling valve of the bathtub is opened and the hot water supply operation is started, the water flow through the mixed water channel 29 is detected, and the water amount sensor 32 outputs an ON signal to the mixing control unit 11.
Then, when the solar hot water temperature detected by the solar hot water temperature sensor 19 is higher than the hot water supply set temperature input to the remote controller 71 of the water heater 7, the mixed target set temperature of the mixed water becomes the hot water supply set temperature. The mixing ratio of the mixing adjuster 3 is determined by the control of the mixing controller 11. On the other hand, when the solar hot water temperature is lower than the hot water supply set temperature, the mixing control unit 11 is set such that the mixed target set temperature of the mixed water is subtracted from the hot water set temperature by the temperature rise due to combustion of the water heater 7. The mixing ratio of the mixing adjuster 3 is determined by the control. Thus, the mixing ratio of the mixing adjuster 3 is determined in advance, and the process proceeds to the next step S3.
[0041]
In step S3, the mixing controller 11 compares the detected temperature of the mixed water temperature sensor 33, which is the temperature of the mixed water in the mixed water channel 29, with the target mixing set temperature of the mixed water (in S3 of FIG. 2). “Set temperature” indicates the target set temperature of the mixed water.) When the temperature of the mixed water is lower than the mixing target set temperature, the amount of solar hot water supplied from the solar water heater 5 is increased or the amount of water supplied from a water source is increased. The control to decrease is executed in steps S4 to S7.
[0042]
That is, when it is confirmed in step S4 that the hot water amount adjusting valve 25 is not fully opened, the opening level of the hot water amount adjusting valve 25 is increased by one (for example, 1/10 of the maximum opening amount) in step S5. Let If the warm water amount adjustment valve 25 is fully opened when step S4 is executed, the opening degree of the water supply amount adjustment valve 24 is determined in step S6. If it is not fully closed, step S7 is executed. The opening level of the water supply amount adjustment valve 24 is reduced by one (for example, 1/10 of the maximum opening).
[0043]
On the other hand, if the temperature of the mixed water is higher than the target mixing temperature in step S3, the amount of solar hot water supplied from the solar water heater 5 is decreased or the amount of water supplied from the water source is decreased. The control to increase is executed in steps S8 to S11.
[0044]
That is, if it is confirmed in step S8 that the hot water amount adjusting valve 25 is not fully closed, the opening level of the hot water amount adjusting valve 25 is reduced by one in step S9. When it is confirmed in step S8 that the hot water amount adjustment valve 25 is in a fully closed state, the opening degree of the water supply amount adjustment valve 24 is determined in step S10. If this is not in the fully open state, the water supply amount is determined in step S11. The opening level of the control valve 24 is increased by one.
[0045]
In this way, by adjusting the mixing ratio of the solar hot water from the solar water heater 5 and the water from the water source, the temperature of the solar hot water supplied from the solar water heater 5 is higher than the set hot water temperature in the remote controller 71 Is controlled so that hot water having the above-mentioned hot water supply set temperature flows out to the water heater 7 as mixed water from the hot water mixing unit 1. Then, the hot water at the hot water supply set temperature is discharged from the hot water tap 85 of the water heater 7 or the like.
[0046]
On the other hand, when the temperature of the solar hot water supplied from the solar water heater 5 is lower than the hot water supply set temperature in the remote controller 71, the mixed water has a temperature obtained by subtracting from the hot water set temperature by the temperature rise due to combustion of the water heater 7. Is fed into the water heater 7. Then, the burner of the water heater 7 burns and the mixed water in a temperature-deficient state is heated and heated by the heat exchanger 73. That is, the hot water supply controller 72 of the hot water heater 7 is burner so that the hot water temperature detected by a temperature sensor (not shown) provided in the hot water supply passage 84 in the hot water heater 7 is equal to the hot water set temperature in the remote controller 71. Therefore, the temperature of the mixed water is raised to the hot water supply set temperature by the function of the water heater 7, and the hot water at the hot water set temperature is sent to the hot water tap 85 and the bathtub 81.
[0047]
(Operation when abnormal)
Next, the operation when an abnormality occurs in this solar hot water supply system will be described.
Examples of such abnormalities include a case where a power failure occurs during normal operation, a case where the hot water amount adjustment valve 25 and the water supply amount adjustment valve 24 are broken, and a case where each temperature sensor 19, 23, 33 is broken. However, first, the operation in the case where the hot water amount adjusting valve 25 or the water supply amount adjusting valve 24 fails and the mixing control of the solar hot water and water cannot be performed and the high temperature solar hot water flows out from the mixed water channel 29, This will be described with reference to FIG. The control operation at the time of abnormality is performed in steps S12 to S14 in the flowchart of FIG.
That is, in steps S5, S7, S9, and S11, the warm water amount adjustment valve 25 or the water supply amount adjustment valve 24 is operated, and then the process proceeds to step S12.
[0048]
In step S12, the mixing controller 11 monitors whether or not a constant temperature rise (+ α ° C.) is observed from the hot water supply set temperature in the mixed water temperature in the mixed water temperature sensor 33 of the mixed water channel 29, and the constant When the temperature rise (+ α ° C.) is detected, the process proceeds to the next step S13, and measurement of the duration of this temperature rise is started. 2, “setting” indicates the hot water supply set temperature in the remote controller 71, and “α temperature” indicates a temperature corresponding to the constant temperature increase (+ α ° C.). If this state continues for X hours, for example, the hot water amount adjustment valve 25 or the water supply amount adjustment valve 24 in the mixing regulator 3 fails, and an abnormality occurs in which the mixing control of the solar hot water and water cannot be performed. The process proceeds to the next step S14. Note that the temperature increase value α ° C., the elapsed time X, and the like may be appropriately determined according to the capabilities of the solar water heater 5 and the water heater 7.
[0049]
In step S14, the mixing control unit 11 outputs a control signal for stopping the voltage supply to the on-off valve 31 to the on-off valve 31 provided in the bypass passage 28, so that the on-off valve 31 is fully opened. At the same time, abnormality notification (buzzer, abnormality display on a display unit not shown) is performed. As a result, the bypass passage 28 is fully opened, and the water in the cold water passage 15 is directly fed into the mixed water passage 29 from the bypass passage 28. Therefore, in the case of the above abnormality, mixing is performed by the water fed from the bypass passage 28 regardless of the state of the mixing ratio between the amount of solar hot water and the amount of water in the hot water amount adjusting valve 25 and the water supply amount adjusting valve 24. The solar hot water in the water channel 29 is cooled to a safe temperature range below a predetermined temperature (about 60 ° C.).
[0050]
In this way, when the hot water amount adjusting valve 25 or the water supply amount adjusting valve 24 breaks down and an abnormality in which the mixing of solar hot water and water cannot be controlled occurs, the solar hot water passage 14 is not shut off, so the solar water heater 5 Therefore, the hot water in the mixed water channel 29 is cooled to the safe temperature range with the water from the bypass passage 28, so that the high-temperature mixed water is supplied to the hot water heater 7. In other words, the user of the water heater 7 is not burned. And since the user is notified of the system abnormality by the abnormality notification, the user is immediately started to perform maintenance for abnormality recovery.
[0051]
Further, even if the hot water amount adjusting valve 25 or the water supply amount adjusting valve 24 is damaged and the connection point of the solar hot water passage 14 or the cold water passage 15 in the mixed water passage 29 is blocked, the downstream end of the bypass passage 28 Are connected to the downstream side of these connection points, so that water can be reliably supplied from the bypass passage 28 to the mixed water passage 29 and eventually to the water inlet passage 76 of the water heater 7 while bypassing the connection point. Therefore, even if the connection point is closed, water or low-temperature mixed water is reliably supplied to the hot water heater 7, so that the hot water from the hot water heater 7 is not shut off and stable hot water supply is realized. it can.
[0052]
If no constant temperature rise (+ α ° C.) is detected from the hot water supply set temperature of the mixed water temperature in step S12 or if continuation of the X time is not detected in step S13, the abnormality is not present and the process proceeds to step S2. Returned.
[0053]
On the other hand, when a power failure occurs during operation of this solar hot water supply system, the voltage supply to the on-off valve 31 is stopped regardless of the control state of the hot water / water mixing unit 1, Also in this case, the on-off valve 31 is fully opened, the bypass passage 29 is opened, and the water in the cold water passage 15 is directly fed from the bypass passage 29 to the mixed water passage 29. Therefore, even when a power failure occurs and an abnormality in which the mixing of solar hot water and water cannot be controlled occurs, the solar hot water of the solar water heater 5 can be used effectively, and high-temperature water is supplied to the water heater 7. There is no such thing that the user of the water heater 7 is burned.
[0054]
Also, when each temperature sensor 19, 23, 33 fails and a signal from any one of the temperature sensors 19, 23, 33 is not output to the mixing control unit 11, the control state of the hot water / water mixing unit 1 is also different. Even in this case, the mixing control unit 11 outputs a control signal for stopping the voltage supply to the on-off valve 31 to make the on-off valve 31 fully open, as in the operation performed in step S14. Abnormality notification (buzzer, abnormal display on a display board not shown) is performed. Therefore, even when any one of the temperature sensors 19, 23, 33 fails and an abnormality in which mixing of solar hot water and water cannot be controlled occurs, the solar hot water of the solar water heater 5 can be used effectively, Hot water is not supplied to the water heater 7, and the user of the water heater 7 does not get burned.
[0055]
As described above, according to the hot and cold water mixing unit 1 according to the present embodiment, the solar hot water channel 14 is not blocked even if an abnormality in which the mixing of solar hot water and water cannot be controlled occurs. The hot water can be used effectively, and the solar hot water in the mixing channel 29 is cooled to a safe temperature range below a predetermined temperature (for example, about 60 ° C.) by the water from the bypass channel 28. Water is not supplied to the water heater 7 and the user of the water heater 7 is not burned. Therefore, even if the above abnormalities occur, the solar hot water can be effectively used and the safety of the user of the water heater 7 can be sufficiently ensured.
[0056]
In addition, since the mixed water cooled to the safe temperature range is supplied to the hot water heater 7, this low temperature mixed water is heated and supplied to the hot water supply set temperature by the hot water heater 7. Can be realized at the same time.
As described above, the hot water / water mixing unit 1 can effectively use the solar hot water, and the water resistance in the solar hot water passage 14 is small, so that the performance of the hot water heater 7 and the solar hot water supply system can be sufficiently drawn, and safety and durability are also achieved. It is possible to realize an excellent and reliable product.
[0057]
Note that the present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, as the mixing adjuster 3, the mixing of solar hot water and water is performed with the hot water amount adjusting valve 25 and the water supply amount adjusting valve 24. However, it may be performed by single-axis control. As the mixing adjuster that performs this one-axis control, for example, a single valve body 20 is provided at the confluence of the solar hot water passage 14 and the cold water passage 15 like the mixing adjustment valve 2 shown in FIG. By rotating the valve body 20 with a motor (not shown) and adjusting the angle, the mixing ratio of the solar hot water from the solar hot water passage 14 and the water from the cold water passage 15 is adjusted.
[0058]
In addition, in the abnormality detection in steps S12 and S13 shown in FIG. 2, the abnormality is determined when the mixed water temperature sensor 33 in the mixed water channel 29 detects a high temperature state for a predetermined time or longer. An abnormality may be determined based on the accumulated flow rate of the high-temperature water, and an output signal from a temperature sensor (not shown) provided in the water inlet 76 of the water heater 7 is used to detect the temperature of the mixed water. May be input to the mixing control unit 11 from the hot water supply control unit 72 through the wiring cable 77 so that the mixed water temperature sensor 33 is not required.
[0059]
Moreover, although the water amount detection in the said step S2 shown in FIG. 2 was performed with the water amount sensor 32 in the hot water mixing unit 1, the water amount sensor (FIG. 2) arrange | positioned at the water inlet 76 and the forward pipe 82 in the hot water heater 7. (Not shown) may be used by inputting the output signal from the hot water supply control unit 72 to the mixing control unit 11 through the wiring cable 77. In this case, the water amount sensor 32 in the hot water mixing unit 1 may be used. It can be unnecessary, and the number of necessary parts can be reduced.
[0060]
Further, the hot water mixing unit 1 may be supplied with power from the hot water supply control unit 72 of the hot water heater 7 through the wiring cable 77 or may be supplied from an external power source independently of the hot water heater 7. Also good.
[0061]
Further, in the above embodiment, the case where the mixed water temperature has risen above the hot water supply set temperature + α ° C. as the threshold value has been described for the abnormality determination in step S12. A value, for example, when the temperature rises above a predetermined fixed value according to the hot water supply set temperature, it may be determined that there is an abnormality, and the on-off valve 31 in the bypass passage 15 may be opened.
Furthermore, in the said embodiment, although the solar water heater 5 is used as said hot water supply device, it is not restricted to this, For example, various other hot water supply devices, such as a water heater using waste heat, may be sufficient.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an overall configuration of a solar hot water supply system using a hot water mixing unit according to an embodiment of the present invention.
FIG. 2 is a flowchart showing operation control in the hot and cold water mixing unit.
FIG. 3 is a cross-sectional view showing a uniaxially controlled mixing control valve in another embodiment.
FIG. 4 is a configuration diagram showing an overall configuration of a hot water supply system using a conventional hot water mixing unit.
[Explanation of symbols]
1 Hot water mixing unit
3 Mixing adjuster
5 Solar water heater (warm water supply)
7 Water heater (auxiliary heat source machine)
10 Water supply branch
11 Mixing control unit
12 Vacuum breaker
13 Check valve
14 Solar heated waterway
15 cold waterway
16 Solar hot water inlet
17 Cooling water inlet
18 Outlet of mixed waterway
19 Solar hot water temperature sensor
21 Drain tap with filter
22 Check valve
23 Cold water temperature sensor
24 Water supply control valve
25 Hot water control valve
28 Bypass passage
29 Mixed waterway
30 Drain tap with filter
31 On-off valve
32 Water sensor
33 Mixed water temperature sensor
35 Relief valve and drain plug
56 Solar water heater of solar water heater
76 Waterway of water heater

Claims (3)

温水供給器を補助熱源機に接続するための湯水混合ユニットであって、上記温水供給器の温水出湯路がその流入口に接続される温水路と、水源の給水路がその流入口に接続される冷水路と、上記温水路および上記冷水路が合流されると共にその流出口に上記補助熱源機の入水路が接続される混合水路と、上記混合水路に流入される温水と水の混合割合を調整する混合調整器とを有し、
上記冷水路から分岐されて上記混合水路に至るバイパス通路と、
上記バイパス通路に設けられ、温水と水の混合制御の出来ない異常が起こった場合に上記冷水路内の水が上記バイパス通路を通して上記混合水路に流れ込むように全閉状態から全開状態となる開閉弁とを備えることを特徴とする湯水混合ユニット。
A hot water mixing unit for connecting a hot water supply device to an auxiliary heat source machine, wherein the hot water outlet of the hot water supply device is connected to the inflow port, and the water supply water supply channel is connected to the inflow port. A mixing water channel in which the cold water channel, the warm water channel and the cold water channel are merged and the inlet of the auxiliary heat source unit is connected to the outlet thereof, and the mixing ratio of the warm water and water flowing into the mixed water channel A mixing regulator to regulate,
A bypass passage branched from the cold water channel to the mixed water channel,
An on-off valve that is provided in the bypass passage and is changed from a fully closed state to a fully opened state so that water in the cold water passage flows into the mixed water passage through the bypass passage when an abnormality in which mixing of hot water and water cannot be controlled occurs A hot and cold water mixing unit.
請求項1に記載の湯水混合ユニットにおいて、
上記バイパス通路は、混合水路内に送り込まれる温水を所定温度以下に冷ませる水量の水を供給可能とする構成であることを特徴とする湯水混合ユニット。
In the hot and cold water mixing unit according to claim 1,
The hot water mixing unit characterized in that the bypass passage is configured to be able to supply water in an amount of water that cools the hot water fed into the mixing water channel to a predetermined temperature or lower.
請求項1または2に記載の湯水混合ユニットにおいて、
上記バイパス通路の下流端は、上記混合水路における上記温水路および上記冷水路の合流点よりも下流側に接続されることを特徴とする湯水混合ユニット。
In the hot and cold water mixing unit according to claim 1 or 2,
The hot and cold water mixing unit, wherein a downstream end of the bypass passage is connected to a downstream side of a junction of the hot water channel and the cold water channel in the mixing water channel.
JP2002135926A 2001-06-28 2002-05-10 Hot water mixing unit Expired - Fee Related JP3728272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135926A JP3728272B2 (en) 2001-06-28 2002-05-10 Hot water mixing unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001196191 2001-06-28
JP2001-196191 2001-06-28
JP2002135926A JP3728272B2 (en) 2001-06-28 2002-05-10 Hot water mixing unit

Publications (2)

Publication Number Publication Date
JP2003083610A JP2003083610A (en) 2003-03-19
JP3728272B2 true JP3728272B2 (en) 2005-12-21

Family

ID=26617734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135926A Expired - Fee Related JP3728272B2 (en) 2001-06-28 2002-05-10 Hot water mixing unit

Country Status (1)

Country Link
JP (1) JP3728272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152055A (en) * 2012-01-26 2013-08-08 Noritz Corp Hot water storage type hot water supply system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516047B2 (en) * 2006-04-13 2010-08-04 リンナイ株式会社 Mist sauna equipment
JP6376388B2 (en) * 2014-10-24 2018-08-22 株式会社ノーリツ Hot water mixing device
JP2016176657A (en) * 2015-03-20 2016-10-06 アイシン精機株式会社 Co-generation system
JP6653527B2 (en) * 2015-04-30 2020-02-26 旭化成ホームズ株式会社 Preheating mechanism, building and hot water supply system
CN112032997B (en) * 2020-07-22 2022-04-22 青岛经济技术开发区海尔热水器有限公司 Gas water heater and control method thereof
CN113757778B (en) * 2021-09-26 2023-03-24 浙江正蓝节能科技股份有限公司 Hot water monitoring and management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152055A (en) * 2012-01-26 2013-08-08 Noritz Corp Hot water storage type hot water supply system

Also Published As

Publication number Publication date
JP2003083610A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3728272B2 (en) Hot water mixing unit
EP1906102B1 (en) Hot water supply device
JP2010261618A (en) Hot water storage type hot water supply device
JP5158745B2 (en) Fuel cell cogeneration system
JP5162263B2 (en) Cogeneration system
JPH06306915A (en) Water heating device
JP5141307B2 (en) Hot water storage type electric water heater
JP3729466B2 (en) Water heater
JP3385873B2 (en) Operation control method of two-temperature hot water circulation device
JP3773872B2 (en) Hot water mixing unit
JP3720756B2 (en) Hot water mixing unit
JP3699402B2 (en) Hot water mixing unit
JP5853722B2 (en) Linked water heater system
JP2004132579A (en) Heating device and space heating trial operation control method of heating device
JP3718654B2 (en) Hot water mixing unit
JP3728273B2 (en) Hot water system
JP2515915Y2 (en) Hot water supply device and hot water discharge temperature stabilization device used for the same
JP3740089B2 (en) Hot water mixing unit
JPS6127444A (en) Instantaneous hot water maker
JP3836526B2 (en) Hot water system
JP3810191B2 (en) Bath equipment
JP5880078B2 (en) Hot water storage hot water supply system
JP2013069598A (en) Cogeneration system
JP5589610B2 (en) Hot water system
JP3728243B2 (en) Hot water mixing unit for water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees