JP3726304B2 - 3-way sealed bag made of biaxially oriented polyamide resin film - Google Patents

3-way sealed bag made of biaxially oriented polyamide resin film Download PDF

Info

Publication number
JP3726304B2
JP3726304B2 JP7416495A JP7416495A JP3726304B2 JP 3726304 B2 JP3726304 B2 JP 3726304B2 JP 7416495 A JP7416495 A JP 7416495A JP 7416495 A JP7416495 A JP 7416495A JP 3726304 B2 JP3726304 B2 JP 3726304B2
Authority
JP
Japan
Prior art keywords
film
biaxially oriented
polyamide resin
resin film
oriented polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7416495A
Other languages
Japanese (ja)
Other versions
JPH08267569A (en
Inventor
勝文 熊野
啓治 森
正 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP7416495A priority Critical patent/JP3726304B2/en
Publication of JPH08267569A publication Critical patent/JPH08267569A/en
Application granted granted Critical
Publication of JP3726304B2 publication Critical patent/JP3726304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、特にレトルト食品包装用に適用した場合に、加熱殺菌処理によって発生するS字カール現象を可及的に少なくした2軸配向ポリアミド系樹脂フィルムに関するものである。
【0002】
【従来の技術】
2軸配向ポリアミド系樹脂フィルム、殊にナイロン6を主成分とする2軸配向ポリアミド系樹脂フィルムは、強靭性、高ガスバリヤー性、耐ピンホール性、透明性、易印刷性など様々の優れた特性を有していることから、種々の液状食品、水物食品、冷凍食品、レトルト食品、ペースト状食品、畜肉水産食品等の袋包装用材料として広く用いられており、特に近年では、レトルト食品の袋包装材料として汎用されている。
【0003】
袋包装用材料に供される上記ポリアミド系樹脂フィルムは、通常その表面に印刷を施してから、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン系樹脂フィルムとラミネートし、ポリアミド系樹脂フィルムを外側にして流れ方向に平行に2つに折りたたみ、3辺を熱融着して切り出すことにより、1辺が開封状態の3方シール袋とする。そして、この袋に上記の様な内容物を充填して密封し、通常は沸騰水中で加熱殺菌処理してから市場に供される。
【0004】
こうした加熱殺菌処理用途に用いられる2軸配向ポリアミド系樹脂フィルムの製法としては、縦・横逐次2軸延伸法が主流となっているが、この様な縦・横2軸配向ポリアミド系樹脂フィルムに指摘される欠点として、フィルム幅方向に物性のバラツキが生じ易いことが挙げられる。この理由は、横延伸の為のテンター処理工程で熱による縦方向の収縮応力が生じ、更にフィルムの両端部はクリップに把持されて拘束されているのに対し、フィルムの中央部は把持手段の影響力が小さく拘束力が弱くなっているため、前記収縮応力の影響によりクリップで把持されている両端部に対してフィルム中央部分の収縮が遅れるためと考えられる。
【0005】
即ち、従来法によって得られる袋包装用の2軸配向ポリアミド系樹脂フィルムは、幅方向に物性(例えば沸水収縮率)の斜め差が生じ、加熱処理後に袋の隅で反り返りが起こって袋の2辺がS字状にカールする現象が発生し、商品の見栄えを著しく悪化させるという問題があった。これは、幅方向の物性の不均一性に基づくものであり、その対策としては、例えば特開平4−103335号などに示されている様に、マイクロ波によって測定される分子配向角度差を規定することが提案されている。
【0006】
しかしながらマイクロ波によって測定される分子配向は、ポリアミド系樹脂フィルムの非晶と結晶配向が組合わされた情報であり、非晶・結晶の関係と夫々の配向状態までも明らかにしている訳ではなく、フィルムの構造を明確に規定しているとは言えない。現に、前記公報で規定している様にマイクロ波により測定される分子配向角度差の条件を満足するからといって、S字カール現象が確実に抑えられるとは限らない。即ち、マイクロ波によって測定される分子配向角度差の規定は、S字カールを低減させる為の特性として必ずしも十分なものとは言えない。
【0007】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、レトルト食品等の包装用フィルムとして用いられる3方シール袋の、加熱殺菌処理後におけるS字カール現象を確実に低減し、商品価値の高い包装製品を与え得る様な2軸配向ポリアミド系樹脂フィルムを提供しようとするものである。
【0008】
【課題を解決するための手段】
上記課題を達成することのできた本発明に係る2軸配向ポリアミド系樹脂フィルムの構成は、α型結晶の配向主軸の方向がフィルムの縦(MD)方向もしくは横(TD)方向に対して14度以下であるところに要旨を有するものである。上記特性を備えたポリアミド系樹脂フィルムは、好ましくは相対粘度が2〜3.5であるナイロン6を主成分とする実質的に未配向のポリアミド系樹脂シートを、縦方向に2段以上に延伸すると共に、9倍以上の面積倍率で2軸延伸し熱固定することによって容易に得ることができる。
【0009】
【作用】
本発明でフィルム素材として使用されるポリアミド系樹脂としては、α型結晶を生成する全てのポリアミドを使用することができ、例えばナイロン6、ナイロン66、ナイロン610、ナイロン6/66/610共重合体、ナイロン11、ナイロン12、ポリエチレンイソフタラミド、ポリメタキシリレンアジパミド、ポリ(ヘキサメチレンイソフタラミド/テレフタラミド)、ポリ(ヘキサメチレンイソフタラミド/モノメチルテレフタラミド)、ヘキサメチレンイソフタラミド/テレフタラミドとイプシロンカプロラクタムとの共重合体、ヘキサメチレンテレフタラミドとヘキサメチレンアジパミドとの共重合体などを使用できるが、中でも特に好ましいのはナイロン6を主成分とするポリアミドであり、具体的にはナイロン6の単独、あるいはナイロン6にヘキサメチレンジアミンとアジピン酸またはイソフタル酸とのナイロン塩、メタキシリレンジアミンとアジピン酸とのナイロン塩などを少量共重合させた共重合体および/またはそれらのブレンド物などが挙げられる。更にこれらのポリアミド系樹脂に、その性質を損なわない範囲で少量の各種耐ブロッキング剤、帯電防止剤、安定剤など公知の添加剤を配合したものであってもよい。
【0010】
上記ポリアミド系樹脂は、相対粘度(RV)が2〜3.5の範囲のものが好ましく、相対粘度が2未満のものでは縦・横延伸時に破断を起こし易くなってフィルム化が困難になる傾向があり、また3.5を超えるものでは押出し時の負荷が高くなり過ぎて製造に適さなくなる。
【0011】
該ポリアミド系樹脂よりなるフィルムまたはシートを縦・横延伸して2軸配向フィルムを得る際には、縦・横延伸倍率を面積倍率で9倍以上に設定するのがよく、これ未満の延伸倍率では厚み斑のない2軸延伸フィルムが得られ難くなる。縦・横それぞれの延伸倍率は特に制限されないが、厚み斑のないより均一なフィルムを得るうえでは、縦延伸倍率を1.5〜6倍、横延伸倍率を1.5〜7の範囲に夫々設定することが望ましい。
【0012】
次に、本発明における最も重要な構成要件は、2軸延伸ポリアミド系樹脂フィルムにおけるα型結晶の配向主軸の方向であり、該α型結晶配向主軸の方向を、フィルムの縦(MD)方向もしくは横(TD)方向に対して14度以下、より好ましくは11度以下にする点である。これは、フィルム内部における結晶の配向状態、特にα型結晶の配向主軸の方位角をフィルムの縦(MD)方向もしくは横(TD)方向に対して小さく抑えることにより、加熱処理時に生じるS字カール現象を低減するためであり、この考え方は、フィルムの中央部の収縮が、クリップで把持されたフィルム両端部の収縮よりも遅れることを抑制し、沸水収縮率の斜め差を低減し、ひいてはS字カール現象を低減するためである。
【0013】
前述の如く、従来のマイクロ波により測定される分子配向はあくまでも非晶と結晶配向の合成された情報であり、フィルムを構成するポリアミド系樹脂の非晶・結晶の関係や夫々の配向状態までも明らかにするものではなく、厳密な意味での正確な配向情報を与えるものではなかった。そのため、マイクロ波によって測定される分子配向情報のみでは、S字カール現象を低減するための特性を規定するものとして十分とは言えない。
【0014】
ところが上記の様に、より厳密な配向方向の規制項目として、2軸延伸フィルムの骨格を担っている結晶構造、とりわけ最も安定なα型結晶の構造と配向状態を適正にコントロールしてやれば、S字カール現象をより確実且つ効果的に低減し得ることが確認された。従って本発明においては、ポリアミドの全結晶中に占めるα型以外の結晶が20%程度以下、より好ましくは10%以下のものを使用することが望ましい。
【0015】
ここでα型結晶の結晶配向主軸は、広角X線散乱法より求めることができる。即ち、ポリアミドとしてナイロン6を使用する場合は、透過法測定によってα型結晶における(200)面シグナルのフィルム面内での方位角分布を測定し、このときの(200)面からの反射が最大となる様にサンプルへのX線の入射角度を適正化しておく。そして、得られた(200)面反射の方位角依存性の最大強度を与える角度を求めて結晶配向主軸とし、該結晶配向主軸の方向とフィルムの縦(MD)方向もしくは横(TD)方向とのなす角を測定することによって求めることができる。
【0016】
そして、該α型結晶の結晶配向主軸の方向が、フィルムの縦(MD)方向もしくは横(TD)方向に対して14度を超えると沸水収縮率の斜め差が大きくなり過ぎ、製袋後の加熱処理等において、処理後に袋の隅の反り返りで袋の4辺がS字状にカールする現象が発生して商品の見栄えが悪くなるが、この角度が14度以下、より好ましくは11度以下のものであれば、上記の様なS字カール現象が著しく抑えられることが確認された。
【0017】
この様な要件を満たす2軸延伸ポリアミド系樹脂フィルムを得る方法は特に限定されないが、最も一般的な方法として例示するならば、縦延伸を2段以上に分けて低応力下で複数段の縦延伸を行ない、横延伸で形成される配向を容易にし、しかる後に熱固定し、必要に応じて緩和処理する方法である。
【0018】
上記物性を満足する2軸配向ポリアミド系樹脂フィルムは、2軸配向ポリアミドフィルムが本来有している強靭性と耐ピンホール性を具備しつつ、3方シール袋に加工して内容物を充填し加熱殺菌処理を行なった後でも、S字カール現象を起こし難く、包装商品としての見栄えを良くして品位を高めることができる。
【0019】
尚本発明の2軸配向ポリアミド系樹脂フィルムは、前述の如く通常は他の素材とラミネートして使用されるが、ラミネートされる他の素材としては、最も一般的なポリエチレンやポリプロピレン等のポリオレフィン系フィルムの他、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリビニル系樹脂、ウレタン系樹脂などからなる様々の樹脂フィルムを使用することができ、更には必要により金属箔や金属蒸着フィルム等とラミネートすることも可能である。
【0020】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。尚実施例、比較例中に用いられる物性値および特性値の判定法は、下記の通りとした。また、各測定およびS字カールの判定・評価に用いた2軸配向ポリアミド系樹脂フィルムは、製膜直後における端部をトリミングする前のフィルム全幅に対し、その5分の1だけ端部寄りの中央部から採取したものについて行った。
【0021】
(1)結晶配向主軸
ナイロン6の場合、α型結晶の結晶配向主軸は、広角X線散乱法より求める。透過法測定を行い、α型結晶における(200)面シグナルのフィルム面内での方位角分布を測定する。このとき(200)面からの反射が最大となる様にサンプルへのX線の入射角度を適正化しておき、得られた(200)面反射の方位角依存性の最大強度を与える角度を結晶配向主軸とした。この結晶配向主軸の方向とフィルムの縦(MD)方向もしくは横(TD)方向とのなす角を求めた。
【0022】
(2)沸水収縮率(BS)の斜め差(BSa)
2軸配向ポリアミド系樹脂フィルムを21cm角に切出してサンプルとし、23℃、65RH%の雰囲気で2時間以上放置する。このサンプルの中央を中心とする直径20cmの円を描き、縦方向を0°としたとき、15°間隔で時計回りに0〜165°方向に円の中心を通る直線を引き、各方向の直径を測定し、処理前の長さとする。
【0023】
このサンプルを沸騰水中で30分間加熱処理してから取り出し、表面に付着した水分を除去して風乾した後、23℃、65RH%の雰囲気で2時間以上放置する。その後、前記円の直径方向に引いた直線の長さを測定して処理後の長さとし、下記式によって沸水収縮率を算出する。
BS=[(処理前の長さ−処理後の長さ)/(処理前の長さ)]×100 (%)
BSa;45°、135°(−45°)方向の収縮率の差の絶対値
【0024】
(3)3方シール袋のS字カールの判定
後述する各実施例および比較例で得たラミネートフィルムを、西部機械(株)製のテストシーラーを用いて、巻長さ方向に平行に2つに折り畳みつつ縦方向に各両端を20mmずつ150℃で連続的に熱シールし、またそれと直角方向に150mm間隔で幅10mmを断続的に熱シールし、幅約200mmの半製品袋を得る。
【0025】
該半製品袋を、巻長さ方向に両縁部をシール部分が10mmになる様に裁断した後、これと垂直方向にシール部の境界で切断し、3方シール袋(シール幅10mm)を作製し、この袋10枚を沸騰水中で30分間加熱処理した後、23℃、65RH%の雰囲気下で一昼夜風乾する。更に、この10枚の袋を重ね、上から袋全面に1kgの荷重をかけ、一昼夜保存した後に、荷重を取り去って袋の反り返り(S字カール)の度合いを下記の基準で評価した。
○ …反り返りがない。
× …明らかに反り返りが見られる。
××…反り返りが著しい。
【0026】
実施例1
MXD6(ポリメタキシリレンアジパミド)を4%含むナイロン6ペレット(RV=2.8)を真空乾燥した後、これを押出し機に供給して260℃で溶融し、T型ダイよりシート状に押し出し、直流高電圧を印加して冷却ロール上に静電気的に密着させながら冷却固化させて、厚さ200μmの実質的に未配向のシートを得た(全幅500mm)。このシートを、まず50℃の温度で予熱処理した後、延伸温度75℃で1.7倍に第1縦延伸し、次いで70℃に保温しつつ延伸温度70℃で総延伸倍率が3.4倍となる様に第2縦延伸を行い、引き続いてこのシートを連続的にテンターに導き、130℃で4倍に横延伸し、210℃で熱固定および5%の横弛緩処理を施してから冷却した。その後、両縁部を裁断除去して2軸配向ポリアミド系樹脂フィルムを得た。
【0027】
実施例2
実施例1と同様にして作製した未延伸シートを、50℃の温度で予熱処理してから延伸温度75℃で1.2倍に第1縦延伸し、次いで75℃に保温しつつ延伸温度75℃で総合延伸倍率が3.4倍となる様に第2縦延伸を行なった以外は全て実施例1と同様にして2軸配向ポリアミド系樹脂フィルムを得た。
【0028】
比較例1
実施例1で用いたのと同じナイロン6ペレットを、押出し機に供給して275℃で溶融し、T型ダイよりシート状に押し出し、直流高電圧を印可して冷却ロール上に静電気的に密着させて冷却固化せしめ、厚さ200μmの実質的に未配向のポリアミド系樹脂シートを得た(全幅1100mm)。
【0029】
このシートを、まず40℃の温度で予熱処理し、次いで延伸温度65℃で3.4倍に縦延伸した後、引き続いてこのシートを連続的にテンターに導いて120℃で4倍に横延伸し、210℃で熱固定および5%横弛緩処理を施してから冷却した。次いで両縁部を裁断除去して2軸配向ポリアミド系樹脂フィルムを得た。
【0030】
比較例2
横延伸を、温度130℃、4.3倍の1段階で行った以外は全て比較例1と同様にして2軸配向ポリアミド系樹脂フィルムを得た。
比較例3
縦延伸を、温度65℃、3.0倍の1段階で行った以外は全て実施例1と同様にして2軸配向ポリアミド系樹脂フィルムを得た。
上記実施例および比較例で得た2軸配向ポリアミド系樹脂フィルムの特性と性能を表1に一括して示す。
【0031】
【表1】

Figure 0003726304
【0032】
参考例1
ポリアミドとしてRVが1.5のナイロン6を使用し、前記実施例1と同様にしてフィルム化を試みたが、縦延伸時にフィルムが破断し易く、2軸配向フィルムを得ることが困難であった。
【0033】
参考例2
ポリアミドとしてRVが4.5のナイロン6を使用し、前記実施例1と同様にしてフィルム化を試みたが、溶融押出しが難しくフィルム化自体が困難であった。
【0034】
参考例3
前記実施例1において、横延伸倍率を2.0倍とした以外は全く同様にして2軸配向フィルムを得た(縦・横総延伸倍率:6.8)。このフィルムは厚み斑が著しく、包装用フィルムとしての適性に欠けるものであった。
【0035】
【発明の効果】
本発明は以上の様に構成されており、2軸配向ポリアミド系樹脂フィルムが本来有する強靭性や耐ピンホール性等を損なうことなく、3方シール袋に加工し内容物を充填した後の加熱殺菌処理によっても袋にS字カールを起こすことがなく、包装商品としての見栄えを良くすると共に品位を高めることができる。しかもこのフィルムは、様々のラミネート基材との接着性も優れており、耐デラミ性にも優れた性能を有している。[0001]
[Industrial application fields]
The present invention relates to a biaxially oriented polyamide resin film in which the S-curl phenomenon generated by heat sterilization treatment is reduced as much as possible, particularly when applied to retort food packaging.
[0002]
[Prior art]
Biaxially oriented polyamide resin films, especially biaxially oriented polyamide resin films mainly composed of nylon 6, have various excellent properties such as toughness, high gas barrier properties, pinhole resistance, transparency, and easy printability. Because of its characteristics, it is widely used as a packaging material for various liquid foods, marine foods, frozen foods, retort foods, pasty foods, livestock meat products, etc. It is widely used as a bag packaging material.
[0003]
The above-mentioned polyamide resin film used for bag packaging materials is usually printed on the surface and then laminated with a polyolefin resin film such as polyethylene (PE) or polypropylene (PP), and the polyamide resin film is placed outside. Then, it is folded in two parallel to the flow direction, and three sides are heat-sealed and cut out to form a three-side sealed bag with one side opened. The bag is filled with the contents as described above, sealed, and usually subjected to heat sterilization in boiling water before being put on the market.
[0004]
As a method for producing a biaxially oriented polyamide resin film used for such heat sterilization treatment, a longitudinal and lateral sequential biaxial stretching method is mainly used. However, in such a longitudinal and lateral biaxially oriented polyamide resin film, As a disadvantage pointed out, it is easy to cause variations in physical properties in the film width direction. This is because, in the tenter treatment process for transverse stretching, longitudinal shrinkage stress is generated by heat, and both ends of the film are held and restrained by clips, whereas the center of the film is held by the holding means. Since the influence force is small and the restraining force is weak, it is considered that the contraction of the central portion of the film is delayed with respect to both ends held by the clip due to the influence of the shrinkage stress.
[0005]
That is, the biaxially oriented polyamide resin film for bag packaging obtained by the conventional method has an oblique difference in physical properties (for example, boiling water shrinkage) in the width direction, and warps at the corners of the bag after the heat treatment, and the bag 2 There was a problem that the side curled into an S-shape and the appearance of the product was significantly deteriorated. This is based on the non-uniformity of physical properties in the width direction. As a countermeasure, for example, as shown in Japanese Patent Laid-Open No. 4-103335, a molecular orientation angle difference measured by a microwave is specified. It has been proposed to do.
[0006]
However, the molecular orientation measured by the microwave is information that combines the amorphous and crystalline orientation of the polyamide resin film, and does not reveal the relationship between the amorphous and crystalline and the respective orientation states. It cannot be said that the film structure is clearly defined. Actually, just because the condition of the molecular orientation angle difference measured by microwaves is satisfied as defined in the above publication, the S-curl phenomenon is not necessarily suppressed. That is, the definition of the molecular orientation angle difference measured by the microwave is not necessarily sufficient as a characteristic for reducing S-curl.
[0007]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-described circumstances, and its purpose is to ensure the S-curl phenomenon after heat sterilization treatment of a three-side sealed bag used as a packaging film for retort foods and the like. It is an object of the present invention to provide a biaxially oriented polyamide-based resin film that can be reduced to a high level and can provide a packaged product with a high commercial value.
[0008]
[Means for Solving the Problems]
The configuration of the biaxially oriented polyamide-based resin film according to the present invention that has achieved the above-described problem is that the orientation main axis direction of the α-type crystal is 14 degrees with respect to the longitudinal (MD) or transverse (TD) direction of the film The following points are summarized. The polyamide-based resin film having the above characteristics is preferably a stretch of a substantially unoriented polyamide-based resin sheet mainly composed of nylon 6 having a relative viscosity of 2 to 3.5 in two or more stages in the longitudinal direction. In addition, it can be easily obtained by biaxial stretching and heat setting at an area magnification of 9 times or more.
[0009]
[Action]
As the polyamide-based resin used as a film material in the present invention, all polyamides that produce α-type crystals can be used. For example, nylon 6, nylon 66, nylon 610, nylon 6/66/610 copolymer , Nylon 11, nylon 12, polyethylene isophthalamide, polymetaxylylene adipamide, poly (hexamethylene isophthalamide / terephthalamide), poly (hexamethylene isophthalamide / monomethyl terephthalamide), hexamethylene isophthalamide / A copolymer of terephthalamide and epsilon caprolactam, a copolymer of hexamethylene terephthalamide and hexamethylene adipamide, etc. can be used, and among them, a polyamide mainly composed of nylon 6 is particularly preferable. Nylon 6 alone, Or, nylon 6 is a copolymer of hexamethylenediamine and adipic acid or isophthalic acid, a copolymer obtained by copolymerizing a small amount of nylon salt of metaxylylenediamine and adipic acid, and / or a blend thereof. It is done. Further, these polyamide-based resins may be blended with a small amount of various known additives such as anti-blocking agents, antistatic agents, stabilizers and the like within a range that does not impair their properties.
[0010]
The polyamide-based resin preferably has a relative viscosity (RV) in the range of 2 to 3.5. If the relative viscosity is less than 2, the polyamide resin tends to break during longitudinal and lateral stretching, making it difficult to form a film. If it exceeds 3.5, the load during extrusion becomes too high and it is not suitable for production.
[0011]
When a biaxially oriented film is obtained by longitudinally / laterally stretching a film or sheet made of the polyamide-based resin, the longitudinal / lateral stretching ratio is preferably set to 9 times or more in terms of area magnification, and a stretching ratio less than this Then, it becomes difficult to obtain a biaxially stretched film having no thickness unevenness. There are no particular restrictions on the stretching ratio in the longitudinal and lateral directions, but in order to obtain a more uniform film free from thickness unevenness, the longitudinal stretching ratio is 1.5 to 6 times and the lateral stretching ratio is in the range of 1.5 to 7, respectively. It is desirable to set.
[0012]
Next, the most important component in the present invention is the direction of the orientation main axis of the α-type crystal in the biaxially stretched polyamide resin film, and the direction of the α-type crystal orientation main axis is the longitudinal (MD) direction of the film or The point is that the angle is 14 degrees or less, more preferably 11 degrees or less with respect to the transverse (TD) direction. This is because the orientation of the crystals inside the film, especially the azimuth angle of the orientation axis of the α-type crystal, is kept small relative to the longitudinal (MD) or transverse (TD) direction of the film. The idea is to reduce the shrinkage of the central portion of the film behind the shrinkage of both ends of the film held by the clip, and to reduce the oblique difference in boiling water shrinkage, and thus S This is to reduce the character curl phenomenon.
[0013]
As described above, the molecular orientation measured by conventional microwaves is merely a composite information of amorphous and crystalline orientations, including the relationship between amorphous and crystalline polyamide resins constituting the film and the respective orientation states. It was not clarified and did not give accurate orientation information in a strict sense. Therefore, it cannot be said that molecular orientation information measured by microwaves alone is sufficient to define characteristics for reducing the S-curl phenomenon.
[0014]
However, as described above, if the crystal structure that bears the skeleton of the biaxially stretched film, especially the structure and orientation state of the most stable α-type crystal, is properly controlled as a more strictly regulated item of the orientation direction, It was confirmed that the curl phenomenon can be reduced more reliably and effectively. Therefore, in the present invention, it is desirable to use a crystal other than the α-type crystal occupying about 20% or less, more preferably 10% or less, in all the crystals of polyamide.
[0015]
Here, the main axis of crystal orientation of the α-type crystal can be obtained by a wide-angle X-ray scattering method. That is, when nylon 6 is used as the polyamide, the azimuth distribution in the film plane of the (200) plane signal in the α-type crystal is measured by transmission method measurement, and the reflection from the (200) plane at this time is the maximum. The angle of incidence of X-rays on the sample is optimized so that And the angle which gives the maximum intensity | strength of the obtained (200) plane reflection azimuth angle dependence is calculated | required as a crystal orientation principal axis, and the direction of this crystal orientation principal axis and the longitudinal (MD) direction or transverse (TD) direction of a film, It can be obtained by measuring the angle formed by
[0016]
And when the direction of the crystal orientation main axis of the α-type crystal exceeds 14 degrees with respect to the longitudinal (MD) direction or the transverse (TD) direction of the film, the oblique difference in boiling water shrinkage becomes too large, In heat treatment or the like, a phenomenon in which the four sides of the bag curl into an S-shape due to warping of the corner of the bag after processing occurs and the appearance of the product deteriorates, but this angle is 14 degrees or less, more preferably 11 degrees or less. It was confirmed that the S-curl phenomenon as described above can be remarkably suppressed.
[0017]
A method for obtaining a biaxially stretched polyamide resin film satisfying such requirements is not particularly limited. However, as an example of the most general method, longitudinal stretching is divided into two or more stages and a plurality of stages of longitudinally stretched films under low stress. In this method, stretching is performed to facilitate the orientation formed by transverse stretching, followed by heat setting, and relaxation treatment as necessary.
[0018]
The biaxially oriented polyamide resin film satisfying the above physical properties is processed into a three-side sealed bag and filled with the contents while having the toughness and pinhole resistance inherent to the biaxially oriented polyamide film. Even after the heat sterilization treatment, the S-curl phenomenon hardly occurs, the appearance as a packaged product can be improved and the quality can be improved.
[0019]
The biaxially oriented polyamide resin film of the present invention is usually laminated with other materials as described above, but as other materials to be laminated, the most common polyolefins such as polyethylene and polypropylene are used. In addition to film, various resin films made of polyester resin, acrylic resin, polycarbonate resin, polyvinyl resin, urethane resin, etc. can be used, and further laminated with metal foil or metal vapor deposition film if necessary. It is also possible to do.
[0020]
【Example】
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples as a matter of course, and is implemented with appropriate modifications within a range that can meet the purpose described above and below. Any of these may be included in the technical scope of the present invention. Note that the physical property values and characteristic value determination methods used in the examples and comparative examples were as follows. In addition, the biaxially oriented polyamide resin film used for the determination and evaluation of each measurement and S-curl is closer to the end by 1/5 of the full width of the film immediately after film formation before trimming the end. It carried out about what was extract | collected from the center part.
[0021]
(1) Crystal orientation main axis In the case of nylon 6, the crystal orientation main axis of the α-type crystal is determined by a wide angle X-ray scattering method. The transmission method measurement is performed, and the azimuth distribution in the film plane of the (200) plane signal in the α-type crystal is measured. At this time, the angle of incidence of X-rays on the sample is optimized so that the reflection from the (200) plane is maximized, and the angle that gives the maximum intensity of the azimuth dependence of the (200) plane reflection obtained is crystallized. The orientation main axis was used. The angle formed by the direction of the crystal orientation main axis and the longitudinal (MD) or transverse (TD) direction of the film was determined.
[0022]
(2) Diagonal difference (BSa) in boiling water shrinkage (BS)
A biaxially oriented polyamide resin film is cut into a 21 cm square and used as a sample, which is left in an atmosphere of 23 ° C. and 65 RH% for 2 hours or longer. Draw a circle with a diameter of 20 cm centered on the center of this sample, and when the vertical direction is 0 °, draw a straight line passing through the center of the circle in the direction of 0 to 165 ° clockwise at 15 ° intervals. And measure the length before processing.
[0023]
The sample is heated in boiling water for 30 minutes and then taken out. After removing moisture adhering to the surface and air-drying, the sample is left in an atmosphere of 23 ° C. and 65 RH% for 2 hours or more. Thereafter, the length of the straight line drawn in the diameter direction of the circle is measured to obtain the length after treatment, and the boiling water shrinkage is calculated by the following formula.
BS = [(length before treatment−length after treatment) / (length before treatment)] × 100 (%)
BSa: absolute value of difference in shrinkage in 45 ° and 135 ° (−45 °) directions
(3) Judgment of S-curl of three-side seal bag Two laminate films obtained in each of Examples and Comparative Examples described later in parallel with the winding length direction using a test sealer manufactured by Seibu Kikai Co., Ltd. While being folded, the both ends in the longitudinal direction are continuously heat sealed at 150 ° C. by 20 mm and intermittently heat sealed at intervals of 150 mm in the direction perpendicular thereto to obtain a semi-finished product bag having a width of about 200 mm.
[0025]
The semi-finished product bag is cut at both edges in the winding length direction so that the seal part becomes 10 mm, and then cut at the boundary of the seal part in the direction perpendicular to this, and a three-side seal bag (seal width 10 mm) is obtained. After the 10 bags were prepared and heat-treated in boiling water for 30 minutes, they were air-dried overnight in an atmosphere of 23 ° C. and 65 RH%. Further, these 10 bags were stacked, a 1 kg load was applied to the entire bag surface from above, and the bag was stored for a whole day and night. Then, the load was removed and the degree of bag curl (S-curl) was evaluated according to the following criteria.
○… No warping.
×… There is a clear warping.
XX ... The warping is remarkable.
[0026]
Example 1
Nylon 6 pellets (RV = 2.8) containing 4% MXD6 (polymetaxylylene adipamide) were vacuum-dried and then fed to an extruder and melted at 260 ° C. into a sheet form from a T-die. The sheet was extruded, applied with a direct current high voltage, and cooled and solidified while being electrostatically adhered onto the cooling roll, to obtain a substantially unoriented sheet having a thickness of 200 μm (total width: 500 mm). This sheet was first preheated at a temperature of 50 ° C., then first longitudinally stretched 1.7 times at a stretching temperature of 75 ° C., and then kept at 70 ° C., and a total stretching ratio of 3.4 at a stretching temperature of 70 ° C. The second longitudinal stretching is performed so that it is doubled, and then this sheet is continuously led to a tenter, stretched four times at 130 ° C., heat-fixed at 210 ° C., and subjected to 5% lateral relaxation treatment. Cooled down. Thereafter, both edge portions were cut and removed to obtain a biaxially oriented polyamide resin film.
[0027]
Example 2
An unstretched sheet produced in the same manner as in Example 1 was pre-heated at a temperature of 50 ° C., and then first longitudinally stretched 1.2 times at a stretching temperature of 75 ° C., and then kept at 75 ° C. for a stretching temperature of 75. A biaxially oriented polyamide resin film was obtained in the same manner as in Example 1 except that the second longitudinal stretching was performed so that the total stretching ratio was 3.4 times at 0 ° C.
[0028]
Comparative Example 1
The same nylon 6 pellet as used in Example 1 is supplied to an extruder and melted at 275 ° C., extruded into a sheet form from a T-die, applied with a high DC voltage, and electrostatically adhered onto a cooling roll. And solidified by cooling to obtain a substantially unoriented polyamide-based resin sheet having a thickness of 200 μm (total width: 1100 mm).
[0029]
The sheet was first preheated at a temperature of 40 ° C., then longitudinally stretched 3.4 times at a stretching temperature of 65 ° C., and then the sheet was continuously guided to a tenter and laterally stretched 4 times at 120 ° C. Then, after heat setting at 210 ° C. and 5% transverse relaxation treatment, the mixture was cooled. Next, both edges were cut and removed to obtain a biaxially oriented polyamide resin film.
[0030]
Comparative Example 2
A biaxially oriented polyamide resin film was obtained in the same manner as in Comparative Example 1 except that the transverse stretching was performed in one step at a temperature of 130 ° C. and 4.3 times.
Comparative Example 3
A biaxially oriented polyamide resin film was obtained in the same manner as in Example 1 except that the longitudinal stretching was performed in one step at a temperature of 65 ° C. and 3.0 times.
Table 1 collectively shows the properties and performance of the biaxially oriented polyamide resin films obtained in the above Examples and Comparative Examples.
[0031]
[Table 1]
Figure 0003726304
[0032]
Reference example 1
Nylon 6 having an RV of 1.5 was used as polyamide, and an attempt was made to form a film in the same manner as in Example 1. However, the film was easily broken during longitudinal stretching, and it was difficult to obtain a biaxially oriented film. .
[0033]
Reference example 2
Nylon 6 having an RV of 4.5 was used as polyamide, and film formation was attempted in the same manner as in Example 1. However, melt extrusion was difficult and film formation itself was difficult.
[0034]
Reference example 3
A biaxially oriented film was obtained in the same manner as in Example 1 except that the transverse draw ratio was set to 2.0 times (total longitudinal and transverse draw ratio: 6.8). This film had remarkably thick spots and lacked suitability as a packaging film.
[0035]
【The invention's effect】
The present invention is configured as described above, and heating after processing into a three-side sealed bag and filling the contents without impairing the toughness or pinhole resistance inherent in the biaxially oriented polyamide resin film. Even with the sterilization treatment, S-curl does not occur in the bag, so that the appearance as a packaged product can be improved and the quality can be improved. In addition, this film has excellent adhesion to various laminate base materials, and also has excellent delamination resistance.

Claims (2)

α型結晶の配向主軸の方向が、フィルムの縦方向もしくは横方向に対して14度以下であることを特徴とする2軸配向ポリアミド系樹脂フィルムを用いてなる3方シール袋。  A three-side sealed bag made of a biaxially oriented polyamide-based resin film, wherein the orientation main axis direction of the α-type crystal is 14 degrees or less with respect to the longitudinal direction or the transverse direction of the film. ポリアミド系樹脂が、相対粘度2〜3.5のナイロン6を主成分とするものである請求項1に記載の3方シール袋。  The three-side sealed bag according to claim 1, wherein the polyamide-based resin is mainly composed of nylon 6 having a relative viscosity of 2 to 3.5.
JP7416495A 1995-03-30 1995-03-30 3-way sealed bag made of biaxially oriented polyamide resin film Expired - Fee Related JP3726304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7416495A JP3726304B2 (en) 1995-03-30 1995-03-30 3-way sealed bag made of biaxially oriented polyamide resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7416495A JP3726304B2 (en) 1995-03-30 1995-03-30 3-way sealed bag made of biaxially oriented polyamide resin film

Publications (2)

Publication Number Publication Date
JPH08267569A JPH08267569A (en) 1996-10-15
JP3726304B2 true JP3726304B2 (en) 2005-12-14

Family

ID=13539248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7416495A Expired - Fee Related JP3726304B2 (en) 1995-03-30 1995-03-30 3-way sealed bag made of biaxially oriented polyamide resin film

Country Status (1)

Country Link
JP (1) JP3726304B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071280A1 (en) 2018-10-05 2020-04-09 東洋紡株式会社 Biaxially oriented polyamide film and polyamide film mill roll
WO2020158281A1 (en) 2019-01-28 2020-08-06 東洋紡株式会社 Biaxially-oriented polyamide film and polyamide film mill roll
US11999094B2 (en) 2019-01-28 2024-06-04 Toyobo Co., Ltd. Biaxially oriented polyamide film and polyamide film mill roll

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386000B2 (en) * 2004-06-02 2009-12-16 東洋紡績株式会社 Polyamide-based resin laminated film roll and method for producing the same
JP3671978B1 (en) 2004-06-02 2005-07-13 東洋紡績株式会社 Polyamide-based resin film roll and manufacturing method thereof
JP4386001B2 (en) * 2004-06-02 2009-12-16 東洋紡績株式会社 Polyamide-based resin laminated film roll and method for producing the same
JP2006096801A (en) * 2004-09-28 2006-04-13 Futamura Chemical Co Ltd Biaxially oriented polyamide-based resin film
JP4001156B2 (en) * 2005-04-01 2007-10-31 東洋紡績株式会社 Polyamide-based mixed resin film roll and method for producing the same
JP2017077623A (en) * 2014-02-25 2017-04-27 ユニチカ株式会社 Biaxially oriented polyamide film and manufacturing method therefor
CN115443577A (en) * 2020-04-24 2022-12-06 大日本印刷株式会社 Outer packaging material for electricity storage device, method for producing same, and electricity storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071280A1 (en) 2018-10-05 2020-04-09 東洋紡株式会社 Biaxially oriented polyamide film and polyamide film mill roll
KR20210068466A (en) 2018-10-05 2021-06-09 도요보 가부시키가이샤 Biaxially Oriented Polyamide Film and Polyamide Film Mill Roll
US11999849B2 (en) 2018-10-05 2024-06-04 Toyobo Co., Ltd. Biaxially oriented polyamide film and polyamide film mill roll
WO2020158281A1 (en) 2019-01-28 2020-08-06 東洋紡株式会社 Biaxially-oriented polyamide film and polyamide film mill roll
KR20210121111A (en) 2019-01-28 2021-10-07 도요보 가부시키가이샤 Biaxially Oriented Polyamide Film and Polyamide Film Mill Roll
US11999094B2 (en) 2019-01-28 2024-06-04 Toyobo Co., Ltd. Biaxially oriented polyamide film and polyamide film mill roll

Also Published As

Publication number Publication date
JPH08267569A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
US5562996A (en) Multi-layer films
US5718965A (en) Biaxially oriented polyamide film having surface protrusions
JP7114837B2 (en) Laminate film
JP4001156B2 (en) Polyamide-based mixed resin film roll and method for producing the same
JP3726304B2 (en) 3-way sealed bag made of biaxially oriented polyamide resin film
EP1798018A1 (en) Biaxially oriented polyamide-based resin film and method for production thereof
AU643035B2 (en) Multi-layer films and process for prepartion thereof
JP7322458B2 (en) Easy adhesion polyamide film
JP4962108B2 (en) Polyamide-based mixed resin film roll and method for producing the same
JP4644976B2 (en) Metallized polyester film
CN113348066B (en) Biaxially oriented polyamide film and rolled polyamide film roll
JPS63214445A (en) Heat-shrinkable laminating packaging material
JPH0575572B2 (en)
JP2002113776A (en) Heat-shrinkable biaxially oriented film of polylactic acid
JP2005297576A (en) Manufacturing method of biaxially oriented polyamide resin film
JP2002337289A (en) Laminated polyester film and packaging bag using the same
JPH054897B2 (en)
JP2004256692A (en) Biaxially oriented polyamide film for transparent vapor deposition
JPH07115454B2 (en) Packaging material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees