JP3726816B2 - Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam - Google Patents

Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam Download PDF

Info

Publication number
JP3726816B2
JP3726816B2 JP2003048946A JP2003048946A JP3726816B2 JP 3726816 B2 JP3726816 B2 JP 3726816B2 JP 2003048946 A JP2003048946 A JP 2003048946A JP 2003048946 A JP2003048946 A JP 2003048946A JP 3726816 B2 JP3726816 B2 JP 3726816B2
Authority
JP
Japan
Prior art keywords
catalyst
caprolactam
reaction
cyclohexanone oxime
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003048946A
Other languages
Japanese (ja)
Other versions
JP2003320260A (en
Inventor
剛志 松下
啓介 杉田
宏 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003048946A priority Critical patent/JP3726816B2/en
Publication of JP2003320260A publication Critical patent/JP2003320260A/en
Application granted granted Critical
Publication of JP3726816B2 publication Critical patent/JP3726816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、シクロヘキサノンオキシムを気相にてベックマン転位反応させる際に用いるε−カプロラクタム製造用触媒の再生方法に関するものである。また本発明は、シクロヘキサノンオキシムを気相にてベックマン転位反応させることによるε−カプロラクタムの製造方法に関するものである。
【0002】
【従来の技術】
従来、ε−カプロラクタムの製造方法の1つとして、シクロヘキサノンオキシムを固体触媒の存在下に気相にてベックマン転位反応させる方法が提案されている(例えば、特許文献1、2参照)。この反応では、反応時間の経過とともに、触媒表面上での炭素質物質の析出や触媒の熱劣化等により、触媒の活性が徐々に低下することが問題となることがある。このような問題を解決するための方法の1つとして、例えば、特開平5−9180号公報(特許文献3)には、上記反応に使用して活性が低下した触媒をアンモニアと接触させることにより、触媒を再生する方法が提案されている。
【0003】
【特許文献1】
特開平2−250866号公報
【特許文献2】
特開平2−275850号公報
【特許文献3】
特開平5−9180号公報
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記従来法よりさらに優れた活性の再生触媒を得ることができるε−カプロラクタム製造用触媒の再生方法を提供することにある。また本発明のもう1つの目的は、こうして再生したε−カプロラクタム製造用触媒を用いて、ε−カプロラクタムを長期間に渡り高収率で製造しうる方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、鋭意研究を行った結果、上記反応に使用した触媒を、特定の2種の成分を含む水溶液と接触させることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
【0006】
すなわち本発明は、シクロヘキサノンオキシムを気相にてベックマン転位反応させる際に使用した固体触媒を、4級アンモニウム化合物および低級アルキルアミン類から選ばれる少なくとも1種とアンモニアとを含む水溶液と接触させることにより、ε−カプロラクタム製造用触媒を再生する方法に係るものである。また本発明は、こうして再生した触媒の存在下に、シクロヘキサノンを気相にてベックマン転位反応させることにより、ε−カプロラクタムを製造する方法に係るものである。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明が再生の対象とする触媒は、シクロヘキサノンオキシムを気相にてベックマン転位反応させる際に用いるε−カプロラクタム製造用の固体触媒である。このような固体触媒としては、従来、例えばゼオライトやシリカ−アルミナ等、種々のものが提案されているが、中でもゼオライトが好ましく、さらに好ましくはペンタシル型ゼオライト、特に好ましくはMFIゼオライトである。
【0008】
上記ゼオライトとしては、その骨格が実質的にケイ素と酸素から構成される結晶性シリカであってもよいし、骨格を構成する元素としてさらに他の元素を含む結晶性メタロシリケート等であってもよい。メタロシリケート等の場合、ケイ素および酸素以外に存在しうる元素としては、例えば、Be、B、Al、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Sb、La、Hf、Bi等が挙げられ、必要に応じてそれらの2種以上が含まれていてもよい。また、これら元素に対するケイ素の原子比は、好ましくは5以上であり、さらに好ましくは500以上である。
【0009】
上記ゼオライトは、例えば、ケイ素化合物、4級アンモニウム化合物、水および必要に応じて金属化合物等を原料として水熱合成に付し、得られた結晶を乾燥、焼成した後、アンモニアやアンモニウム塩で接触処理し、次いで乾燥することにより、好適に調製することができる。
【0010】
上記固体触媒としては、その粒径が0.001〜5mmであるのが好ましく、0.02〜3mmであるのがさらに好ましい。また上記固体触媒は、例えば、実質的に触媒成分のみからなる成形体であってもよいし、触媒成分を担体に担持したものであってもよい。
【0011】
上記固体触媒を用いてシクロヘキサノンオキシムを気相にてベックマン転位反応させる際の条件としては、反応温度が通常250〜500℃、好ましくは300〜450℃であり、反応圧力が通常0.005〜0.5MPa、好ましくは0.005〜0.2MPaである。この反応は、固定床式で行ってもよいし、流動床式で行ってもよく、原料のシクロヘキサノンオキシムの供給速度は、触媒1kgあたりの供給速度(kg/h)、すなわち空間速度WHSV(h-1)として、通常0.1〜20h-1、好ましくは0.2〜10h-1である。
【0012】
上記反応には、シクロヘキサノンオキシムの転化率やε−カプロラクタムの選択率を向上させる観点から、アルコールを共存させるのが好ましい。該アルコールとしては、通常炭素数1〜8、好ましくは炭素数1〜6のものが用いられ、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、1−メチル−1−プロパノール、2−メチル−1−プロパノール、1−ペンタノール、1−ヘキサノール等が挙げられ、必要に応じてそれらの2種以上を用いることもできる。中でもメタノール、エタノールが好ましい。該アルコールの使用量は、シクロヘキサノンオキシム100重量部に対して、通常10〜2000重量部、好ましくは20〜1000重量部である。
【0013】
また上記反応には、水を共存させてもよく、この場合、水の使用量は、シクロヘキサノンオキシム1モルに対して2.5モル以下であるのが好ましい。さらに上記反応には、不活性ガスを共存させてもよく、該不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素等が挙げられる。
【0014】
また上記反応は、触媒を空気等の酸素含有ガス雰囲気下に焼成する操作と組み合わせて実施してもよく、この触媒焼成処理により、触媒上に析出した炭素質物質を燃焼除去することができ、シクロヘキサノンオキシムの転化率やε−カプロラクタムの選択率の持続性を高めることができる。例えば、反応を固定床式で行う場合には、固体触媒を充填した固定床式反応器に、シクロヘキサノンオキシムを必要に応じてアルコール、水、不活性ガス等と共に供給して反応を行った後、シクロヘキサノンオキシムの供給を止め、次いで、酸素含有ガスを供給して焼成を行い、さらに、これら反応および焼成を繰り返す処方が、好適に採用される。また、反応を流動床式で行う場合には、固体触媒が流動した流動床式反応器に、シクロヘキサノンオキシムを必要に応じてアルコール、水、不活性ガス等と共に供給して反応を行いながら、該反応器から固体触媒を連続的または断続的に抜き出し、焼成器で焼成してから再び反応器に戻す処方が、好適に採用される。
【0015】
以上のようにシクロヘキサノンオキシムを固体触媒の存在下に気相にてベックマン転位反応させる場合、通常、反応時間の経過とともに、固体触媒上に炭素質物質が析出することや、固体触媒が熱劣化すること等により、固体触媒の活性が徐々に低下する、すなわちシクロヘキサノンオキシムの転化率が徐々に低下する。そこで、本発明においては、上記ベックマン転位反応に使用した固体触媒を、4級アンモニウム化合物および低級アルキルアミン類から選ばれる少なくとも1種とアンモニアとを含む水溶液と接触させることにより、再生処理を行う。このような処理により、固体触媒の活性を回復させることができ、上記ベックマン転位反応に使用する前の所謂新触媒と同等以上の活性を有する再生触媒を得ることができる。
【0016】
上記4級アンモニウム化合物としては、例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、n−プロピルトリメチルアンモニウム、テトラ−n−プロピルアンモニウム、テトラ−n−ブチルアンモニウム、4,4’−トリメチレンビス(ジメチルピペリジウム)、ベンジルトリメチルアンモニウム、ジベンジルジメチルアンモニウム、1,1’−ブチレンビス(4−アザ−1−アゾニアビシクロ[2,2,2]オクタン)、トリメチルアダマンチルアンモニウムのような各種4級アンモニウムの水酸化物やハロゲン化物等が挙げられ、必要に応じてそれらの2種以上を用いることもできる。中でも、テトラ−n−プロピルアンモニウム化合物が好ましく、さらに好ましくは水酸化テトラ−n−プロピルアンモニウムや臭化テトラ−n−プロピルアンモニウムである。
【0017】
上記低級アルキルアミン類としては、モノアルキルアミン類であってもよく、ジアルキルアミン類であってもよく、トリアルキルアミン類であってもよく、必要に応じてそれらの2種以上を用いることもできる。通常、下記一般式(1)
NR123 (1)
(式中、R1、R2およびR3はそれぞれ独立して水素原子または炭素数1〜4のアルキル基を表し、R1、R2およびR3が同時に水素原子であることはない。)で示される化合物が好適に用いられる。
【0018】
上記一般式(1)で示される低級アルキルアミン類の具体例としては、モノメチルアミン、モノエチルアミン、モノプロピルアミン、モノブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等が挙げられる。中でもトリプロピルアミンが好ましい。
【0019】
上記の4級アンモニウム化合物および/または低級アルキルアミン類とアンモニアとを含む水溶液は、通常pHが9以上であり、好ましくはpHが10〜13である。また、該水溶液中、アンモニアの濃度は、通常2〜30重量%、好ましくは5〜25重量%であり、4級アンモニウム化合物および/または低級アルキルアミン類の含有量は、アンモニア1モルに対して、通常0.000001〜1モル、好ましくは0.00001〜0.1モル、さらに好ましくは0.00001〜0.01モルである。
【0020】
上記水溶液には、必要に応じて、アンモニウム塩等の他の成分を含有させてもよい。このアンモニウム塩としては、例えば、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム等が挙げられ、中でも硝酸アンモニウムが好ましい。上記水溶液にアンモニウム塩を含有させる場合、その含有量は、アンモニア1モルに対して、通常0.001〜1モル、好ましくは0.01〜0.1モルである。
【0021】
上記水溶液による固体触媒の接触処理は、回分式で行ってもよいし、連続式で行ってもよく、例えば、攪拌槽中で固体触媒を上記水溶液に浸漬して攪拌してもよいし、固体触媒を充填した管状容器に上記水溶液を流通させてもよい。接触処理の温度は、通常50〜250℃、好ましくは50〜200℃、さらに好ましくは60〜150℃であり、接触処理の時間は通常0.1〜10時間である。また上記水溶液の使用量は、固体触媒100重量部に対して通常100〜5000重量部である。接触処理後の固体触媒は、必要に応じて水洗、乾燥等の処理に供される。
【0022】
なお、上記水溶液による接触処理は、必要に応じて複数回行ってもよい。また、この接触処理は、必要に応じて、例えば前記特開平5−9180号公報(特許文献3)等に開示された公知の接触処理法と組み合わせて行ってもよい。
【0023】
上記接触処理に供される固体触媒は、あらかじめ空気等の酸素含有ガス雰囲気下に焼成しておくのが好ましく、この焼成処理により、触媒上に析出した炭素質物質を燃焼除去しておくことができる。なお、この焼成は、例えば特開平3−207454号公報に提案された方法のように、アルコールを共存させて行ってもよい。
【0024】
以上のようにして得られた再生触媒は、前述のシクロヘキサノンオキシムの気相でのベックマン転位反応に再使用することができ、このように触媒を再生、再使用することにより、ε−カプロラクタムを長期間に渡り高収率で製造することができる。
【0025】
前述のように、ベックマン転位反応を触媒焼成処理と組み合わせて実施する場合には、この焼成処理後の触媒に、上記接触処理を施すのが好ましい。例えば、前述のように、固体触媒が充填された固定床式反応器に、原料ガスの供給による反応および酸素含有ガスの供給による焼成を繰り返して行う場合は、焼成後、毎回または数回おきに、触媒を上記接触処理に供せばよく、この際、触媒を反応器に充填したままで上記接触処理を行ってもよいし、触媒を一旦反応器から抜き出し、上記接触処理後、再び反応器に充填してもよい。また、前述のように、流動床式反応器と焼成器の間で触媒を循環させつつ反応を行う場合は、焼成器から触媒を抜き出し、上記接触処理に供せばよく、接触処理後の触媒は、再び焼成器に戻してもよいし、反応器に導入してもよい。
【0026】
なお、上記ベックマン転位反応により得られた反応混合物の後処理操作としては、公知の方法を適宜採用することができ、例えば、反応生成ガスを冷却して凝縮させた後、抽出、蒸留、晶析等の操作を行うことにより、ε−カプロラクタムを分離することができる。
【0027】
【実施例】
以下、本発明の実施例を示すが、本発明はこれらに限定されるものではない。なお、空間速度WHSV(h-1)は、シクロヘキサノンオキシムの供給速度(g/h)を触媒重量(g)で除することにより算出した。また、シクロヘキサノンオキシムおよびε−カプロラクタムの分析はガスクロマトグラフィーにより行い、シクロヘキサノンオキシムの転化率およびε−カプロラクタムの選択率は、供給したシクロヘキサノンオキシムのモル数をX、未反応のシクロヘキサノンオキシムのモル数をY、生成したε−カプロラクタムのモル数をZとして、それぞれ以下の式により算出した。
シクロヘキサノンオキシムの転化率(%)=[(X−Y)/X]×100
ε−カプロラクタムの選択率(%)=[Z/(X−Y)]×100
【0028】
参考例1
(a)気相ベックマン転位反応の継続による劣化触媒の取得
結晶性シリカからなるMFIゼオライトを主成分とする粒径0.3mm以下の粒子を触媒として用い、この触媒を流動させた流動床式反応器に、気化させたシクロヘキサノンオキシム、気化させたメタノールおよび窒素ガスを供給しながら、反応生成ガスを抜き出すことにより、380℃にて3ヶ月、反応を行った。この間、シクロヘキサノンオキシムの空間速度WHSVは2h-1とし、メタノールの供給割合はシクロヘキサノンオキシム1kgに対し1.8kg、窒素ガスの供給割合はシクロヘキサノンオキシム1kgに対して0.3m3とした。またこの間、反応器内から触媒の一部を抜き出し、焼成器に導入して、空気流通下、500℃、滞留時間20時間で焼成した後、再び反応器に導入することにより、触媒を反応器と焼成器の間で循環させた。得られた劣化触媒を以下の例で使用した。
【0029】
(b)劣化触媒の性能評価
上記劣化触媒0.375gを、内径1cmの石英ガラス製反応管中に充填して触媒層を形成させ、窒素4.2L/hの流通下、350℃にて1時間予熱処理した。次いで、窒素4.2L/hの流通下、触媒層の温度を340℃に下げた後、気化させたシクロヘキサノンオキシム/メタノール=1/1.8(重量比)の混合物を8.4g/h(シクロヘキサノンオキシムのWHSV=8h-1)の供給速度で反応管に供給し、20.25時間反応を行った。反応開始後0〜0.25時間、5〜5.25時間、13〜13.25時間、20〜20.25時間の各間、反応ガスを捕集し、ガスクロマトグラフィーで分析して求めたシクロヘキサノンオキシムの転化率およびε−カプロラクタムの選択率を表1に示す。
【0030】
【表1】

Figure 0003726816
【0031】
実施例1
参考例1の(a)で得られた劣化触媒26gをオートクレーブに入れ、この中に、7.5重量%の硝酸アンモニウム水溶液110g、25重量%のアンモニア水溶液168gおよび臭化テトラ−n−プロピルアンモニウム1.91gの混合液(pH=11.5)を加えて、90℃にて1時間攪拌した。この混合物を濾過し、濾残の固体を水洗、乾燥し、再生触媒を得た。
【0032】
この再生触媒0.375gを、内径1cmの石英ガラス製反応管中に充填して触媒層を形成させ、窒素4.2L/hの流通下、350℃にて1時間予熱処理した。次いで、窒素4.2L/hの流通下、触媒層の温度を340℃に下げた後、気化させたシクロヘキサノンオキシム/メタノール=1/1.8(重量比)の混合物を8.4g/h(シクロヘキサノンオキシムのWHSV=8h-1)の供給速度で反応管に供給し、10.25時間反応を行った。
【0033】
シクロヘキサノンオキシム/メタノール混合物の供給を停止し、窒素を空気に切り替え、空気5L/hの流通下、触媒層の温度を340℃から410℃に昇温した後、410℃にて20時間焼成処理した。その後、空気を窒素に切り替え、窒素4.2L/hの流通下、触媒層の温度を340℃に調整した。
【0034】
以上の反応から焼成の一連の操作をさらに9回繰返し、合計10回の反応を行った。初回、2回目、10回目の各反応において、反応開始後10〜10.25時間の間、反応ガスを捕集し、ガスクロマトグラフィーで分析して求めたシクロヘキサノンオキシムの転化率およびε−カプロラクタムの選択率を表2に示す。
【0035】
実施例2
参考例1の(a)で得られた劣化触媒26gをオートクレーブに入れ、この中に、7.5重量%の硝酸アンモニウム水溶液110g、25重量%のアンモニア水溶液168gおよびトリ−n−プロピルアミン0.10gの混合液(pH=11.5)を加えて、90℃にて1時間攪拌した。この混合物を濾過し、濾残の固体を水洗、乾燥し、再生触媒を得た。この再生触媒を用いて、実施例1と同様に、反応から焼成の一連の操作を繰返して行い、合計10回の反応を行った。結果を表2に示す。
【0036】
比較例1
参考例1の(a)で得られた劣化触媒26gをオートクレーブに入れ、この中に、7.5重量%の硝酸アンモニウム水溶液110gおよび25重量%のアンモニア水溶液168gの混合液(pH=11.5)を加えて、90℃にて1時間攪拌した。この混合物を濾過し、濾残の固体を水洗、乾燥し、再生触媒を得た。この再生触媒を用いて、実施例1と同様に、反応から焼成の一連の操作を繰返して行い、合計10回の反応を行った。結果を表2に示す。
【0037】
参考例2
参考例1の(a)で反応に使用したものと同等の結晶性シリカからなるMFIゼオライトを主成分とする粒径0.3mm以下の粒子であって、未使用のものを触媒として用いて、実施例1と同様に、反応から焼成の一連の操作を繰返して行い、合計10回の反応を行った。結果を表2に示す。
【0038】
【表2】
Figure 0003726816
【0039】
【発明の効果】
本発明の方法によれば、反応に使用したε−カプロラクタム製造用触媒から、優れた活性を有する再生触媒を得ることができる。そして、かかる方法でε−カプロラクタム製造用触媒を再生、再使用することにより、ε−カプロラクタムを長期間に渡り高収率で製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a catalyst for producing ε-caprolactam used when a cyclohexanone oxime is subjected to a Beckmann rearrangement reaction in a gas phase. The present invention also relates to a method for producing ε-caprolactam by subjecting cyclohexanone oxime to a Beckmann rearrangement reaction in the gas phase.
[0002]
[Prior art]
Conventionally, as one method for producing ε-caprolactam, a method in which cyclohexanone oxime is subjected to a Beckmann rearrangement reaction in the gas phase in the presence of a solid catalyst has been proposed (see, for example, Patent Documents 1 and 2). In this reaction, as the reaction time elapses, there may be a problem that the activity of the catalyst gradually decreases due to deposition of a carbonaceous material on the catalyst surface, thermal degradation of the catalyst, or the like. As one of the methods for solving such a problem, for example, Japanese Patent Application Laid-Open No. 5-9180 (Patent Document 3) discloses that a catalyst whose activity is reduced by using the above reaction is brought into contact with ammonia. A method for regenerating the catalyst has been proposed.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-250866 [Patent Document 2]
JP-A-2-275850 [Patent Document 3]
Japanese Patent Laid-Open No. 5-9180
[Problems to be solved by the invention]
An object of the present invention is to provide a method for regenerating a catalyst for producing ε-caprolactam, which can obtain a regenerated catalyst having an activity even better than that of the conventional method. Another object of the present invention is to provide a method capable of producing ε-caprolactam in a high yield over a long period of time using the thus regenerated catalyst for producing ε-caprolactam.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above object can be achieved by bringing the catalyst used in the above reaction into contact with an aqueous solution containing two specific components, and to complete the present invention. It came.
[0006]
That is, the present invention brings the solid catalyst used when cyclohexanone oxime is subjected to the Beckmann rearrangement reaction in the gas phase by contacting with an aqueous solution containing at least one selected from quaternary ammonium compounds and lower alkylamines and ammonia. , Which relates to a method for regenerating a catalyst for producing ε-caprolactam. The present invention also relates to a method for producing ε-caprolactam by subjecting cyclohexanone to a Beckmann rearrangement reaction in the gas phase in the presence of the catalyst thus regenerated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The catalyst to be regenerated by the present invention is a solid catalyst for producing ε-caprolactam that is used when cyclohexanone oxime is subjected to Beckmann rearrangement reaction in the gas phase. As such a solid catalyst, various types such as zeolite and silica-alumina have been conventionally proposed. Among them, zeolite is preferable, pentasil type zeolite is more preferable, and MFI zeolite is particularly preferable.
[0008]
The zeolite may be crystalline silica whose skeleton is substantially composed of silicon and oxygen, or may be a crystalline metallosilicate containing another element as an element constituting the skeleton. . In the case of metallosilicates and the like, elements that may exist other than silicon and oxygen include, for example, Be, B, Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Sb, La, Hf, Bi, etc. are mentioned, and two or more of them may be included as necessary. The atomic ratio of silicon to these elements is preferably 5 or more, and more preferably 500 or more.
[0009]
The zeolite is subjected to hydrothermal synthesis using, for example, a silicon compound, a quaternary ammonium compound, water and, if necessary, a metal compound, etc., and the obtained crystals are dried and calcined, and then contacted with ammonia or an ammonium salt. It can be suitably prepared by treating and then drying.
[0010]
The solid catalyst preferably has a particle diameter of 0.001 to 5 mm, and more preferably 0.02 to 3 mm. In addition, the solid catalyst may be, for example, a molded body substantially composed of only the catalyst component, or may be one in which the catalyst component is supported on a carrier.
[0011]
The conditions for the Beckmann rearrangement reaction of cyclohexanone oxime in the gas phase using the solid catalyst are usually 250 to 500 ° C, preferably 300 to 450 ° C, and the reaction pressure is usually 0.005 to 0. 0.5 MPa, preferably 0.005 to 0.2 MPa. This reaction may be carried out in a fixed bed type or in a fluidized bed type, and the feed rate of the raw material cyclohexanone oxime is determined according to the feed rate per kg of catalyst (kg / h), that is, the space velocity WHSV (h -1 ) is usually 0.1 to 20 h -1 , preferably 0.2 to 10 h -1 .
[0012]
In the above reaction, it is preferable that alcohol is allowed to coexist from the viewpoint of improving the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam. As the alcohol, those having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms are usually used. For example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-methyl-1-propanol 2-methyl-1-propanol, 1-pentanol, 1-hexanol and the like, and two or more of them can be used as necessary. Of these, methanol and ethanol are preferred. The amount of the alcohol used is usually 10 to 2000 parts by weight, preferably 20 to 1000 parts by weight with respect to 100 parts by weight of cyclohexanone oxime.
[0013]
Further, water may coexist in the above reaction, and in this case, the amount of water used is preferably 2.5 mol or less with respect to 1 mol of cyclohexanone oxime. Further, an inert gas may coexist in the reaction, and examples of the inert gas include nitrogen, argon, carbon dioxide and the like.
[0014]
The above reaction may be carried out in combination with an operation of calcining the catalyst in an oxygen-containing gas atmosphere such as air, and by this catalyst calcining treatment, the carbonaceous material deposited on the catalyst can be removed by combustion. The sustainability of the conversion ratio of cyclohexanone oxime and the selectivity of ε-caprolactam can be increased. For example, when the reaction is carried out in a fixed bed type, after carrying out the reaction by supplying cyclohexanone oxime together with alcohol, water, inert gas, etc., if necessary, to a fixed bed type reactor filled with a solid catalyst, A prescription in which the supply of cyclohexanone oxime is stopped, then the oxygen-containing gas is supplied to perform firing, and these reactions and firing are repeated is suitably employed. Further, when the reaction is performed in a fluidized bed type, cyclohexanone oxime is supplied to the fluidized bed reactor in which the solid catalyst has flowed together with alcohol, water, inert gas, etc. as necessary, and the reaction is performed. A formulation in which the solid catalyst is continuously or intermittently extracted from the reactor, calcined in the calciner, and returned to the reactor is preferably employed.
[0015]
As described above, when cyclohexanone oxime is subjected to the Beckmann rearrangement reaction in the gas phase in the presence of a solid catalyst, usually, as the reaction time elapses, a carbonaceous material is deposited on the solid catalyst or the solid catalyst is thermally deteriorated. As a result, the activity of the solid catalyst gradually decreases, that is, the conversion of cyclohexanone oxime gradually decreases. Therefore, in the present invention, the regeneration treatment is performed by bringing the solid catalyst used in the Beckmann rearrangement reaction into contact with an aqueous solution containing at least one quaternary ammonium compound and a lower alkylamine and ammonia. By such treatment, the activity of the solid catalyst can be recovered, and a regenerated catalyst having an activity equal to or higher than the so-called new catalyst before being used in the Beckmann rearrangement reaction can be obtained.
[0016]
Examples of the quaternary ammonium compound include tetramethylammonium, tetraethylammonium, n-propyltrimethylammonium, tetra-n-propylammonium, tetra-n-butylammonium, 4,4′-trimethylenebis (dimethylpiperidinium). , Quaternary ammonium hydroxides and halogens such as benzyltrimethylammonium, dibenzyldimethylammonium, 1,1′-butylenebis (4-aza-1-azoniabicyclo [2,2,2] octane), and trimethyladamantylammonium And two or more of them can be used as necessary. Of these, tetra-n-propylammonium compounds are preferable, and tetra-n-propylammonium hydroxide and tetra-n-propylammonium bromide are more preferable.
[0017]
The lower alkylamines may be monoalkylamines, dialkylamines, or trialkylamines, and two or more of them may be used as necessary. it can. Usually, the following general formula (1)
NR 1 R 2 R 3 (1)
(In the formula, R 1 , R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 1 , R 2 and R 3 are not simultaneously hydrogen atoms.) Is preferably used.
[0018]
Specific examples of the lower alkylamines represented by the general formula (1) include monomethylamine, monoethylamine, monopropylamine, monobutylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, trimethylamine, triethylamine, and tripropyl. Examples thereof include amines and tributylamine. Of these, tripropylamine is preferable.
[0019]
The aqueous solution containing the quaternary ammonium compound and / or the lower alkylamine and ammonia usually has a pH of 9 or more, and preferably has a pH of 10-13. In the aqueous solution, the concentration of ammonia is usually 2 to 30% by weight, preferably 5 to 25% by weight, and the content of the quaternary ammonium compound and / or the lower alkylamine is 1 mol of ammonia. The amount is usually 0.000001 to 1 mol, preferably 0.00001 to 0.1 mol, and more preferably 0.00001 to 0.01 mol.
[0020]
You may make the said aqueous solution contain other components, such as an ammonium salt, as needed. Examples of the ammonium salt include ammonium nitrate, ammonium chloride, and ammonium sulfate. Among them, ammonium nitrate is preferable. When the aqueous solution contains an ammonium salt, the content is usually 0.001 to 1 mol, preferably 0.01 to 0.1 mol, per 1 mol of ammonia.
[0021]
The contact treatment of the solid catalyst with the aqueous solution may be performed batchwise or continuously, for example, the solid catalyst may be immersed in the aqueous solution in a stirring tank and stirred, or the solid catalyst may be solidified. You may distribute | circulate the said aqueous solution to the tubular container filled with the catalyst. The temperature of the contact treatment is usually 50 to 250 ° C., preferably 50 to 200 ° C., more preferably 60 to 150 ° C., and the contact treatment time is usually 0.1 to 10 hours. Moreover, the usage-amount of the said aqueous solution is 100-5000 weight part normally with respect to 100 weight part of solid catalysts. The solid catalyst after the contact treatment is subjected to treatment such as washing with water and drying as necessary.
[0022]
In addition, you may perform the contact process by the said aqueous solution in multiple times as needed. Moreover, you may perform this contact process in combination with the well-known contact processing method disclosed by the said Unexamined-Japanese-Patent No. 5-9180 (patent document 3) etc. as needed.
[0023]
The solid catalyst to be subjected to the contact treatment is preferably calcined in advance in an oxygen-containing gas atmosphere such as air, and the carbonaceous material deposited on the catalyst is burned and removed by this calcining treatment. it can. This calcination may be carried out in the presence of alcohol, for example, as in the method proposed in JP-A-3-207454.
[0024]
The regenerated catalyst obtained as described above can be reused in the above-mentioned Beckmann rearrangement reaction of cyclohexanone oxime in the gas phase. By regenerating and reusing the catalyst in this way, ε-caprolactam is prolonged. It can be produced in high yield over a period.
[0025]
As described above, when the Beckmann rearrangement reaction is performed in combination with the catalyst calcination treatment, it is preferable to subject the catalyst after the calcination treatment to the contact treatment. For example, as described above, in a fixed bed reactor filled with a solid catalyst, when the reaction by the supply of the raw material gas and the calcination by the supply of the oxygen-containing gas are repeated, after the calcination, every time or every few times The catalyst may be subjected to the contact treatment. In this case, the contact treatment may be performed while the catalyst is filled in the reactor, or the catalyst is once extracted from the reactor, and after the contact treatment, the reactor is again used. May be filled. In addition, as described above, when the reaction is performed while circulating the catalyst between the fluidized bed reactor and the calciner, the catalyst may be extracted from the calciner and used for the contact treatment. May be returned to the calciner again or introduced into the reactor.
[0026]
In addition, as a post-treatment operation of the reaction mixture obtained by the Beckmann rearrangement reaction, a known method can be appropriately employed. For example, the reaction product gas is cooled and condensed, followed by extraction, distillation, crystallization. Ε-caprolactam can be separated by performing the above operations.
[0027]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto. The space velocity WHSV (h −1 ) was calculated by dividing the cyclohexanone oxime supply rate (g / h) by the catalyst weight (g). The analysis of cyclohexanone oxime and ε-caprolactam was performed by gas chromatography. The conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam were determined based on the number of moles of cyclohexanone oxime supplied and the number of moles of unreacted cyclohexanone oxime. Y and the number of moles of the produced ε-caprolactam were set as Z and were calculated by the following formulas.
Conversion of cyclohexanone oxime (%) = [(XY) / X] × 100
Selectivity of ε-caprolactam (%) = [Z / (XY)] × 100
[0028]
Reference example 1
(A) Obtaining a deteriorated catalyst by continuing the gas phase Beckmann rearrangement reaction A fluidized bed type reaction in which particles having a particle diameter of 0.3 mm or less mainly composed of MFI zeolite made of crystalline silica are flowed as a catalyst. The reaction was conducted at 380 ° C. for 3 months by extracting the reaction product gas while supplying vaporized cyclohexanone oxime, vaporized methanol and nitrogen gas to the vessel. During this time, the space velocity WHSV of cyclohexanone oxime was 2 h −1 , the methanol supply ratio was 1.8 kg per 1 kg of cyclohexanone oxime, and the nitrogen gas supply ratio was 0.3 m 3 per 1 kg of cyclohexanone oxime. During this time, a part of the catalyst is taken out from the reactor, introduced into a calciner, calcined at 500 ° C. for 20 hours in an air stream, and then introduced into the reactor again. And circulated between the calciners. The resulting degraded catalyst was used in the following examples.
[0029]
(B) Performance Evaluation of Deteriorated Catalyst 0.375 g of the above deteriorated catalyst was filled in a quartz glass reaction tube having an inner diameter of 1 cm to form a catalyst layer, and 1 at 350 ° C. under a flow of 4.2 L / h of nitrogen. Preheated for hours. Next, the temperature of the catalyst layer was lowered to 340 ° C. under a flow of 4.2 L / h of nitrogen, and then a vaporized mixture of cyclohexanone oxime / methanol = 1 / 1.8 (weight ratio) was 8.4 g / h ( Cyclohexanone oxime WHSV = 8 h −1 ) was supplied to the reaction tube and reacted for 20.25 hours. The reaction gas was collected during each of 0 to 0.25 hours, 5 to 5.25 hours, 13 to 13.25 hours, and 20 to 20.25 hours after the start of the reaction, and analyzed by gas chromatography. Table 1 shows the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam.
[0030]
[Table 1]
Figure 0003726816
[0031]
Example 1
26 g of the deteriorated catalyst obtained in (a) of Reference Example 1 was put in an autoclave, and in this, 110 g of a 7.5 wt% aqueous ammonium nitrate solution, 168 g of a 25 wt% aqueous ammonia solution and tetra-n-propylammonium bromide 1 .91 g of a mixed solution (pH = 11.5) was added and stirred at 90 ° C. for 1 hour. The mixture was filtered, and the solid residue was washed with water and dried to obtain a regenerated catalyst.
[0032]
0.375 g of this regenerated catalyst was filled into a quartz glass reaction tube having an inner diameter of 1 cm to form a catalyst layer, and preheated at 350 ° C. for 1 hour under a flow of 4.2 L / h of nitrogen. Next, the temperature of the catalyst layer was lowered to 340 ° C. under a flow of 4.2 L / h of nitrogen, and then a vaporized mixture of cyclohexanone oxime / methanol = 1 / 1.8 (weight ratio) was 8.4 g / h ( Cyclohexanone oxime WHSV = 8 h −1 ) was supplied to the reaction tube and reacted for 10.25 hours.
[0033]
The supply of the cyclohexanone oxime / methanol mixture was stopped, nitrogen was switched to air, the temperature of the catalyst layer was raised from 340 ° C. to 410 ° C. under a flow of 5 L / h, and then calcined at 410 ° C. for 20 hours. . Thereafter, the air was switched to nitrogen, and the temperature of the catalyst layer was adjusted to 340 ° C. under a flow of 4.2 L / h of nitrogen.
[0034]
From the above reaction, a series of firing operations was further repeated 9 times, and a total of 10 reactions were performed. In each of the first, second, and tenth reactions, the reaction gas was collected and analyzed by gas chromatography for 10 to 10.25 hours after the start of the reaction, and the conversion of cyclohexanone oxime and ε-caprolactam Table 2 shows the selectivity.
[0035]
Example 2
26 g of the deteriorated catalyst obtained in (a) of Reference Example 1 was placed in an autoclave, and 110 g of a 7.5 wt% aqueous ammonium nitrate solution, 168 g of a 25 wt% aqueous ammonia solution and 0.10 g of tri-n-propylamine were added thereto. Of the mixture (pH = 11.5) was added, and the mixture was stirred at 90 ° C. for 1 hour. The mixture was filtered, and the solid residue was washed with water and dried to obtain a regenerated catalyst. Using this regenerated catalyst, a series of operations from reaction to calcination were repeated in the same manner as in Example 1 for a total of 10 reactions. The results are shown in Table 2.
[0036]
Comparative Example 1
26 g of the deteriorated catalyst obtained in (a) of Reference Example 1 was placed in an autoclave, and a mixture of 110 g of an aqueous solution containing 7.5% by weight ammonium nitrate and 168 g of an aqueous solution containing 25% by weight ammonia (pH = 11.5). And stirred at 90 ° C. for 1 hour. The mixture was filtered, and the solid residue was washed with water and dried to obtain a regenerated catalyst. Using this regenerated catalyst, a series of operations from reaction to calcination were repeated in the same manner as in Example 1 for a total of 10 reactions. The results are shown in Table 2.
[0037]
Reference example 2
A particle having a particle size of 0.3 mm or less mainly composed of MFI zeolite composed of crystalline silica equivalent to that used in the reaction of Reference Example 1 (a), and using an unused one as a catalyst, In the same manner as in Example 1, a series of operations from reaction to firing was repeated, and the reaction was performed 10 times in total. The results are shown in Table 2.
[0038]
[Table 2]
Figure 0003726816
[0039]
【The invention's effect】
According to the method of the present invention, a regenerated catalyst having excellent activity can be obtained from the catalyst for producing ε-caprolactam used in the reaction. And, by regenerating and reusing the catalyst for producing ε-caprolactam by such a method, ε-caprolactam can be produced in a high yield over a long period of time.

Claims (2)

シクロヘキサノンオキシムを気相にてベックマン転位反応させる際に使用した固体触媒を、4級アンモニウム化合物および低級アルキルアミン類から選ばれる少なくとも1種とアンモニアとを含む水溶液と接触させることを特徴とするε−カプロラクタム製造用触媒の再生方法。The solid catalyst used for the Beckmann rearrangement reaction of cyclohexanone oxime in the gas phase is brought into contact with an aqueous solution containing at least one selected from quaternary ammonium compounds and lower alkylamines and ammonia. A method for regenerating a catalyst for producing caprolactam. シクロヘキサノンオキシムを気相にてベックマン転位反応させる際に使用した固体触媒を、4級アンモニウム化合物および低級アルキルアミン類から選ばれる少なくとも1種とアンモニアとを含む水溶液と接触させて再生し、得られた再生触媒の存在下に、シクロヘキサノンを気相にてベックマン転位反応させることを特徴とするε−カプロラクタムの製造方法。The solid catalyst used in the Beckmann rearrangement reaction of cyclohexanone oxime in the gas phase was regenerated by contacting with an aqueous solution containing at least one quaternary ammonium compound and lower alkylamine and ammonia. A process for producing ε-caprolactam, comprising subjecting cyclohexanone to a Beckmann rearrangement reaction in the gas phase in the presence of a regenerated catalyst.
JP2003048946A 2002-02-27 2003-02-26 Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam Expired - Fee Related JP3726816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048946A JP3726816B2 (en) 2002-02-27 2003-02-26 Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-51033 2002-02-27
JP2002051033 2002-02-27
JP2003048946A JP3726816B2 (en) 2002-02-27 2003-02-26 Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam

Publications (2)

Publication Number Publication Date
JP2003320260A JP2003320260A (en) 2003-11-11
JP3726816B2 true JP3726816B2 (en) 2005-12-14

Family

ID=29552026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048946A Expired - Fee Related JP3726816B2 (en) 2002-02-27 2003-02-26 Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam

Country Status (1)

Country Link
JP (1) JP3726816B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496796B2 (en) 2004-02-16 2010-07-07 住友化学株式会社 Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam
TW200808447A (en) 2006-07-04 2008-02-16 Sumitomo Chemical Co Processing for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam
JP4687692B2 (en) * 2006-07-04 2011-05-25 住友化学株式会社 Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam
JP2010201375A (en) * 2009-03-04 2010-09-16 Sumitomo Chemical Co Ltd Method for regenerating titanium-silica-based catalyst
JP5067413B2 (en) * 2009-10-20 2012-11-07 住友化学株式会社 Method for crushing zeolite compact

Also Published As

Publication number Publication date
JP2003320260A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
KR100193349B1 (en) Method for preparing epsilon-caprolactam and activation method of solid catalyst for preparing epsilon-caprolactam
US7060645B2 (en) Method for manufacturing zeolite and method for manufacturing ε-caprolactam
US6946553B2 (en) Process for producing ε-caprolactam and catalyst for the production
US5354859A (en) ε-caprolactam
US7687621B2 (en) Process for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam
JP3726816B2 (en) Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam
US7026474B2 (en) Method for producing ε-caprolactam and method for reactivating catalyst for production of ε-caprolactam
JP3221024B2 (en) Method for producing ε-caprolactam and method for activating solid catalyst for producing ε-caprolactam
JP3301092B2 (en) Method for producing ε-caprolactam
JP2011153047A (en) METHOD FOR PRODUCING ZEOLITE AND METHOD FOR PRODUCING epsi-CAPROLACTAM
JP3254753B2 (en) Method for producing ε-caprolactam
JP3767562B2 (en) Method for producing ε-caprolactam
KR20060044642A (en) Method for producing -caprolactam
JP4687692B2 (en) Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam
JP3254751B2 (en) Method for producing ε-caprolactam
JP2003236394A (en) METHOD FOR REGENERATING CATALYST FOR PRODUCTION OF epsilon- CAPROLACTAM, AND METHOD FOR PRODUCING epsilon-CAPROLACTAM
JP2008229403A (en) REGENERATION METHOD OF CATALYST FOR PRODUCING epsilon-CAPROLACTAM AND METHOD FOR MANUFACTURING epsilon-CAPROLACTAM
JPH05148223A (en) Production of epsilon-caprolactam
JP2007296437A (en) Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R151 Written notification of patent or utility model registration

Ref document number: 3726816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees