JP3724393B2 - X-ray equipment - Google Patents

X-ray equipment Download PDF

Info

Publication number
JP3724393B2
JP3724393B2 JP2001226540A JP2001226540A JP3724393B2 JP 3724393 B2 JP3724393 B2 JP 3724393B2 JP 2001226540 A JP2001226540 A JP 2001226540A JP 2001226540 A JP2001226540 A JP 2001226540A JP 3724393 B2 JP3724393 B2 JP 3724393B2
Authority
JP
Japan
Prior art keywords
ray
grid
fpd
image
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001226540A
Other languages
Japanese (ja)
Other versions
JP2003038482A (en
Inventor
英樹 藤井
功 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001226540A priority Critical patent/JP3724393B2/en
Publication of JP2003038482A publication Critical patent/JP2003038482A/en
Application granted granted Critical
Publication of JP3724393B2 publication Critical patent/JP3724393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise

Description

【0001】
【発明の属する技術分野】
この発明は、X線撮影装置に関し、とくに散乱線除去用グリッドを備えたX線撮影装置に関する。
【0002】
【従来の技術】
X線撮影装置では、被写体によって散乱した散乱線を除去するため、X線の吸収率が高い物質と低い物質とを一定間隔で交互に平行に並べたグリッドが用いられるが、このグリッドの持つ空間的な周波数(配列間隔)とX線検出器の空間的サンプリング周期(検出画素間隔)の相違により、このX線検出器によって得た画像にモアレ縞が生じる。そのため、従来では、このような撮影画像におけるモアレ縞の除去・軽減を図るべく、種々の対策を講じてきた。
【0003】
そのひとつの対策として、モアレ縞が生じないようにX線検出器と同じ周波数特性を持つグリッドを使用するというものが知られている。また、X線照射中にグリッドを移動させてモアレ縞を消すようにすることもある。さらに、グリッドをその平面内で回転させて、グリッドの間隔を cosθ倍にし(回転角度θ)、この cosθ倍のグリッド間隔がX線検出器の画素間隔と同じになるようにすることで、X線検出器と同じ周波数特性を持つグリッドを用いたのと同様の効果を得ることなども行われている。
【0004】
【発明が解決しようとする課題】
しかしながら、X線検出器と同じ周波数特性を有するグリッドを使用する場合、それらを厳密に一致させなければ効果がないため、グリッドの位置精度・製作精度には非常に高度なものが要求され、安価には得られない。たとえそのようなグリッドが得られたとしても、SID(X線源とX線検出器との間の距離)が変れば周波数特性の一致は崩れてしまうし、SIDが微妙に変化しただけでも周波数差が生じてモアレ縞が発現する。
【0005】
X線照射中にグリッドを移動させる場合は、単純に移動させるだけでは、移動速度とX線検出器のサンプリング周期との関係で微細なモアレ縞を消すことはできない。さらに連続的にX線を照射する手技ではグリッドをどれだけ移動させればよいのか定かでない。
【0006】
グリッドを回転させる場合には、平行グリッドの長さ方向に一致した方向から斜めにX線を入射させる場合以外、斜めに入射するX線の一部がグリッドによって遮られてしまうという問題が生じる。そのため、X線検出器の検出面に直角にX線を入射させずに、斜めに入射させることの多い、X線断層撮影法には向かない。
【0007】
この発明は、上記に鑑み、グリッドを移動させる場合の条件を探求してそれにしたがって制御することにより、その問題を解決するとともに、X線検出器の検出面に直角にX線を入射させない場合の問題や、グリッドの位置精度を高めなければならない問題などを回避するようにした、X線撮影装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、この発明によるX線撮影装置においては、X線発生器と、被写体を透過したX線が入射するように配置されるX線検出器と、被写体とX線検出器との間に配置される散乱線除去用グリッドと、該グリッドを、上記X線検出器の信号蓄積期間の間、該X線検出器の空間サンプリング周期の整数倍の距離だけ、該グリッドのX線の高吸収率部と低吸収率部との並び方向に移動させる移動装置とが備えられることが特徴となっている。
【0009】
グリッドが、X線検出器の信号蓄積期間の間、一定距離だけ、一定方向に移動させられる。その方向というのは、グリッドのX線高吸収率部と低吸収率部との並び方向であり、その距離というのは、X線検出器の空間サンプリング周期の整数倍の距離である。これにより、グリッドのX線高吸収率部の投影像が、X線検出器の信号蓄積期間の間、X線検出器の画素ピッチの整数倍の距離だけ移動することとなり、各画素における、グリッドのX線高吸収率部の投影像による信号低下の割合が平均化され、モアレ縞の影響をより少なくできる。
【0010】
【発明の実施の形態】
つぎに、この発明の実施の形態について図面を参照しながら詳細に説明する。図1に示す実施の形態は、この発明をX線断層撮影装置に適用したものである。この図1において、X線管11には、X線用の高電圧電源装置12が接続される。この電源装置12は曝射制御装置13によって制御される。また、X線管11は、X線管移動装置14によって矢印方向(図では左右方向)に移動させられるようになっている。この曝射制御装置13の制御の下、電源装置12からX線管11に高電圧が供給されると、X線管11よりX線が発生する。
【0011】
このX線は、検査台32に横たえられた被写体(患者)31に向けて照射され、被写体31を透過したX線はグリッド15を経て、フラットパネルディテクタ(以下FPDと略す)21に入射する。グリッド15は、被写体31によって散乱した散乱線を除去するためのもので、X線の吸収率が高い物質と低い物質とを一定間隔で交互に平行に並べて構成される。ここでは、鉛等のX線吸収率の高い金属の板を一定間隔で平行に並べたものを使用している(金属板の間の空間がX線吸収率の低い空気で満たされている)。この高吸収率板の長さ方向は図1の左右方向となっており、この高吸収率板の並び方向が図1の紙面に直角な方向となっている。
【0012】
図2は、検査台32に横たわる被写体31の頭部方向から見た模式的な図であって、この図からも、グリッド15の高吸収率板の並び方向が、横たわった被写体31の左右方向となっており、高吸収率板が被写体31の身長方向に伸びていることが分かる。このグリッド15は、グリッド移動装置16によって図1の紙面に直角な方向、つまり図2において矢印で示すように、検査台32上に横たわった被検者31の左右方向に直線的に往復移動させられるようになっている。
【0013】
FPD21は、半導体X線検出器であり、多数の検出画素がマトリックス状に平面的に並べられており、その検出面に入射したX線画像に対応した画像信号を出力する。FPD21にX線が入射すると、その入射X線量に対応してFPD21の各検出画素に信号が蓄積され、読み出し部22を経てその各画素ごとの信号が読み出され、A/D変換器23を経てフレームメモリ24に送られ、記憶させられる。
【0014】
このフレームメモリ24における画像信号の書き込み番地はCPU28によって制御されている。CPU28は、この装置の全体を制御するもので、ここではとくに曝射制御装置13、X線管移動装置14、グリッド移動装置16の制御が重要である。CPU28は、曝射制御装置13を介してX線の曝射のタイミング、曝射時間の長さを制御し、そのX線曝射タイミング・時間に同期して、X線管移動装置14を介してX線管11を移動させ、グリッド移動装置16を介してグリッド15を移動させる。
【0015】
ここでは、X線管11を図1の左右方向にステップ的に移動させ、その各停止位置ごとに一定時間X線曝射し、曝射が終了したらつぎの停止位置まで移動させるということを繰り返すものとする。これによりX線管11からのX線は、実線で示すようにFPD21(の検出面)に直角に入射するだけでなく、点線で示すようにFPD21に対して斜めに入射する。入射角度が斜めになることから、被写体31の同一部位はFPD21の異なる位置に投影される。そこで、通常のX線断層撮影法の原理によれば、被写体31の同一深さの部位が、入射角度の変化にもかかわらず、同一位置に投影されるようにFPD21を位置ずれさせることで、その深さ以外の部位をぼけさせ、その深さの部位が鮮明に現れるようにするのであるが、ここでは、FPD21を実際に位置ずれさせる代わりに、フレームメモリ24の書き込み番地をずらしながら、各入射角度ごとの画像を加算して現実にFPD21を位置ずれさせたと同様に被写体31の一定深さの断層像を、フレームメモリ24上で再構成するようにしている。
【0016】
なお、各入射角度ごとの画像の各々をそのままフレームメモリ24に記憶するとともにその各々の画像に関する入射角度(X線管11の位置)を記憶しておき、後に位置ずれさせながら各画像を加算し一定深さの断層像を再構成するようにもでき、その場合画像加算時の位置ずれ量を変えることで、再構成する断層像の深さを変えることができる。
【0017】
こうして得られた断層像は、階調変換器25を経ることによって階調の調整がされた後、D/A変換器26を経てアナログ信号にされて画像モニター装置27に送られて表示される。
【0018】
つぎにグリッド15の移動について説明する。グリッド15は、X線管11がある位置で停止し、X線曝射が行われている期間、一方向に一定距離だけ移動させられる。その移動距離は、FPD21の検出画素の配列間隔(ピッチ)の整数倍の距離とする。つぎの停止位置で停止しX線曝射が行われるとき、反対方向に同距離だけ移動し、このような往復移動を、X線曝射ごとに繰り返す。ここれにより、グリッド15の空間周波数特性と、FPD21の空間サンプリング周波数特性との相違に基づくモアレ縞をなくすことができる。
【0019】
以下その原理について少し詳しく説明する。図3の(a)は、FPD21を断面して横方向(図2と同様の、被写体31の頭部方向)から見た拡大図であり、この図で上方向からX線が入射するものとする。この(a)に示すように、グリッド15(の高吸収率部)の投影像15aのピッチがFPD21の検出画素21aのピッチと厳密に一致していれば、モアレ縞は生じない。ところが、一般に図3の(b)に示すようにそれらのピッチは一致していない。図3の(b)ではグリッド15の投影像15aのピッチは検出画素21aのピッチより狭くなっている。仮にあるSID(X線管11におけるX線焦点位置とFPD21の検出面との間の距離)において図3の(a)のような理想的な状態が実現できたとしても、SIDが変れば(b)のような状態になってしまう。図3の(b)のようになると、投影像15aがより入る画素21aとより入らない画素21aとが一定周期で現れ、投影像15aがいくつも入る画素21aの信号は小さく、投影像15aの入る数の少ない画素21aの信号が大きくなるので、これがモアレ縞を作る原因となる。
【0020】
図3の(b)で投影像15aを画素21aの1間隔だけ左右方向、たとえば右方向に移動させ、その間X線曝射および各画素21aでの信号蓄積を行わせたとする。すると、どの画素21aにおいても、投影像15aが右方向に横切っていくので、どの画素21aでも投影像15aの影響は平均化され、投影像15aによる画素21aごとの信号変化は小さなものとなる。そのため、このようなグリッド15の移動によりモアレ縞の振幅を小さくすることが可能である。さらに移動距離を画素間隔の何倍もの距離とすれば、より投影像15aの影響の平均化はより強くなり、モアレ縞の振幅をより小さくすることができる。
【0021】
実際に、画素ピッチ(サンプリング周期)150μmのFPD21と、SID=1000mmで投影像周期100μmとなるグリッド15とを用いて実験しデータを得てみた。ここでは133msecごとにFPD21の読み出しを行った(FPD21の信号蓄積期間=133msec、つまり画像読み出し速度=133msec/sheet)。この画像読み出し時間間隔の間に、グリッド15を移動させる量(距離)を変化させてみたところ、図4に示すような結果が得られた。この図4で、横軸のグリッド移動量の単位は画素ピッチの倍数であり、縦軸はモアレ縞の振幅(%)を示す。このようにFPD21の空間サンプリング周期とグリッド15の投影像周期とが異なっている場合、グリッド15を移動させない(グリッド移動量=0)と、モアレ縞の振幅は大きなものとなるが、グリッド移動量を大きなものとすればするほどモアレ縞の振幅は小さなものとなり、上記が実証された。
【0022】
なお、実際のシステムでは上記のようにFPD21の画像読み出し速度が速いため、その都度X線管11を停止させることはできず、X線管11を連続的に移動させることになるが、その場合画像読み出し時間間隔(上記の例では133msec)でX線管11が停止していると見れば、同じように説明できる。この場合、X線曝射についてもX線管11の停止位置ごとに行うのではなく、X線管11の移動中連続的にX線曝射を行うことになる。実際にX線断層撮影を行う場合には、たとえばX線の入射角度が40度振れるようにX線管11を1.5秒かけて移動させ、その1.5秒の間X線は連続的に発生させる。そして、133msecごとにFPD21の読み出しを行い、その読み出し時間間隔ごとに、グリッド15を、X線吸収率の高・低部の並び方向に、FPD21の検出画素ピッチの整数倍の距離だけ一方向に移動させ、つぎの読み出し時間間隔では反対方向に同距離だけ移動させるという往復移動を繰り返す。
【0023】
X線断層撮影では、X線検出器(ここではFPD21)の検出面に直角にX線を入射すること以外に、斜めにX線を入射することが必須であるから、とくにこのようなX線断層撮影に効果的である。すなわち、X線管11の移動方向(図1の左右方向、図2の紙面に直角な方向)とグリッド15のX線の高吸収率部と低吸収率部とが平行に伸びていく方向(図1の左右方向、図2の紙面に直角な方向)とを一致させることによって、斜めにX線を入射させる場合の、グリッド15によるX線の遮断を防ぐことができるからである。
【0024】
なお上の説明はこの発明の実施の形態に関するものであって、この発明は上で説明した例に限定されるものではなく、発明の趣旨を逸脱しない範囲で、具体的な構成などは上記した以外に種々に変更できることはもちろんである。
【0025】
【発明の効果】
以上説明したように、この発明のX線撮影装置によれば、散乱線除去用グリッドを用いる場合にモアレ縞の発生を防ぐことができる。しかも、グリッドの製造精度を高める必要もないし、X線をX線検出器の検出面に直角に入射させない場合にX線がグリッドによって遮断されてしまわないようにグリッドを用いることができるので、X線を斜めに入射させる必要のあるX線断層撮影に好適である。
【図面の簡単な説明】
【図1】この発明の実施の形態にかかるX線断層撮影装置のブロック図。
【図2】同実施形態における、X線管、被写体、グリッド、FPDの部分についての正面(図1の左側)からの模式図。
【図3】グリッドの投影像とFPDの検出画素との関係を示す模式図。
【図4】グリッド移動量に対するモアレ縞振幅の測定結果を示すグラフ。
【符号の説明】
11 X線管
12 電源装置
13 曝射制御装置
14 X線管移動装置
15 グリッド
16 グリッド移動装置
21 FPD
22 FPD読み出し部
23 A/D変換器
24 フレームメモリ
25 階調変換器
26 D/A変換器
27 画像モニター装置
28 CPU
31 被写体
32 検査台
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray imaging apparatus, and more particularly to an X-ray imaging apparatus provided with a scattered radiation removal grid.
[0002]
[Prior art]
In an X-ray imaging apparatus, in order to remove scattered radiation scattered by a subject, a grid in which a substance having a high X-ray absorption rate and a substance having a low X-ray absorption rate are alternately arranged in parallel at regular intervals is used. Moire fringes occur in the image obtained by the X-ray detector due to the difference between the typical frequency (array interval) and the spatial sampling period (detection pixel interval) of the X-ray detector. For this reason, conventionally, various countermeasures have been taken in order to remove and reduce moire fringes in such a photographed image.
[0003]
One countermeasure is to use a grid having the same frequency characteristics as the X-ray detector so as not to cause moire fringes. Also, the moire fringes may be erased by moving the grid during X-ray irradiation. Further, by rotating the grid within the plane, the grid interval is multiplied by cos θ (rotation angle θ), and the cos θ-fold grid interval is made equal to the pixel interval of the X-ray detector. An effect similar to that obtained by using a grid having the same frequency characteristic as that of the line detector is also performed.
[0004]
[Problems to be solved by the invention]
However, when grids having the same frequency characteristics as the X-ray detector are used, there is no effect unless they are matched exactly. Therefore, extremely high grid position accuracy and manufacturing accuracy are required and are inexpensive. Cannot be obtained. Even if such a grid is obtained, if the SID (distance between the X-ray source and the X-ray detector) changes, the coincidence of the frequency characteristics will be lost, and the frequency even if the SID changes slightly. A difference occurs and moire fringes appear.
[0005]
When the grid is moved during X-ray irradiation, the fine moire fringes cannot be eliminated by simply moving the grid due to the relationship between the moving speed and the sampling period of the X-ray detector. Furthermore, it is not certain how much the grid should be moved in the procedure of continuously irradiating X-rays.
[0006]
When the grid is rotated, there is a problem that a part of the obliquely incident X-rays is blocked by the grid, except for the case where X-rays are incident obliquely from the direction that coincides with the length direction of the parallel grid. Therefore, it is not suitable for X-ray tomography, in which X-rays are not incident on the detection surface of the X-ray detector at right angles but are incident obliquely.
[0007]
In view of the above, the present invention solves the problem by searching for conditions for moving the grid and controlling according to the conditions, and prevents X-rays from being incident at a right angle on the detection surface of the X-ray detector. It is an object of the present invention to provide an X-ray imaging apparatus that avoids problems and problems in which the grid position accuracy must be increased.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the X-ray imaging apparatus according to the present invention, an X-ray generator, an X-ray detector arranged so that X-rays transmitted through the subject are incident, and the subject and the X-ray detector And the grid for removing scattered radiation between the X-ray detector and the grid by a distance that is an integral multiple of the spatial sampling period of the X-ray detector during the signal accumulation period of the X-ray detector. It is characterized in that a moving device is provided that moves the line in the direction in which the high-absorption rate part and the low-absorption rate part are arranged.
[0009]
The grid is moved in a fixed direction by a fixed distance during the signal accumulation period of the X-ray detector. The direction is the direction in which the X-ray high-absorption ratio portion and the low-absorption ratio portion of the grid are arranged, and the distance is an integer multiple of the spatial sampling period of the X-ray detector. As a result, the projected image of the X-ray high absorption rate portion of the grid is moved by a distance that is an integral multiple of the pixel pitch of the X-ray detector during the signal accumulation period of the X-ray detector. The ratio of the signal decrease due to the projected image of the X-ray high-absorption ratio is averaged, and the influence of moire fringes can be reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment shown in FIG. 1, the present invention is applied to an X-ray tomography apparatus. In FIG. 1, an X-ray high voltage power supply device 12 is connected to an X-ray tube 11. The power supply device 12 is controlled by an exposure control device 13. Further, the X-ray tube 11 is moved in the direction of the arrow (left and right in the figure) by the X-ray tube moving device 14. When a high voltage is supplied from the power supply device 12 to the X-ray tube 11 under the control of the exposure control device 13, X-rays are generated from the X-ray tube 11.
[0011]
This X-ray is irradiated toward a subject (patient) 31 lying on the examination table 32, and the X-ray transmitted through the subject 31 enters a flat panel detector (hereinafter abbreviated as FPD) 21 through the grid 15. The grid 15 is for removing scattered rays scattered by the subject 31, and is configured by alternately arranging a substance having a high X-ray absorption rate and a substance having a low X-ray absorption rate in parallel at regular intervals. Here, a metal plate having a high X-ray absorption rate such as lead arranged in parallel at regular intervals is used (the space between the metal plates is filled with air having a low X-ray absorption rate). The length direction of the high absorptivity plates is the left-right direction in FIG. 1, and the arrangement direction of the high absorptivity plates is a direction perpendicular to the paper surface of FIG.
[0012]
FIG. 2 is a schematic view seen from the head direction of the subject 31 lying on the examination table 32. From this figure as well, the arrangement direction of the high-absorbance plates of the grid 15 is the left-right direction of the lying subject 31. Thus, it can be seen that the high absorptivity plate extends in the height direction of the subject 31. The grid 15 is linearly reciprocated in a direction perpendicular to the paper surface of FIG. 1 by the grid moving device 16, that is, in the left-right direction of the subject 31 lying on the examination table 32, as indicated by an arrow in FIG. It is supposed to be.
[0013]
The FPD 21 is a semiconductor X-ray detector, in which a large number of detection pixels are arranged in a matrix, and outputs an image signal corresponding to an X-ray image incident on the detection surface. When X-rays enter the FPD 21, signals are accumulated in each detection pixel of the FPD 21 corresponding to the incident X-ray dose, and the signal for each pixel is read through the reading unit 22, and the A / D converter 23 is Then, it is sent to the frame memory 24 and stored therein.
[0014]
The address for writing the image signal in the frame memory 24 is controlled by the CPU 28. The CPU 28 controls the entire apparatus. In this case, the control of the exposure control device 13, the X-ray tube moving device 14, and the grid moving device 16 is particularly important. The CPU 28 controls the X-ray exposure timing and the length of the exposure time via the exposure control device 13, and synchronizes with the X-ray exposure timing / time via the X-ray tube moving device 14. The X-ray tube 11 is moved to move the grid 15 via the grid moving device 16.
[0015]
Here, the X-ray tube 11 is moved stepwise in the left-right direction in FIG. 1 and X-ray exposure is performed for each fixed position for a certain time, and when the exposure is completed, the X-ray tube 11 is moved to the next stop position. Shall. Thereby, the X-rays from the X-ray tube 11 not only enter the FPD 21 (detection surface thereof) at a right angle as indicated by a solid line but also enter the FPD 21 obliquely as indicated by a dotted line. Since the incident angle is oblique, the same part of the subject 31 is projected at a different position on the FPD 21. Therefore, according to the principle of normal X-ray tomography, by shifting the position of the FPD 21 so that the part of the subject 31 having the same depth is projected at the same position regardless of the change in the incident angle, The part other than the depth is blurred so that the part of the depth appears clearly, but here, instead of actually shifting the position of the FPD 21, each write address of the frame memory 24 is shifted, A tomographic image of a certain depth of the subject 31 is reconstructed on the frame memory 24 in the same manner as when the FPD 21 is actually displaced by adding images for each incident angle.
[0016]
Each image for each incident angle is stored in the frame memory 24 as it is, and the incident angle (the position of the X-ray tube 11) relating to each image is stored, and each image is added while being displaced later. It is also possible to reconstruct a tomographic image having a certain depth. In this case, the depth of the tomographic image to be reconstructed can be changed by changing the amount of positional deviation at the time of image addition.
[0017]
The tomographic image thus obtained is adjusted in gradation by passing through the gradation converter 25, then converted into an analog signal through the D / A converter 26, sent to the image monitor device 27, and displayed. .
[0018]
Next, the movement of the grid 15 will be described. The grid 15 stops at a position where the X-ray tube 11 is located, and is moved by a certain distance in one direction during the period when X-ray exposure is performed. The moving distance is a distance that is an integral multiple of the arrangement interval (pitch) of the detection pixels of the FPD 21. When X-ray exposure is performed after stopping at the next stop position, it moves in the opposite direction by the same distance, and such reciprocation is repeated for each X-ray exposure. Thereby, moire fringes based on the difference between the spatial frequency characteristics of the grid 15 and the spatial sampling frequency characteristics of the FPD 21 can be eliminated.
[0019]
The principle will be described in detail below. FIG. 3A is an enlarged view of the FPD 21 taken in a cross section and viewed from the lateral direction (similar to the head direction of the subject 31 as in FIG. 2). In this figure, X-rays are incident from above. To do. As shown in (a), moire fringes do not occur if the pitch of the projected image 15a of the grid 15 (its high absorptance portion) exactly matches the pitch of the detection pixels 21a of the FPD 21. However, as shown in FIG. 3B, their pitches generally do not match. In FIG. 3B, the pitch of the projected images 15a of the grid 15 is narrower than the pitch of the detection pixels 21a. Even if an ideal state as shown in FIG. 3A is realized in a certain SID (distance between the X-ray focal point position in the X-ray tube 11 and the detection surface of the FPD 21), if the SID changes ( b). As shown in FIG. 3B, the pixels 21a into which the projected image 15a enters and the pixels 21a into which the projected image 15a does not appear appear at a constant cycle, and the signal of the pixel 21a into which the projected images 15a enter several is small. Since the signal of the pixel 21a with a small number of entering becomes large, this causes a moire fringe.
[0020]
In FIG. 3B, it is assumed that the projected image 15a is moved left and right, for example, rightward by one interval of the pixel 21a, and during that time, X-ray exposure and signal accumulation at each pixel 21a are performed. Then, since the projection image 15a crosses rightward in any pixel 21a, the influence of the projection image 15a is averaged in any pixel 21a, and the signal change for each pixel 21a by the projection image 15a becomes small. For this reason, it is possible to reduce the amplitude of moire fringes by such movement of the grid 15. Furthermore, if the moving distance is set to a distance that is many times the pixel interval, the influence of the projected image 15a is further averaged, and the moire fringe amplitude can be further reduced.
[0021]
Actually, an experiment was performed using the FPD 21 having a pixel pitch (sampling period) of 150 μm and the grid 15 having a projection image period of 100 μm when SID = 1000 mm and data was obtained. Here, reading of the FPD 21 was performed every 133 msec (signal accumulation period of the FPD 21 = 133 msec, that is, image reading speed = 133 msec / sheet). When the amount (distance) by which the grid 15 is moved is changed during the image reading time interval, the result shown in FIG. 4 is obtained. In FIG. 4, the unit of the amount of grid movement on the horizontal axis is a multiple of the pixel pitch, and the vertical axis indicates the amplitude (%) of moire fringes. As described above, when the spatial sampling period of the FPD 21 and the projected image period of the grid 15 are different, if the grid 15 is not moved (grid movement amount = 0), the moire fringe amplitude becomes large, but the grid movement amount. The larger the value is, the smaller the amplitude of the moire fringes becomes. This proves the above.
[0022]
In the actual system, since the image reading speed of the FPD 21 is fast as described above, the X-ray tube 11 cannot be stopped each time, and the X-ray tube 11 is continuously moved. If the X-ray tube 11 is stopped at the image reading time interval (133 msec in the above example), the same explanation can be made. In this case, X-ray exposure is not performed for each stop position of the X-ray tube 11 but X-ray exposure is continuously performed while the X-ray tube 11 is moving. When actually performing X-ray tomography, for example, the X-ray tube 11 is moved over 1.5 seconds so that the incident angle of X-rays varies by 40 degrees. To generate. Then, reading of the FPD 21 is performed every 133 msec, and the grid 15 is arranged in one direction by a distance that is an integral multiple of the detection pixel pitch of the FPD 21 in the arrangement direction of the high and low portions of the X-ray absorption rate at every reading time interval. The reciprocating movement is repeated such that it is moved and moved by the same distance in the opposite direction at the next reading time interval.
[0023]
In X-ray tomography, it is essential to enter X-rays obliquely in addition to incident X-rays at right angles to the detection surface of the X-ray detector (here, FPD 21). It is effective for tomography. That is, the moving direction of the X-ray tube 11 (the left-right direction in FIG. 1 and the direction perpendicular to the paper surface in FIG. 2) and the direction in which the X-ray high-absorption ratio and low-absorption ratio sections of the grid 15 extend in parallel ( This is because the X-rays can be prevented from being blocked by the grid 15 when the X-rays are incident obliquely by matching the horizontal direction in FIG. 1 and the direction perpendicular to the paper surface in FIG.
[0024]
The above description relates to the embodiment of the present invention, and the present invention is not limited to the example described above, and the specific configuration and the like are described above without departing from the spirit of the invention. Of course, various changes can be made.
[0025]
【The invention's effect】
As described above, according to the X-ray imaging apparatus of the present invention, it is possible to prevent the occurrence of moire fringes when the scattered radiation removal grid is used. In addition, it is not necessary to increase the manufacturing accuracy of the grid, and the grid can be used so that the X-ray is not blocked by the grid when the X-ray is not incident on the detection surface of the X-ray detector at a right angle. It is suitable for X-ray tomography in which a line needs to be incident obliquely.
[Brief description of the drawings]
FIG. 1 is a block diagram of an X-ray tomography apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic view from the front (left side in FIG. 1) of the X-ray tube, the subject, the grid, and the FPD in the embodiment.
FIG. 3 is a schematic diagram showing a relationship between a projected image of a grid and detection pixels of an FPD.
FIG. 4 is a graph showing measurement results of moire fringe amplitude with respect to grid movement amount;
[Explanation of symbols]
11 X-ray tube 12 Power supply device 13 Exposure control device 14 X-ray tube moving device 15 Grid 16 Grid moving device 21 FPD
22 FPD reading unit 23 A / D converter 24 Frame memory 25 Gradation converter 26 D / A converter 27 Image monitor device 28 CPU
31 Subject 32 Inspection table

Claims (1)

X線発生器と、被写体を透過したX線が入射するように配置されるX線検出器と、被写体とX線検出器との間に配置される散乱線除去用グリッドと、該グリッドを、上記X線検出器の信号蓄積期間の間、該X線検出器の空間サンプリング周期の整数倍の距離だけ、該グリッドのX線の高吸収率部と低吸収率部との並び方向に移動させる移動装置とを備えることを特徴とするX線撮影装置。An X-ray generator, an X-ray detector arranged so that X-rays transmitted through the subject are incident, a scattered radiation removal grid arranged between the subject and the X-ray detector, and the grid, During the signal accumulation period of the X-ray detector, the grid is moved in the alignment direction of the X-ray high-absorption rate portion and the low-absorption rate portion by an integer multiple of the spatial sampling period of the X-ray detector. An X-ray imaging apparatus comprising: a moving device.
JP2001226540A 2001-07-26 2001-07-26 X-ray equipment Expired - Fee Related JP3724393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226540A JP3724393B2 (en) 2001-07-26 2001-07-26 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226540A JP3724393B2 (en) 2001-07-26 2001-07-26 X-ray equipment

Publications (2)

Publication Number Publication Date
JP2003038482A JP2003038482A (en) 2003-02-12
JP3724393B2 true JP3724393B2 (en) 2005-12-07

Family

ID=19059338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226540A Expired - Fee Related JP3724393B2 (en) 2001-07-26 2001-07-26 X-ray equipment

Country Status (1)

Country Link
JP (1) JP3724393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215929A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Radiography method and radiographic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572710B2 (en) * 2005-03-23 2010-11-04 株式会社島津製作所 Radiation imaging device
DE102005052992A1 (en) * 2005-11-07 2007-05-16 Siemens Ag Anti-scatter grid for reducing scattered radiation in an X-ray machine and X-ray machine with a scattered radiation grid
JP4928336B2 (en) * 2007-04-26 2012-05-09 株式会社日立製作所 Radiation imaging apparatus and nuclear medicine diagnostic apparatus
JP4946927B2 (en) * 2008-03-13 2012-06-06 株式会社島津製作所 X-ray tomography equipment
US8477901B2 (en) 2008-11-26 2013-07-02 Analogic Corporation Method of and apparatus for continuous wave tomosynthesis using photon counting
JP5407774B2 (en) * 2009-11-10 2014-02-05 株式会社島津製作所 Radiography equipment
JP5348172B2 (en) * 2011-04-28 2013-11-20 株式会社島津製作所 Radiography equipment
EP3469988A1 (en) * 2017-10-11 2019-04-17 Ion Beam Applications S.A. Apparatus and methods for imaging an object by cone beam tomography
CN112218583A (en) * 2018-03-19 2021-01-12 森瑟实验室有限责任公司 X-ray tomography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215929A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Radiography method and radiographic device

Also Published As

Publication number Publication date
JP2003038482A (en) 2003-02-12

Similar Documents

Publication Publication Date Title
US8451975B2 (en) Radiographic system, radiographic method and computer readable medium
JP5150713B2 (en) Radiation image detection device, radiation imaging device, radiation imaging system
WO2011033798A1 (en) X-ray imaging device, x-ray image system, and x-ray image generation method
JP5343065B2 (en) Radiography system
US9155508B2 (en) X-ray CT device
WO2012057140A1 (en) Radiography system and radiograph generation method
US20120140885A1 (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
CN102551751A (en) Radiographic apparatus and radiographic system
JP3724393B2 (en) X-ray equipment
US20140286477A1 (en) Radiation photographing apparatus
JP2011045655A (en) X-ray radiographic equipment
JP2011224330A (en) Radiation imaging system and offset correction method therefor
JP6613988B2 (en) Radiography system
WO2012057047A1 (en) Radiation imaging system
JP4112825B2 (en) X-ray equipment
EP0402876A2 (en) Radiographic apparatus
WO2012070661A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
WO2012169427A1 (en) Radiography system
JP2012120650A (en) Radiographic system and method for generating radiation phase contrast image
JP2012115621A (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2012065840A (en) X-ray radiography apparatus and x-ray image system
CN109328035B (en) Radiographic apparatus
WO2012147749A1 (en) Radiography system and radiography method
RU2172137C2 (en) Method for computer tomography and device for medical diagnosis

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees