JP3724788B2 - Solid oxide fuel cell module - Google Patents

Solid oxide fuel cell module Download PDF

Info

Publication number
JP3724788B2
JP3724788B2 JP2001016807A JP2001016807A JP3724788B2 JP 3724788 B2 JP3724788 B2 JP 3724788B2 JP 2001016807 A JP2001016807 A JP 2001016807A JP 2001016807 A JP2001016807 A JP 2001016807A JP 3724788 B2 JP3724788 B2 JP 3724788B2
Authority
JP
Japan
Prior art keywords
support plate
fuel cell
solid oxide
partition wall
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001016807A
Other languages
Japanese (ja)
Other versions
JP2002222657A (en
Inventor
和彦 野沢
仁貴 渡部
山下  明
一彦 新藤
敏 杉田
嘉隆 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001016807A priority Critical patent/JP3724788B2/en
Publication of JP2002222657A publication Critical patent/JP2002222657A/en
Application granted granted Critical
Publication of JP3724788B2 publication Critical patent/JP3724788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、固体電解質型燃料電池(SOFC)モジュールに関する。
【0002】
【従来の技術】
SOFCの代表的な形状として円筒型と平板型がよく知られている。ここでは概念的な説明を簡単にするために、円筒型を例にとって記述する。基本的な概念は平板型でも同様である。
【0003】
SOFCは、固体酸化物のセラミックを電解質とした燃料電池であり、電解質の、両端に燃料と酸化剤(通常は空気;以下単に空気とする)を供給することによって起こる化学反応を利用して発電を行う。従って電解質によって隔てられた燃料と空気は、両者が混合することのないような構成をもってモジュール化をする必要がある。
【0004】
従来の円筒型SOFCモジュールは、図8または図9で示す構成によって燃料と空気とを分離してきた。ここでは図9を用いて説明する。なお、燃料と空気の供給は、図示した供給法で説明するが、SOFCセルの種類によっては、燃料と空気の供給が逆になる場合もあり、基本的な概念は以下と変らない。
【0005】
円筒型SOFCセル1は、隔壁支持板3にシール材8を介して固定されている。円筒型SOFCセル1に供給される燃料5は、円筒型SOFCセル1の燃料供給路7を通って供給され、未反応分の燃料は排出室4に排出される。このとき、反応室2側には反応用の空気6が供給されるが、隔壁支持板3と円筒型SOFC1間はガスシールがなされているために、空気6が排出室4側に漏れ出すことなく、また未反応の燃料5も反応室2側に漏れ出すことがなく、燃料5と空気6はそれぞれ分離した状態で円筒型SOFCセル1に供給することができる。これがいわゆるシール型モジュール構造である。
【0006】
一方、図8は、ほぼ図9の構成と同じであるが、隔壁支持板3と円筒型SOFCセル1との間隙にシールを施していないことを特徴とする方式である。これはシールレス型モジュール構造と呼ばれるもので、多少のガス漏洩は黙認し、未反応の燃料5をモジュール内で燃やしてしまうというものである。
【0007】
なお、図8、図9において、1は円筒型SOFCセル、2は反応室、3は隔壁支持板、4は排出室、5は供給燃料、6は供給酸化剤(通常は空気)、7は燃料供給路、8はシール材(図9のみ)である。
【0008】
【発明が解決しようとする課題】
従来のシールレス型モジュール構造においては、隔壁支持板3と円筒型SOFCセル1との間隙より漏洩する空気6と燃料5が排出室4において燃焼反応を起こすことになる。この燃焼反応によって、排出室4内の温度が上昇し、モジュール内に大きな温度分布が発生することになり、構成材料の制約とともに、信頼性、耐久性の点で問題が生じる。さらに、燃焼反応で消費される燃料は直接発電には寄与しないので、高燃料利用率を標榜する円筒型SOFCセル1の能力を十分に活かしきれなくなるという問題も発生する。
【0009】
一方、シール型モジュール構造においては、燃料5と空気6との燃焼が起こらないため、不均一な異常温度上昇を回避でき、燃料5も発電のために有効に利用することができる。しかしながら、通常このタイプのモジュールでは、ガラスなど高温で軟化する材料をシール材8として用いているために、運転・停止を繰り返す度に円筒型SOFCセル1がダメージを受けるという問題が発生する。
【0010】
これは、円筒型SOFCセル1とガラスの熱膨張係数が大きく異なるために、高温で軟化し、シールを実現していたガラスが、室温までの冷却時に固化する際に応力を生じるためであり、最悪の場合、円筒型SOFCセル1の破損を引き起こす。
【0011】
また、高温で軟化したガラスは、円筒型SOFCセル1と隔壁支持板3両者に対して強固に密着するために、何らかの理由により円筒型SOFCセル1を交換する必要が生じたときなど、ガラスシール材8を円筒型SOFC1や隔壁支持板3から取り除くことが極めて困難となり、作業効率の低下を引き起こすことになる。なお、シール材8としてはセラミックペーストなどガラス以外の材質も用いられているが、事情はほぼ同じである。
【0012】
本発明は、こうした問題を解決するために、室温では被ガスシール体(上記の円筒型セル装着法では円筒型SOFCセル本体)の脱着を容易にし、円筒型SOFCセル1の運転温度である1000℃付近においては堅固なガスシールを実現することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明による固体電解質型燃料電池モジュールは、燃料と酸化剤とを分離する隔壁支持板の取り付け穴に、燃料極、固体電解質および空気極を含み、それらのいずれかを基板とした固体電解質型燃料電池セルを取り付けた固体電解質型燃料電池モジュールにおいて、前記隔壁支持板は前記固体電解質型燃料電池セルの前記基板の熱膨張係数より20〜40%小さな熱膨張係数を有し、かつ前記固体電解質型燃料電池セルの隔壁支持板への取り付け部分の断面形状と前記取り付け穴の形状が相似形であり、室温での前記取り付け部分の外周及び前記取り付け穴の大きさを、それぞれR、R、それぞれの熱膨張係数をα、α、動作温度と室温との温度差をΔTとしたときに、
=R{(1+αΔT)/(1+αΔT)}
なる関係をほぼ満足し、動作温度における前記取り付け部分の外周と前記取り付け穴の大きさの差はサブミクロンオーダの値である形状であることを特徴とする。
【0014】
以下、図1を用いて本発明の基本概念について説明する。
【0015】
図1は、還元雰囲気と酸化雰囲気を分離する隔壁支持板3に円筒型SOFCセル1を装着した様子を示している。2は反応室、4は排出室である。ここで、室温における円筒型SOFCセル1の直径をRc、隔壁支持板3の取り付け穴31の直径をRbとし、ΔR=Rb−Rcとする。
【0016】
室温において(図1の(a)参照)、ある程度の直径差があれば、容易にセルの脱着を行うことができる。もし、SOFCセル1と隔壁支持板3の熱膨張係数が同じであれば、両者の間隙ΔRは室温時から動作温度に達するまで単調に増加することになる。
【0017】
しかしながら、本発明のように隔壁板支持板3の熱膨張係数が、SOFCセル1の熱膨張係数よりも僅かに小さい場合を考えると、隔壁支持板3の取り付け穴31の広がり方に比べて、SOFCセル1の直径の広がり方の方が大きくなるために、温度の上昇とともに間隙は減少していく。適当な熱膨張係数差、間隙寸法を規定することにより、動作温度で隔壁支持板3とSOFCセル1との間隙をゼロにすることが可能となる。
【0018】
この様子を図2に示す。ここでは室温でのSOFCセル1の直径を10mm、SOFCセル1と隔壁支持板3の取り付け穴31の直径差を30μm、SOFCセル1と隔壁支持板3の熱膨張係数をそれぞれ11×10-6-1と、8×10-6-1とすれば、1000℃におけるSOFCセル1と隔壁支持板3の間隙(直径差)ΔR’は、室温を20℃として、

Figure 0003724788
となり、間隙はサブミクロンオーダーとなり、ほとんど実用上ガス漏洩が問題にならない程度に堅固なガスシールが実現できることになる。また、室温での間隙ΔRは30μm程度であるので、室温での脱着も比較的容易に行える。無論ΔRをより小さく選べば、より堅固なガスシールを実現できる。すなわち、室温での前記取り付け部分の外周及び前記取り付け穴の大きさを、それぞれR1、R2、それぞれの熱膨張係数をα1、α2、動作温度と室温との温度差をΔTとしたときに、
2=R1{(1+α1ΔT)/(1+α2ΔT)}
なる関係をほぼ満足する。
【0019】
上述のようなSOFCセル1は、基本的に燃料極、固体電解質、空気極よりなっている。そして、前記燃料極、固体電解質、空気極のいずれかが基板となってその表面にセルが構成される。前記固体電解質が基板であるとき、セルの他の構成材料は固体電解質の熱膨張係数に一致するように作られる。前記燃料極が基板であるとき、セルの他の構成材料は前記燃料極の熱膨張係数に一致するように作られる。また、前記空気極が基板であるとき、セルの他の構成材料は空気極の熱膨張係数に一致するように作られる。このような場合においては、前記隔壁支持板3の熱膨張係数を前記SOFCセル1の基板の熱膨張係数より20〜40%小さくする。熱膨張係数の差が20%未満であると、室温での取り外しの容易さを優先すると、動作温度において、前記隔壁支持板とSOFCセル1とのシールが充分でない恐れがあり、また、動作温度でのシール性を優先すると、室温においてSOFCセル1を取り外すのが困難になる恐れがある。一方40%を超えると、室温での脱着が容易となるようΔRを設定すると、SOFCセル1の膨張が大きすぎて、破壊される恐れを生じるとともに、動作温度付近でセルが破壊されないようにΔRを設定すると、室温でのΔRが異常に大きくなり、事実上セルを隔壁支持板に固定できない。
【0020】
以上が本発明の基本形態である。実際の利用にあたっては、以下の実施例に示すように、より効率的且つ高信頼性ガスシールが可能となる。
【0021】
【実施例1】
前項において図1で説明した例は、SOFCセルの基板をLaSrMnO3(LSM)(熱膨張係数:11×10-6-1)、隔壁支持板をアルミナ(熱膨張係数:8×10-6-1)とした実施例の1つである。
【0022】
【実施例2】
図3は、外周寸法80mmの中空平板型SOFCセル(特開平6−163062号)を隔壁支持板3のセル取り付け穴31の周囲寸法が80.2mmの隔壁支持板3に取り付けた様子を示している。SOFCセルはLSMを基板として作製されており、熱膨張係数はLSMのそれとほぼ一致する。隔壁支持板3はアルミナで作製されている。このような構成で、動作温度1000℃まで上昇した場合、セル周囲寸法と、隔壁支持板3のSOFCセルの取り付け穴31の外周はほぼ一致し、ガスシールが実現する。これは本発明の実施例の1つである。
【0023】
【実施例3】
実施例2の発展形態として、よりSOFCセルにかかる負担を軽減した実施例を以下に示す。中空平板型SOFCセル1に、図4に示すようなセル突起部11を前記SOFCセル1の基板と同じ材質で形成する。一方、隔壁支持板3には切り込み32を作製しておき、セル突起部11を隔壁支持板31の切り込み32に嵌め合わせて装着する。
【0024】
この場合、SOFCセル1全体の寸法と隔壁支持板3の取り付け穴31の寸法を正確に設計する必要はなく、セル突起部11のみの寸法精度を上げればよい。このため、SOFCセル1の歩留まり向上にも寄与し得る。なお、SOFCセル1の突起部11はセルと一体化した構造で作製することが望ましいが、個別に作製したものを組み合わせても同様な効果が期待できる。
【0025】
【実施例4】
図5に示すように、SOFCセル1および隔壁支持板3に、テーパを有する傾斜接触面12および33を形成する。そして、前記SOFCセル1の傾斜接触面12を、隔壁支持板3の傾斜接触面33に嵌め合わせることによって、SOFCセル1を隔壁支持板3に取り付ける。ここで、SOFCセル1側、隔壁支持板3側の傾斜接触面12,33が平行であるとすれば、SOFCセル1の傾斜接触面12の最大外周をR、隔壁支持板3側の取り付け穴31の外周をRとしたときに、R2=R1{(1+α1ΔT)/(1+α2ΔT)}なる関係をほぼ満足する。
【0026】
SOFCセル1はLSMを基板とし、隔壁支持板3はアルミナとする。この実施例では、動作温度で、SOFCセル1、隔壁支持板3間の間隙がゼロとなるように厳密に設計する必要はない。SOFCセル1側の伸びが隔壁支持板3の取り付け穴31の広がりを仮に上回ったとしても、SOFCセル1は重力に抗して上側にずれを起こし、間隙が完全に塞がる位置で安定する。図は円筒型で記してあるが、中空平板型でも実施例3のような突起部を円盤状に作っておけば同様なシールを実現できる。
【0027】
【実施例5】
さらに、本発明によれば、隔壁支持板3に対するSOFCセル1の装着時の断面が円形であれば、より信頼性が高く、脱着が容易なシールを実現できる。簡単のために、SOFCセルが円筒の場合を考え、図6のように、SOFCセル1側と隔壁支持板3にねじ溝13、34を切っておく。SOFCセル1側のねじ溝13は、図8に示すようにセル突起部14を設けて前記セル突起部14の周囲に設けてもよく、またSOFCセル1に直接設けてもよい。このようなSOFCセル1側のねじ溝13を隔壁支持板3の取り付け穴31に形成されたねじ溝34に螺合することによって、SOFCセル1を隔壁支持板3に取り付ける。ここで、SOFCセル1側のねじ溝13の最大円周をR、隔壁支持板3側の取り付け穴31のねじ溝34の最大外周をRとしたときに、R2=R1{(1+α1ΔT)/(1+α2ΔT)}なる関係をほぼ満足する。
【0028】
これまで説明してきたことと同様に、室温においては両者は疎に接触しているため、容易にねじ込みによってSOFCセルを装着することができる。これを動作温度まで昇温することで、接触が密となり、強くねじが締められた状況が現出する。
【0029】
この方法では、シールの完全性とともに、より脱着の容易さが実現できる。なお、本方式では動作温度においてもねじが完全にタイトにかみ合う必要はない。酸化・還元両雰囲気を隔てるパスはSOFCセル1と隔壁支持板3のねじであるので、かなり長いパスとなり、実用上問題とはならない。
【0030】
【実施例6】
以上、SOFCセル1と隔壁支持板3とのシール法に着目して説明を行ってきたが、本発明は隔壁支持板3とモジュールを収納するモジュール収納容器9との間のシールにも応用し得る。
【0031】
図7に示すように、モジュール収納容器9を円筒形とし、隔壁支持板3を円盤状とする。円筒モジュール収納容器9の開口部内壁上端と、円盤状隔壁支持板3の側面に図のようなねじ溝91、35を形成しておき、円盤状隔壁支持板3のねじ溝35を円筒モジュール収納容器9のねじ溝91に螺合することによって、隔壁支持版3の取り付けられたSOFCセル1の反応部をモジュール収納容器9に収納できる。このとき、モジュール収納容器9および隔壁支持板3の構成材料を、室温での前記円盤状の隔壁支持板3の直径及び前記モジュール収納容器9の内径を、それぞれR1、R2、それぞれの熱膨張係数をα1、α2、動作温度と室温との温度差をΔTとしたときに、
2=R1{(1+α1ΔT)/(1+α2ΔT)}
なる関係をほぼ満足するように設定することによって、SOFCセルのシールと同様に、SOFCセルスタックの装置への装着が容易に行え、かつ動作温度でガスシールが実現できることになる。
【0032】
【発明の効果】
以上説明したように、本発明による固体電解質型燃料電池モジュールによれば、隔壁支持板の熱膨張係数がSOFCセルより僅かに小さくすることによって、高温運転時には両者の間隔がサブμmオーダとなり堅固なガスシールが実現されると共に、常温では比較的容易にセルの取り外しが可能となるので、効率的かつ高信頼性ガスシールを有する固体電解質燃料電池モジュールを実現することができる。
【図面の簡単な説明】
【図1】本発明の基本概念(円筒型SOFCの例)を示す説明図。
【図2】円筒型SOFCの直径と、セル装着用支持板の穴の直径の温度変化を示す図。
【図3】中空平板型セルを用いた実施例を示す図。
【図4】セル突起部を有する中空平板型SOFCセルを用いた実施例を示す図。
【図5】中空平板型SOFCセル及び隔壁支持板に傾斜接触面を形成した実施例を示す図。
【図6】隔壁支持板および円筒型セルにねじ構造を形成した実施例を示す図。
【図7】隔壁支持板とモジュールを収納する容器との間のシールに応用した実施例を示す図。
【図8】従来のシールレス型モジュール構造(円筒型SOFCの例)を示す図。
【図9】従来のシール型モジュール構造(円筒型SOFCの例)を示す図。
【符号の説明】
1 SOFCセル
11 セル突起部
12 傾斜接触面
13 ねじ溝
14 セル突起部
2 反応室
3 隔壁支持板
31 取り付け穴
32 切り込み
33 傾斜接触面
34 ねじ溝
35 ねじ溝
4 排出室
5 燃料
6 空気
7 燃料供給路
8 シール材
9 モジュール収納容器
91 ねじ溝[0001]
[Industrial application fields]
The present invention relates to a solid oxide fuel cell (SOFC) module.
[0002]
[Prior art]
Cylindrical types and flat plate types are well known as representative shapes of SOFCs. Here, in order to simplify the conceptual explanation, a cylindrical shape will be described as an example. The basic concept is the same for the flat plate type.
[0003]
A SOFC is a fuel cell that uses a solid oxide ceramic as an electrolyte, and uses a chemical reaction that occurs when a fuel and an oxidant (usually air; hereinafter simply referred to as air) are supplied to both ends of the electrolyte to generate electricity. I do. Therefore, the fuel and air separated by the electrolyte must be modularized so that they do not mix.
[0004]
The conventional cylindrical SOFC module has separated fuel and air by the configuration shown in FIG. 8 or FIG. Here, a description will be given with reference to FIG. Although the supply of fuel and air will be described with the illustrated supply method, the supply of fuel and air may be reversed depending on the type of SOFC cell, and the basic concept remains the same.
[0005]
The cylindrical SOFC cell 1 is fixed to the partition wall support plate 3 via a seal material 8. The fuel 5 supplied to the cylindrical SOFC cell 1 is supplied through the fuel supply path 7 of the cylindrical SOFC cell 1, and the unreacted fuel is discharged to the discharge chamber 4. At this time, the reaction air 6 is supplied to the reaction chamber 2 side, but since the gas seal is made between the partition wall support plate 3 and the cylindrical SOFC 1, the air 6 leaks to the discharge chamber 4 side. In addition, the unreacted fuel 5 does not leak to the reaction chamber 2 side, and the fuel 5 and the air 6 can be supplied to the cylindrical SOFC cell 1 in a separated state. This is a so-called seal-type module structure.
[0006]
On the other hand, FIG. 8 is a system that is substantially the same as the configuration of FIG. 9 but is characterized in that no seal is applied to the gap between the partition wall support plate 3 and the cylindrical SOFC cell 1. This is what is called a sealless module structure, in which some gas leakage is tolerated and unreacted fuel 5 is burned in the module.
[0007]
8 and 9, 1 is a cylindrical SOFC cell, 2 is a reaction chamber, 3 is a partition support plate, 4 is a discharge chamber, 5 is a supply fuel, 6 is a supply oxidant (usually air), 7 is A fuel supply path 8 is a sealing material (FIG. 9 only).
[0008]
[Problems to be solved by the invention]
In the conventional sealless type module structure, the air 6 and the fuel 5 leaking from the gap between the partition wall support plate 3 and the cylindrical SOFC cell 1 cause a combustion reaction in the discharge chamber 4. Due to this combustion reaction, the temperature in the discharge chamber 4 rises and a large temperature distribution is generated in the module, which causes problems in terms of reliability and durability as well as restrictions on the constituent materials. Furthermore, since the fuel consumed in the combustion reaction does not directly contribute to power generation, there arises a problem that the ability of the cylindrical SOFC cell 1 to achieve a high fuel utilization rate cannot be fully utilized.
[0009]
On the other hand, in the seal-type module structure, combustion of the fuel 5 and the air 6 does not occur, so an uneven temperature rise can be avoided and the fuel 5 can also be used effectively for power generation. However, in this type of module, since a material that softens at high temperatures such as glass is usually used as the sealing material 8, there arises a problem that the cylindrical SOFC cell 1 is damaged each time the operation / stop is repeated.
[0010]
This is because because the glass SOFC cell 1 and the glass have a large thermal expansion coefficient, the glass that has been softened at a high temperature and has achieved a seal generates a stress when solidified upon cooling to room temperature. In the worst case, the cylindrical SOFC cell 1 is damaged.
[0011]
Further, the glass softened at a high temperature is firmly attached to both the cylindrical SOFC cell 1 and the partition wall support plate 3, so that it is necessary to replace the cylindrical SOFC cell 1 for some reason. It becomes extremely difficult to remove the material 8 from the cylindrical SOFC 1 and the partition wall support plate 3, which causes a reduction in work efficiency. In addition, although materials other than glass, such as a ceramic paste, are used as the sealing material 8, the situation is almost the same.
[0012]
In order to solve these problems, the present invention facilitates the removal and attachment of the gas-sealed seal body (cylindrical SOFC cell main body in the above-described cylindrical cell mounting method) at room temperature, and the operating temperature of the cylindrical SOFC cell 1 is 1000. The purpose is to achieve a strong gas seal near ℃.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, a solid oxide fuel cell module according to the present invention includes a fuel electrode, a solid electrolyte, and an air electrode in a mounting hole of a partition wall support plate that separates a fuel and an oxidant, and any one of them is included. In the solid oxide fuel cell module to which the solid oxide fuel cell as a substrate is attached, the partition wall support plate has a thermal expansion coefficient that is 20 to 40% smaller than the thermal expansion coefficient of the substrate of the solid oxide fuel cell. And the cross-sectional shape of the attachment portion to the partition wall support plate of the solid oxide fuel cell and the shape of the attachment hole are similar, the outer periphery of the attachment portion at room temperature and the size of the attachment hole, each R 1, R 2, the respective thermal expansion coefficients α 1, α 2, the temperature difference between the operating temperature and the room temperature is taken as [Delta] T,
R 2 = R 1 {(1 + α 1 ΔT) / (1 + α 2 ΔT)}
The difference between the outer circumference of the mounting portion and the size of the mounting hole at the operating temperature is a shape having a value on the order of submicron .
[0014]
Hereinafter, the basic concept of the present invention will be described with reference to FIG.
[0015]
FIG. 1 shows a state in which a cylindrical SOFC cell 1 is mounted on a partition wall support plate 3 that separates a reducing atmosphere and an oxidizing atmosphere. 2 is a reaction chamber and 4 is a discharge chamber. Here, the diameter of the cylindrical SOFC cell 1 at room temperature is R c , the diameter of the mounting hole 31 of the partition wall support plate 3 is R b, and ΔR = R b −R c .
[0016]
At room temperature (see FIG. 1A), if there is a certain difference in diameter, the cell can be easily detached. If the SOFC cell 1 and the partition wall support plate 3 have the same thermal expansion coefficient, the gap ΔR between them increases monotonously from room temperature until reaching the operating temperature.
[0017]
However, when considering the case where the thermal expansion coefficient of the partition plate support plate 3 is slightly smaller than the thermal expansion coefficient of the SOFC cell 1 as in the present invention, compared to the way in which the mounting holes 31 of the partition support plate 3 expand, Since the diameter of the SOFC cell 1 increases, the gap decreases as the temperature increases. By defining an appropriate difference in thermal expansion coefficient and gap size, the gap between the partition wall support plate 3 and the SOFC cell 1 can be made zero at the operating temperature.
[0018]
This is shown in FIG. Here, the diameter of the SOFC cell 1 at room temperature is 10 mm, the diameter difference between the mounting holes 31 of the SOFC cell 1 and the partition wall support plate 3 is 30 μm, and the thermal expansion coefficients of the SOFC cell 1 and the partition wall support plate 3 are 11 × 10 −6. If k −1 and 8 × 10 −6 k −1 , the gap (diameter difference) ΔR ′ between the SOFC cell 1 and the partition wall support plate 3 at 1000 ° C. is 20 ° C.
Figure 0003724788
Thus, the gap is on the order of submicrons, and a gas seal that is so firm that gas leakage does not become a problem in practical use can be realized. Further, since the gap ΔR at room temperature is about 30 μm, desorption at room temperature can be performed relatively easily. Of course, if ΔR is selected to be smaller, a stronger gas seal can be realized. That is, the outer periphery of the mounting portion at room temperature and the size of the mounting hole are R 1 and R 2 , the respective thermal expansion coefficients are α 1 and α 2 , and the temperature difference between the operating temperature and room temperature is ΔT. sometimes,
R 2 = R 1 {(1 + α 1 ΔT) / (1 + α 2 ΔT)}
The relationship is almost satisfied.
[0019]
The SOFC cell 1 as described above basically includes a fuel electrode, a solid electrolyte, and an air electrode. A cell is formed on the surface of any one of the fuel electrode, the solid electrolyte, and the air electrode. When the solid electrolyte is a substrate, the other constituent materials of the cell are made to match the thermal expansion coefficient of the solid electrolyte. When the anode is a substrate, the other constituent materials of the cell are made to match the thermal expansion coefficient of the anode. When the air electrode is a substrate, other constituent materials of the cell are made to match the thermal expansion coefficient of the air electrode. In such a case, the thermal expansion coefficient of the partition wall support plate 3 is made 20 to 40% smaller than the thermal expansion coefficient of the substrate of the SOFC cell 1. If priority is given to ease of removal at room temperature when the difference in thermal expansion coefficient is less than 20%, the seal between the partition wall support plate and the SOFC cell 1 may not be sufficient at the operating temperature. If priority is given to the sealing property at, it may be difficult to remove the SOFC cell 1 at room temperature. On the other hand, if it exceeds 40%, if ΔR is set so as to facilitate desorption at room temperature, the expansion of SOFC cell 1 is too large and may be destroyed, and ΔR so that the cell is not destroyed near the operating temperature. When Δ is set, ΔR at room temperature becomes abnormally large, and the cell cannot be actually fixed to the partition wall support plate.
[0020]
The above is the basic form of the present invention. In actual use, as shown in the following examples, a more efficient and highly reliable gas seal is possible.
[0021]
[Example 1]
In the example described in FIG. 1 in the previous section, the substrate of the SOFC cell is LaSrMnO 3 (LSM) (thermal expansion coefficient: 11 × 10 −6 k −1 ), and the partition wall support plate is alumina (thermal expansion coefficient: 8 × 10 −6). k −1 ) is one of the examples.
[0022]
[Example 2]
FIG. 3 shows a state where a hollow flat plate type SOFC cell (Japanese Patent Laid-Open No. 6-163062) having an outer peripheral dimension of 80 mm is attached to the partition wall support plate 3 having a peripheral dimension of the cell mounting hole 31 of the partition wall support plate 3 of 80.2 mm. Yes. The SOFC cell is manufactured using LSM as a substrate, and the thermal expansion coefficient almost matches that of LSM. The partition support plate 3 is made of alumina. With such a configuration, when the operating temperature rises to 1000 ° C., the cell peripheral dimension and the outer periphery of the SOFC cell mounting hole 31 of the partition wall support plate 3 substantially coincide, and a gas seal is realized. This is one of the embodiments of the present invention.
[0023]
[Example 3]
As a development form of the second embodiment, an embodiment in which the burden on the SOFC cell is further reduced will be described below. A cell projection 11 as shown in FIG. 4 is formed on the hollow flat plate SOFC cell 1 with the same material as the substrate of the SOFC cell 1. On the other hand, a notch 32 is formed in the partition wall support plate 3, and the cell protrusion 11 is fitted into the notch 32 of the partition wall support plate 31 and attached.
[0024]
In this case, it is not necessary to accurately design the dimensions of the SOFC cell 1 as a whole and the dimensions of the mounting holes 31 of the partition wall support plate 3, and it is only necessary to increase the dimensional accuracy of only the cell projections 11. For this reason, it can also contribute to the yield improvement of the SOFC cell 1. Although the protrusion 11 of the SOFC cell 1 is desirably manufactured with a structure integrated with the cell, a similar effect can be expected by combining individually manufactured ones.
[0025]
[Example 4]
As shown in FIG. 5, inclined contact surfaces 12 and 33 having a taper are formed on the SOFC cell 1 and the partition support plate 3. The SOFC cell 1 is attached to the partition wall support plate 3 by fitting the inclined contact surface 12 of the SOFC cell 1 to the inclined contact surface 33 of the partition wall support plate 3. Here, if the inclined contact surfaces 12 and 33 on the SOFC cell 1 side and the partition support plate 3 side are parallel, the maximum outer periphery of the inclined contact surface 12 of the SOFC cell 1 is R 1 , and the partition support plate 3 side is attached. When the outer periphery of the hole 31 is R 2 , the relationship of R 2 = R 1 {(1 + α 1 ΔT) / (1 + α 2 ΔT)} is substantially satisfied.
[0026]
The SOFC cell 1 uses LSM as a substrate, and the partition support plate 3 uses alumina. In this embodiment, it is not necessary to design strictly so that the gap between the SOFC cell 1 and the partition wall support plate 3 becomes zero at the operating temperature. Even if the elongation on the SOFC cell 1 side exceeds the expansion of the mounting hole 31 of the partition wall support plate 3, the SOFC cell 1 is displaced upward against gravity and is stabilized at a position where the gap is completely closed. Although the figure is shown in a cylindrical shape, a similar seal can be realized even in the case of a hollow flat plate type if the projections as in Example 3 are made in a disk shape.
[0027]
[Example 5]
Furthermore, according to the present invention, if the cross section when the SOFC cell 1 is attached to the partition wall support plate 3 is circular, a seal with higher reliability and easy removal can be realized. For simplicity, consider the case where the SOFC cell is a cylinder, and thread grooves 13 and 34 are cut in the SOFC cell 1 side and the partition support plate 3 as shown in FIG. As shown in FIG. 8, the thread groove 13 on the SOFC cell 1 side may be provided around the cell protrusion 14 by providing a cell protrusion 14, or may be directly provided in the SOFC cell 1. The SOFC cell 1 is attached to the partition wall support plate 3 by screwing the screw groove 13 on the SOFC cell 1 side into a screw groove 34 formed in the mounting hole 31 of the partition wall support plate 3. Here, when the maximum circumference of the screw groove 13 on the SOFC cell 1 side is R 1 and the maximum outer periphery of the screw groove 34 of the mounting hole 31 on the partition wall support plate 3 side is R 2 , R 2 = R 1 {( 1 + α 1 ΔT) / (1 + α 2 ΔT)} is substantially satisfied.
[0028]
Similar to what has been described so far, the two are in loose contact at room temperature, so that the SOFC cell can be easily mounted by screwing. By raising the temperature to the operating temperature, the contact becomes dense and a situation where the screw is strongly tightened appears.
[0029]
With this method, it is possible to realize the ease of detachment as well as the integrity of the seal. In this method, the screw does not have to be tightly engaged even at the operating temperature. Since the path that separates both the oxidizing and reducing atmospheres is a screw between the SOFC cell 1 and the partition wall support plate 3, it becomes a considerably long path and does not cause a problem in practice.
[0030]
[Example 6]
As described above, the description has been given focusing on the sealing method between the SOFC cell 1 and the partition support plate 3, but the present invention is also applied to the seal between the partition support plate 3 and the module storage container 9 for storing the module. obtain.
[0031]
As shown in FIG. 7, the module storage container 9 has a cylindrical shape, and the partition wall support plate 3 has a disk shape. Screw grooves 91 and 35 as shown in the figure are formed on the upper end of the inner wall of the opening of the cylindrical module storage container 9 and the side surface of the disk-shaped partition wall support plate 3, and the screw grooves 35 of the disk-shaped partition wall support plate 3 are stored in the cylindrical module. The reaction portion of the SOFC cell 1 to which the partition wall support plate 3 is attached can be stored in the module storage container 9 by being screwed into the thread groove 91 of the container 9. In this case, a material for the module container 9 and the partition support plate 3, the disk-shaped inner diameter of the bulkhead support plate 3 of the diameter and the module container 9 at room temperature, each R 1, R 2, each heat When the expansion coefficient is α 1 , α 2 and the temperature difference between the operating temperature and room temperature is ΔT,
R 2 = R 1 {(1 + α 1 ΔT) / (1 + α 2 ΔT)}
By setting so that the above relationship is substantially satisfied, it is possible to easily attach the SOFC cell stack to the apparatus and realize a gas seal at the operating temperature, similarly to the seal of the SOFC cell.
[0032]
【The invention's effect】
As described above, according to the solid oxide fuel cell module of the present invention, the thermal expansion coefficient of the partition wall support plate is made slightly smaller than that of the SOFC cell, so that the distance between the two is on the order of sub-μm during high-temperature operation. Since the gas seal is realized and the cell can be removed relatively easily at normal temperature, a solid electrolyte fuel cell module having an efficient and highly reliable gas seal can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a basic concept of the present invention (example of a cylindrical SOFC).
FIG. 2 is a diagram showing temperature changes in the diameter of a cylindrical SOFC and the diameter of a hole in a cell mounting support plate.
FIG. 3 is a view showing an embodiment using a hollow flat plate cell.
FIG. 4 is a view showing an embodiment using a hollow flat plate type SOFC cell having a cell protrusion.
FIG. 5 is a view showing an embodiment in which an inclined contact surface is formed on a hollow flat plate type SOFC cell and a partition support plate.
FIG. 6 is a view showing an embodiment in which a screw structure is formed on a partition wall support plate and a cylindrical cell.
FIG. 7 is a diagram showing an embodiment applied to a seal between a partition wall support plate and a container for housing a module.
FIG. 8 is a diagram showing a conventional sealless type module structure (an example of a cylindrical SOFC).
FIG. 9 is a diagram showing a conventional seal-type module structure (an example of a cylindrical SOFC).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 SOFC cell 11 Cell protrusion 12 Inclined contact surface 13 Screw groove 14 Cell protrusion 2 Reaction chamber 3 Partition wall support plate 31 Mounting hole 32 Notch 33 Inclined contact surface 34 Screw groove 35 Screw groove 4 Discharge chamber 5 Fuel 6 Air 7 Fuel supply Road 8 Sealing material 9 Module storage container 91 Screw groove

Claims (8)

燃料と酸化剤とを分離する隔壁支持板の取り付け穴に、燃料極、固体電解質および空気極を含み、それらのいずれかを基板とした固体電解質型燃料電池セルを取り付けた固体電解質型燃料電池モジュールにおいて、前記隔壁支持板は前記固体電解質型燃料電池セルの前記基板の熱膨張係数より20〜40%小さな熱膨張係数を有し、かつ前記固体電解質型燃料電池セルの隔壁支持板への取り付け部分の断面形状と前記取り付け穴の形状が相似形であり、室温での前記取り付け部分の外周及び前記取り付け穴の大きさを、それぞれR、R、それぞれの熱膨張係数をα、α、動作温度と室温との温度差をΔTとしたときに、
=R{(1+αΔT)/(1+αΔT)}
なる関係をほぼ満足し、動作温度における前記取り付け部分の外周と前記取り付け穴の大きさの差はサブミクロンオーダの値である形状であることを特徴とする固体電解質型燃料電池モジュール。
A solid oxide fuel cell module including a fuel electrode, a solid electrolyte, and an air electrode in a mounting hole of a partition wall support plate that separates fuel and an oxidant, and a solid oxide fuel cell unit using any of them as a substrate The partition wall support plate has a thermal expansion coefficient that is 20 to 40% smaller than the thermal expansion coefficient of the substrate of the solid oxide fuel cell, and the portion of the solid oxide fuel cell cell that is attached to the partition wall support plate The shape of the cross section and the shape of the mounting hole are similar, the outer periphery of the mounting portion and the size of the mounting hole at room temperature are respectively R 1 and R 2 , and the respective thermal expansion coefficients are α 1 and α 2. When the temperature difference between the operating temperature and room temperature is ΔT,
R 2 = R 1 {(1 + α 1 ΔT) / (1 + α 2 ΔT)}
The solid oxide fuel cell module is characterized in that the difference between the outer circumference of the attachment portion and the size of the attachment hole at an operating temperature is a shape having a value on the order of submicron .
前記固体電解質型燃料電池セルの基板が前記固体電解質の場合には、前記隔壁支持板は固体電解質の熱膨張係数より小さな熱膨張係数を有することを特徴とする請求項1記載の固体電解質型燃料電池モジュール。2. The solid electrolyte fuel according to claim 1, wherein when the substrate of the solid oxide fuel cell is the solid electrolyte, the partition wall support plate has a thermal expansion coefficient smaller than that of the solid electrolyte. Battery module. 前記固体電解質型燃料電池セルの基板が前記燃料極の場合には、前記隔壁支持板は前記燃料極の熱膨張係数より小さな熱膨張係数を有することを特徴とする請求項1記載の固体電解質型燃料電池モジュール。2. The solid electrolyte type according to claim 1, wherein when the substrate of the solid oxide fuel cell is the fuel electrode, the partition wall support plate has a thermal expansion coefficient smaller than that of the fuel electrode. Fuel cell module. 前記固体電解質型燃料電池セルの基板が前記空気極の場合には、前記隔壁支持板は前記空気極の熱膨張係数より小さな熱膨張係数を有することを特徴とする請求項1記載の固体電解質型燃料電池モジュール。2. The solid electrolyte type according to claim 1, wherein when the substrate of the solid oxide fuel cell is the air electrode, the partition wall support plate has a thermal expansion coefficient smaller than that of the air electrode. Fuel cell module. 前記固体電解質型燃料電池セルの周囲に、前記基板と同じ材料で形成したセル突起部を設け、一方、前記隔壁支持板に前記セル突起部を嵌め合わせることが可能な切り込みを形成し、前記セル突起部を前記切り込みに嵌め合わせることによって、前記隔壁支持板に前記固体電解質型燃料電池セルを前記取り付け穴に取り付けたことを特徴とする請求項1から4記載のいずれかの固体電解質型燃料電池モジュール。A cell projection formed of the same material as the substrate is provided around the solid oxide fuel cell, while a notch capable of fitting the cell projection to the partition support plate is formed, 5. The solid oxide fuel cell according to claim 1, wherein the solid oxide fuel cell is attached to the mounting hole on the partition wall support plate by fitting a protrusion into the notch. module. 前記固体電解質型燃料電池セルの周囲に、前記基板と同じ材料で形成したテーパを有し、かつ突出した傾斜接触面を設け、一方、前記隔壁支持板に前記傾斜接触面を嵌め合わせることが可能な、同様な傾斜接触面を形成し、前記傾斜接触面を前記隔壁支持板の傾斜接触面に嵌め合わせることによって、前記隔壁支持板に前記固体電解質型燃料電池セルを前記取り付け穴に取り付けたことを特徴とする請求項1から4記載のいずれかの固体電解質型燃料電池モジュール。Around the solid oxide fuel cell, a tapered and protruding inclined contact surface made of the same material as the substrate is provided, and the inclined contact surface can be fitted to the partition wall support plate. The solid electrolyte fuel cell is attached to the attachment hole on the partition support plate by forming a similar inclined contact surface and fitting the inclined contact surface to the inclined contact surface of the partition support plate. The solid oxide fuel cell module according to any one of claims 1 to 4, wherein: 前記固体電解質型燃料電池セルの周囲にねじ溝を設け、一方、前記隔壁支持板の前記取り付け穴に、前記ねじ溝と螺合するねじ溝を形成して、前記前記固体電解質型燃料電池セルのねじ溝を前記取り付け穴のねじ溝に螺合することによって、前記隔壁支持板に前記固体電解質型燃料電池セルを前記取り付け穴に取り付けたことを特徴とする請求項1から4記載にいずれかの固体電解質型燃料電池モジュール。A screw groove is provided around the solid oxide fuel cell, and a screw groove that is screwed with the screw groove is formed in the mounting hole of the partition wall support plate. 5. The solid oxide fuel cell is attached to the attachment hole on the partition wall support plate by screwing a screw groove into the screw groove of the attachment hole. 6. Solid oxide fuel cell module. 前記固体電解質型燃料電池セルを設けた円盤状の前記隔壁支持板の周囲にねじ溝を形成し、反応室を形成する円筒形モジュール収納容器の開口部内壁上端に前記ねじ溝と螺合するねじ溝を形成して、前記隔壁支持板のねじ溝を前記モジュール収納容器のねじ溝に螺合することによって、前記固体電解質型燃料電池セルの少なくとも一部を前記モジュール収納容器内に収納するとともに、室温での前記円盤状の隔壁支持板の直径及び前記モジュール収納容器の内径を、それぞれR、R、それぞれの熱膨張係数をα、α、動作温度と室温との温度差をΔTとしたときに、
=R{(1+αΔT)/(1+αΔT)}
なる関係をほぼ満足し、動作温度における前記隔壁支持板の直径と前記モジュール収納容器の内径の差はサブミクロンオーダの値である形状であることを特徴とする請求項1から7記載のいずれかの固体電解質型燃料電池モジュール。
A screw thread is formed around the disk-shaped partition wall support plate provided with the solid oxide fuel cell, and is screwed into the upper end of the inner wall of the opening of the cylindrical module storage container forming the reaction chamber. By forming a groove and screwing the screw groove of the partition wall support plate into the screw groove of the module storage container, at least a part of the solid oxide fuel cell is stored in the module storage container, The diameter of the disk-shaped partition wall support plate and the inner diameter of the module storage container at room temperature are respectively R 1 and R 2 , the respective thermal expansion coefficients are α 1 and α 2 , and the temperature difference between the operating temperature and room temperature is ΔT. And when
R 2 = R 1 {(1 + α 1 ΔT) / (1 + α 2 ΔT)}
8. The structure according to claim 1, wherein the following relationship is substantially satisfied, and the difference between the diameter of the partition wall support plate and the inner diameter of the module storage container at an operating temperature is a shape having a value on the order of submicrons . Solid oxide fuel cell module.
JP2001016807A 2001-01-25 2001-01-25 Solid oxide fuel cell module Expired - Fee Related JP3724788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001016807A JP3724788B2 (en) 2001-01-25 2001-01-25 Solid oxide fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001016807A JP3724788B2 (en) 2001-01-25 2001-01-25 Solid oxide fuel cell module

Publications (2)

Publication Number Publication Date
JP2002222657A JP2002222657A (en) 2002-08-09
JP3724788B2 true JP3724788B2 (en) 2005-12-07

Family

ID=18883111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016807A Expired - Fee Related JP3724788B2 (en) 2001-01-25 2001-01-25 Solid oxide fuel cell module

Country Status (1)

Country Link
JP (1) JP3724788B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288608A (en) * 2003-03-05 2004-10-14 Toto Ltd Assembly of cylindrical solid oxide fuel battery cell
JP2005222718A (en) * 2004-02-03 2005-08-18 Olympus Corp Fuel cell body
JP2005222719A (en) * 2004-02-03 2005-08-18 Olympus Corp Fuel cell
JP5549991B2 (en) * 2008-10-29 2014-07-16 Toto株式会社 Fuel cell module
JP6522393B2 (en) * 2015-03-31 2019-05-29 三菱日立パワーシステムズ株式会社 Fuel cell device and fuel cell system

Also Published As

Publication number Publication date
JP2002222657A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
US7683295B2 (en) Heating element
EP2133951B1 (en) Electrochemical device
JP3064746B2 (en) Flat solid electrolyte fuel cell
JP3724788B2 (en) Solid oxide fuel cell module
JP5127389B2 (en) Fuel cell and fuel cell stack
US5079104A (en) Integrated fuel cell stack shunt current prevention arrangement
JP2009217959A (en) Flat plate type solid oxide fuel cell stack
JP2004152645A (en) Solid oxide fuel cell constituted in honeycomb structure, and fluid supply method in solid oxide fuel cell
JP2007531213A (en) Solid oxide fuel cell with sealing structure
KR100853977B1 (en) Fuel cell system
JP2006172944A (en) Horizontal-striped solid oxide type fuel cell bundle and unit
JP2004303462A (en) Fuel cell
JP5318192B2 (en) FUEL CELL STACK AND METHOD FOR MANUFACTURING FUEL CELL STACK
JP3276649B2 (en) Fuel cell
JPH05121083A (en) Fuel cell
JP5052928B2 (en) Solid oxide fuel cell
TW200408786A (en) A capillary seal for a burn chamber
JPH11224682A (en) Phosphoric acid fuel cell
JPH117967A (en) Fuel cell separator
JP2010231902A (en) Fuel cell
JPH0815094B2 (en) Molten carbonate fuel cell
JPH08162144A (en) Flat type solid electrolytic fuel cell
JP2606359Y2 (en) Fuel Cell Ceramic Seal Frame
CN116711112A (en) Fuel cell unit and method for manufacturing the same
JP2000306590A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees