JP3723373B2 - Waste heat input type absorption chiller / heater - Google Patents

Waste heat input type absorption chiller / heater Download PDF

Info

Publication number
JP3723373B2
JP3723373B2 JP05588499A JP5588499A JP3723373B2 JP 3723373 B2 JP3723373 B2 JP 3723373B2 JP 05588499 A JP05588499 A JP 05588499A JP 5588499 A JP5588499 A JP 5588499A JP 3723373 B2 JP3723373 B2 JP 3723373B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature regenerator
low
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05588499A
Other languages
Japanese (ja)
Other versions
JP2000257978A (en
Inventor
伸一 上篭
正之 大能
俊之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05588499A priority Critical patent/JP3723373B2/en
Publication of JP2000257978A publication Critical patent/JP2000257978A/en
Application granted granted Critical
Publication of JP3723373B2 publication Critical patent/JP3723373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸収冷温水機に関するものである。
【0002】
【従来の技術】
従来の吸収冷温水機の1例を、図5に示す。
高温再生器4のバーナ5が燃焼し、吸収器3から流れて来た稀吸収液が加熱され、沸騰し、冷媒蒸気が稀吸収液から分離する。これにより稀吸収液が凝縮され、濃度が中程度の中間吸収液になる。
【0003】
冷媒蒸気は冷媒蒸気管13を経て低温再生器11へ流れ、高温再生器4からの中間吸収液を加熱して凝縮し、冷媒液となって、凝縮器12へ流れる。そして凝縮器12では低温再生器11から流れて来た冷媒蒸気が、冷却水管29の冷却水により冷却され凝縮して冷媒液になり、低温再生器11から流れて来た冷媒液と共に、蒸発器2へ流下する。
【0004】
蒸発器2では冷媒ポンプP2の運転によって、冷媒液が散布装置31から散布され、蒸発する冷媒により冷却されて温度が低下した冷水管21の冷水が、負荷に供給される。蒸発器2で蒸発した冷媒蒸気は吸収器3へ流れ、散布される濃吸収液に吸収される。
【0005】
他方、高温再生器4で冷媒蒸気が分離して濃度が上昇した中間吸収液は中間吸収液管22、高温熱交換器8、中間吸収液管23を経て低温再生器11へ流れる。この低温再生器11において、中間吸収液は、高温再生器4からの冷媒蒸気が内部を流れる加熱器14によって加熱され、冷媒蒸気が分離して吸収液の濃度はさらに上昇し、濃吸収液になる。
【0006】
この濃吸収液は濃吸収液管25へ流入して低温熱交換器7及び濃吸収液管26を経て吸収器3へ流れ、散布装置30から冷却水管29の上に滴下する。そして、冷却された濃吸収液は、蒸発器2を経由して入ってくる冷媒蒸気を、よく吸収して冷媒濃度が高くなり、稀吸収液になる。この稀吸収液は、吸収液ポンプP1の駆動力により、低温熱交換器7および高温熱交換器8で予熱され、高温再生器4に流入する。
【0007】
そして、高温再生器4に備えられたバーナ5から出る排ガス33は、一般的に利用されずに大気中に排気されていたが、吸収冷温水機の省エネルギー性の向上が求められ、この排ガス33を利用するものが、特開平6−257878号公報に記載されている。
【0008】
【発明が解決しようとする課題】
しかしながら、この公報の従来技術は、高温再生器からの排ガスの排熱を利用するために、新たに排熱回収用低温再生器を追加して設けるものであり、追加設備が大きなものとなり、吸収冷温水機のコストを高くしてしまうものであった。この発明は、以上の課題を解決するためになされたもので、高温再生器からの排ガスを利用して省エネルレギー性を向上できる安価な排熱投入型吸収冷温水機を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、第1の発明は、高温再生器、低温再生器、凝縮器、蒸発器、および吸収器を備えて構成される吸収冷温水機において、低温再生器から吸収器へと供給される濃吸収液との間で熱交換を行う低温熱交換器が上流側に設けられ、高温再生器から低温再生器へと供給される中間吸収液との間で熱交換を行う高温熱交換器が下流側に設けられた吸収器から高温再生器に至る稀吸収液管の低温熱交換器と高温熱交換器との間に、コジェネレーションシステムなどから供給される排熱との間で熱交換を行う排熱熱交換器と、高温再生器から供給される排ガスとの間で熱交換を行う排ガス熱交換器とを設け、前記低温熱交換器寄りに前記排熱熱交換器を、前記高温熱交換器寄りに前記排ガス熱交換器を配設したことを特徴とする排熱投入型吸収冷温水機である。
【0010】
第2の発明は、さらに、高温熱交換器から低温再生器に至る中間吸収液管の途中にフラッシュボックスを設けたことを特徴とする排熱投入型吸収冷温水機である。
【0011】
第3の発明は、高温再生器、低温再生器、凝縮器、蒸発器、および吸収器を備えて構成される吸収冷温水機において、低温再生器から吸収器へと供給される濃吸収液との間で熱交換を行う低温熱交換器が上流側に設けられ、高温再生器から低温再生器へと供給される中間吸収液との間で熱交換を行う高温熱交換器が下流側に設けられた吸収器から高温再生器に至る稀吸収液管の低温熱交換器と高温熱交換器との間に、コジェネレーションシステムなどから供給される排熱との間で熱交換を行う排熱熱交換器を設けると共に、高温熱交換器の下流側の稀吸収液管に高温再生器から供給される排ガスとの間で熱交換を行う排ガス熱交換器を設けたことを特徴とする排熱投入型吸収冷温水機である。
【0012】
第4の発明は、高温再生器、低温再生器、凝縮器、蒸発器、および吸収器を備えて構成される吸収冷温水機において、低温再生器から吸収器へと供給される濃吸収液との間で熱交換を行う低温熱交換器が上流側に設けられ、高温再生器から低温再生器へと供給される中間吸収液との間で熱交換を行う高温熱交換器が下流側に設けられた吸収器から高温再生器に至る稀吸収液管の低温熱交換器の下流側に、コジェネレーションシステムなどから供給される排熱との間で熱交換を行う排熱熱交換器を設けると共に、この排熱熱交換器の下流側の稀吸収液管を分岐し、分岐した一方の稀吸収液管には高温熱交換器を配設し、他方の前記高温熱交換器を備えない稀吸収液管には、高温再生器から供給される排ガスとの間で熱交換を行う排ガス熱交換器を配設したことを特徴とする排熱投入型吸収冷温水機である。
【0013】
【発明の実施の形態】
この発明の1実施形態を図1に基づいて説明する。
【0014】
図5に示した吸収冷温水機と異なる点について説明すると、この図1に示した吸収冷温水機の吸収器3から高温再生器4に稀吸収液を供給する稀吸収液管6の低温熱交換器7と高温熱交換器8との間に、排熱熱交換器35と排ガス熱交換器37が設けられ、吸収器3から出た稀吸収液は4つの熱交換器7、35、37、8それぞれで加熱されて高温再生器4に流入することになる。
【0015】
稀吸収液管6の最上流側には、低温再生器11から流れてくる濃吸収液との間で熱交換を行う低温熱交換器7が設けられ、そのすぐ下流側に例えば図示しないコ・ジェネレーションシステム(熱電併給)から供給される排熱との間で熱交換を行う排熱熱交換器35が設けられ、コ・ジェネレーションシステムの冷却水などが循環供給され、稀吸収液管6を流れる稀吸収液が加熱される。
【0016】
排熱熱交換器35の下流には、高温再生器4に備えられたバーナ5から出る排ガス33との間で熱交換を行う排ガス熱交換器37が設けられ、ここでも稀吸収液は加熱される。そして、この排ガス熱交換器37を出た排ガス33は、大気へ排気される。排ガス熱交換器37の下流には、高温再生器4から低温再生器に供給される高温の中間吸収液との間で熱交換を行う高温熱交換器8が設けられる。
【0017】
上記のように横成した吸収冷温水機の運転時、高温再生器4のバーナ5が燃焼し、吸収器3から流れて来た稀吸収液が加熱される。この稀吸収液は、例えば臭化リチウム(LiBr)水溶液(界面活性剤を含む)などである吸収液が、水などの冷媒を多く含んだものである。この加熱により、稀吸収液が沸騰し、冷媒蒸気が稀吸収液から分離する。これにより稀吸収液が濃縮され、濃度が中程度の中間吸収液になる。
【0018】
冷媒蒸気は冷媒蒸気管13を経て低温再生器11へ流れる。そして、低温再生器11で高温再生器4からの中間吸収液を加熱して凝縮した冷媒液が、凝縮器12へ流れる。凝縮器12では低温再生器11から流れて来た冷媒蒸気が、冷却水管29の冷却水により冷却され凝縮して冷媒液になり、低温再生器11から流れて来た冷媒液と共に、蒸発器2へ流下する。
【0019】
蒸発器2では冷媒ポンプP2の運転によって、冷媒液が散布装置31により散布される。そして、この散布によって冷却されて温度が低下した冷水管21の冷水が、負荷に供給される。蒸発器2で気化した冷媒蒸気は吸収器3へ流れ、散布される濃吸収液に吸収される。
【0020】
他方、高温再生器4で冷媒蒸気が分離して濃度が上昇した中間吸収液は中間吸収液管22、高温熱交換器8、中間吸収液管23を経て低温再生器11へ流れる。この低温再生器11において、中間吸収液は、高温再生器4からの冷媒蒸気が内部を流れる加熱器14によって加熱される。そして、中間吸収液から冷媒蒸気が分離して吸収液の濃度はさらに上昇し、濃吸収液になる。
【0021】
この濃吸収液は濃吸収液管25へ流入して低温熱交換器7及び濃吸収液管26を経て吸収器3へ流れ、散布装置30から冷却水管29の上に滴下する。そして、冷却水管29によって冷却された濃吸収液は、蒸発器2を経由して入ってくる冷媒蒸気を、よく吸収して冷媒濃度が高くなり、稀吸収液になる。この稀吸収液は、吸収液ポンプP1の駆動力により、低温熱交換器7、排熱熱交換器35、排ガス熱交換器37、および高温熱交換器8で予熱され、高温再生器4に流入する。
【0022】
すなわち、吸収器3から高温再生器4に供給される稀吸収液は、先ず低温熱交換器7において低温再生器11から流れてくる濃吸収液との間で熱交換を行い、次に、排熱熱交換器35においてコ・ジェネレーションシステムなどから供給される排熱との間で熱交換を行い、さらに排ガス熱交換器37において高温再生器4のバーナ5から出る排ガスとの間で熱交換を行ない、最後に高温熱交換器8において高温再生器4から供給される高温の中間吸収液との間で熱交換を行う。
【0023】
(実施形態の効果)
排熱熱交換器35と排ガス熱交換器37を高温熱交換器8の上流側の稀吸収液管6に設けることで、稀吸収液が高温の中間吸収液との間で熱交換を行う前に、コ・ジェネレーションシステムなどから供給される排熱や排ガスとの間で熱交換を行うことができるので、回収熱量を大きなものにすることが可能となる。
【0024】
なお、以上の実施形態においては、稀吸収液は低温熱交換器7、排熱熱交換器35、および排ガス熱交換37における熱交換で相当に加熱されており、この稀吸収液との間で高温熱交換器8で熱交換を行った中間吸収液は、温度があまり下がらず、従来より相当に高くなっている。
【0025】
そして、この中間吸収液が低温再生器11に直接流入すると、放圧して急速蒸発を行うフラッシュが盛んになり、吸収液が冷媒蒸気へ混入してしまうことが考えられるので、図2に示すように高温熱交換器8から低温再生器11に至る中間吸収液管23の途中にフラッシュボックス39を設け、十分にフラッシュを行わせた後の中間吸収液、及びフラッシュによって生じた冷媒蒸気をそれぞれ別々の管41、43によって低温再生器11へ導くように横成することが好ましい。
【0026】
(他の実施形態)
以上の実施形態においては、排ガス熱交換器37を、排熱熱交換器35と高温熱交換器8との間の稀吸収液管6に設けたが、他の実施形態においては、図3に示すように高温熱交換器8の下流側の稀吸収液管6に設けることも可能である。
【0027】
この構成においては、稀吸収液管6の稀吸収液は、十分に暖まった状態で排ガスとの間で熱交換を行うことになるので、排ガスからの回収熱量は少ないものとなるが、排ガスの排熱を利用したCOP(エンタルピーをもとにした成績係数、あるいはエネルギー利用交換率)を高いものとすることができる。
【0028】
また、以上の実施形態においては、高温熱交換器8と排ガス熱交換器37とは、稀吸収液管6に直列に設けられるものであったが、他の実施形態においては図4に示すように並列に設けることが可能である。
【0029】
すなわち、例えば排熱熱交換器35が設けられている稀吸収液管6の下流側に分岐して再び合流する並流配管部45を設け、分岐管の一方には高温熱交換器8を設け、他方の分岐管には排ガス熱交換器37を設けるようにしても良い。
【0030】
このように、熱交換器8と37とを並列に設けることで、熱交換器部の小型化が可能となり、吸収冷温水機全体をもコンパクトにすることが可能となる。
【0031】
【発明の効果】
以上説明したように、この発明によれば、吸収器から高温再生器に送る稀吸収液の加熱が従来以上に図られるので吸収温水機の省エネルギー性が向上する。
【0032】
また、請求項1の発明によれば、高温熱交換器で中間吸収液により加熱する前に排ガスによる加熱を行うので、排ガスからの回収熱量を大きなものとすることができる。
【0033】
また、請求項2の発明によれば、中間吸収液の低温再生器におけるフラッシュによる弊害、すなわち吸収液が冷媒蒸気に混入する可能性を小さくすることができる。
【0034】
また、請求項3の発明によれば、排ガスからの回収熱量は請求項1の発明の場合よりは少なくなるものの、排ガスの排熱を利用したCOP(エンタルピーをもとにした成績係数、あるいはエネルギー利用効率)を高くできる。
【0035】
また、請求項4の発明によれば、排ガス熱交換器と高温熱交換器を並列に設けることでこの部分の小型化が可能となり、これにより冷温水機全体の小型化も可能となる。
【図面の簡単な説明】
【図1】この発明の第1実施形態に係る排熱投入型吸収冷温水機の全体概略回路図である。
【図2】この発明の第2実施形態に係る排熱投入型吸収冷温水機の全体概略回路図である。
【図3】この発明の第3実施形態に係る排熱投入型吸収冷温水機の全体概略回路図である。
【図4】この発明の第4実施形態に係る排熱投入型吸収冷温水機の全体概略回路図である。
【図5】従来の吸収冷温水機の全体の概略回路図である。
【符号の説明】
1 蒸発吸収器胴
2 蒸発器
3 吸収器
4 高温再生器
5 バーナ
6 稀吸収液管
7 低温熱交換器
8 高温熱交換器
10 高温胴
11 低温再生器
12 凝縮器
13 冷媒蒸気管
16 冷媒液流下管
17 冷媒循環管
21 冷水管
22、23 中間吸収液管
25、26 濃吸収液管
29 冷却水管
30、31 散布装置
35 排熱熱交換器
37 排ガス熱交換器
39 フラッシュボックス
45 並流配管部
P1 吸収液ポンプ
P2 冷媒ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption chiller / heater.
[0002]
[Prior art]
An example of a conventional absorption chiller / heater is shown in FIG.
The burner 5 of the high temperature regenerator 4 burns, the rare absorbent that has flowed from the absorber 3 is heated and boiled, and the refrigerant vapor is separated from the rare absorbent. As a result, the rare absorbent is condensed and becomes an intermediate absorbent having a medium concentration.
[0003]
The refrigerant vapor flows through the refrigerant vapor pipe 13 to the low temperature regenerator 11, heats and condenses the intermediate absorption liquid from the high temperature regenerator 4, becomes refrigerant liquid, and flows to the condenser 12. In the condenser 12, the refrigerant vapor flowing from the low temperature regenerator 11 is cooled and condensed by the cooling water in the cooling water pipe 29 to become a refrigerant liquid, and together with the refrigerant liquid flowing from the low temperature regenerator 11, the evaporator Flow down to 2.
[0004]
In the evaporator 2, the coolant liquid is sprayed from the spraying device 31 by the operation of the coolant pump P <b> 2, and the cold water in the cold water pipe 21 whose temperature is lowered by being cooled by the evaporated coolant is supplied to the load. The refrigerant vapor evaporated in the evaporator 2 flows to the absorber 3 and is absorbed by the concentrated absorbent to be dispersed.
[0005]
On the other hand, the intermediate absorption liquid whose concentration has been increased by separation of the refrigerant vapor in the high temperature regenerator 4 flows to the low temperature regenerator 11 through the intermediate absorption liquid pipe 22, the high temperature heat exchanger 8 and the intermediate absorption liquid pipe 23. In this low-temperature regenerator 11, the intermediate absorption liquid is heated by the heater 14 through which the refrigerant vapor from the high-temperature regenerator 4 flows, and the refrigerant vapor is separated to further increase the concentration of the absorption liquid. Become.
[0006]
The concentrated absorbent flows into the concentrated absorbent pipe 25, flows through the low-temperature heat exchanger 7 and the concentrated absorbent pipe 26 to the absorber 3, and is dropped from the spray device 30 onto the cooling water pipe 29. And the cooled concentrated absorption liquid absorbs the refrigerant | coolant vapor | steam which enters via the evaporator 2 well, a refrigerant | coolant density | concentration becomes high, and becomes a rare absorption liquid. This rare absorbent is preheated in the low temperature heat exchanger 7 and the high temperature heat exchanger 8 by the driving force of the absorbent pump P1 and flows into the high temperature regenerator 4.
[0007]
The exhaust gas 33 emitted from the burner 5 provided in the high-temperature regenerator 4 is generally not used but exhausted into the atmosphere. However, the energy saving performance of the absorption chiller / heater is required. Japanese Patent Application Laid-Open No. 6-257878 discloses that uses the above.
[0008]
[Problems to be solved by the invention]
However, according to the prior art of this publication, in order to utilize the exhaust heat of exhaust gas from the high temperature regenerator, a new low temperature regenerator for exhaust heat recovery is additionally provided, and the additional equipment becomes large and absorption This would increase the cost of the water heater. The present invention has been made to solve the above problems, and aims to provide an inexpensive exhaust heat input type absorption chiller / heater that can improve the energy-saving performance by utilizing exhaust gas from a high-temperature regenerator. To do.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, a first invention is an absorption chiller / heater comprising a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber. A low-temperature heat exchanger that exchanges heat with the concentrated absorbent supplied to the upstream is installed on the upstream side to exchange heat with the intermediate absorbent supplied from the high-temperature regenerator to the low-temperature regenerator Exhaust heat supplied from a cogeneration system, etc., between the low-temperature heat exchanger and the high-temperature heat exchanger in the rare absorption liquid pipe from the absorber installed downstream to the high-temperature regenerator An exhaust heat exchanger for exchanging heat between the exhaust gas heat exchanger and an exhaust gas heat exchanger for exchanging heat between the exhaust gas supplied from the high-temperature regenerator, and the exhaust heat heat exchanger near the low-temperature heat exchanger and to characterized in that it is provided the exhaust gas heat exchanger to the hot heat exchanger close A heat-on type absorbent chiller.
[0010]
The second invention is an exhaust heat input type absorption chiller / heater characterized in that a flash box is provided in the middle of the intermediate absorption liquid pipe from the high temperature heat exchanger to the low temperature regenerator.
[0011]
A third invention is an absorption chiller / heater configured to include a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber, and a concentrated absorbent supplied from the low temperature regenerator to the absorber. A low-temperature heat exchanger that performs heat exchange between the high-temperature regenerator and the intermediate absorbent that is supplied from the high-temperature regenerator to the low-temperature regenerator is provided on the downstream side. Exhaust heat that exchanges heat between exhaust heat supplied from a cogeneration system, etc., between the low-temperature heat exchanger and the high-temperature heat exchanger of the rare absorption liquid pipe from the installed absorber to the high-temperature regenerator waste heat, characterized in that provided Rutotomoni provided exchanger, the exhaust gas heat exchanger for exchanging heat between the exhaust gas supplied from the high temperature regenerator diluted absorption liquid pipe on the downstream side of the high temperature heat exchanger It is an input type absorption chiller / heater.
[0012]
A fourth invention is an absorption chiller / heater comprising a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, and a concentrated absorbent supplied from the low-temperature regenerator to the absorber ; A low-temperature heat exchanger that performs heat exchange between the high-temperature regenerator and the intermediate absorbent that is supplied from the high-temperature regenerator to the low-temperature regenerator is provided on the downstream side. the obtained downstream of the low temperature heat exchanger of the diluted absorption liquid pipe leading to the high temperature regenerator from the absorber, Ru provided an exhaust heat exchanger for exchanging heat between the exhaust heat supplied from such cogeneration systems At the same time , a rare absorption liquid pipe on the downstream side of the exhaust heat exchanger is branched, a high temperature heat exchanger is provided in one of the branched rare absorption liquid pipes, and the other rare high temperature heat exchanger is not provided. the absorption liquid pipe, exhaust gas heat exchanger for exchanging heat between the exhaust gas supplied from the high-temperature regenerator A heat-on type absorbent chiller being characterized in that disposed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
[0014]
The difference from the absorption chiller / heater shown in FIG. 5 will be described. The low-temperature heat of the rare absorbent liquid pipe 6 for supplying the rare absorbent to the high-temperature regenerator 4 from the absorber 3 of the absorption chiller / heater shown in FIG. An exhaust heat exchanger 35 and an exhaust gas heat exchanger 37 are provided between the exchanger 7 and the high-temperature heat exchanger 8, and the rare absorption liquid discharged from the absorber 3 is converted into four heat exchangers 7, 35, 37. , 8 are heated and flow into the high-temperature regenerator 4.
[0015]
A low temperature heat exchanger 7 for exchanging heat with the concentrated absorbent flowing from the low temperature regenerator 11 is provided on the uppermost stream side of the rare absorbent pipe 6. An exhaust heat exchanger 35 for exchanging heat with the exhaust heat supplied from the generation system (combined heat and power supply) is provided, and the cooling water of the co-generation system is circulated and supplied to flow through the rare absorption liquid pipe 6. The rare absorbent is heated.
[0016]
An exhaust gas heat exchanger 37 for exchanging heat with the exhaust gas 33 exiting from the burner 5 provided in the high-temperature regenerator 4 is provided downstream of the exhaust heat exchanger 35, and the rare absorbent is also heated here. The The exhaust gas 33 exiting the exhaust gas heat exchanger 37 is exhausted to the atmosphere. A high-temperature heat exchanger 8 that performs heat exchange with the high-temperature intermediate absorbent supplied from the high-temperature regenerator 4 to the low-temperature regenerator is provided downstream of the exhaust gas heat exchanger 37.
[0017]
During operation of the absorption chiller / heater laid horizontally as described above, the burner 5 of the high-temperature regenerator 4 burns, and the rare absorbent flowing from the absorber 3 is heated. In this rare absorbent, for example, an absorbent such as a lithium bromide (LiBr) aqueous solution (including a surfactant) contains a large amount of refrigerant such as water. By this heating, the rare absorbing liquid boils and the refrigerant vapor is separated from the rare absorbing liquid. As a result, the rare absorbent is concentrated and becomes an intermediate absorbent having a medium concentration.
[0018]
The refrigerant vapor flows through the refrigerant vapor pipe 13 to the low temperature regenerator 11. Then, the refrigerant liquid condensed by heating the intermediate absorption liquid from the high temperature regenerator 4 in the low temperature regenerator 11 flows to the condenser 12. In the condenser 12, the refrigerant vapor flowing from the low temperature regenerator 11 is cooled and condensed by the cooling water in the cooling water pipe 29 to become a refrigerant liquid, and together with the refrigerant liquid flowing from the low temperature regenerator 11, the evaporator 2 Flow down.
[0019]
In the evaporator 2, the refrigerant liquid is sprayed by the spraying device 31 by the operation of the refrigerant pump P2. And the cold water of the cold water pipe | tube 21 which was cooled by this spraying and the temperature fell is supplied to load. The refrigerant vapor evaporated in the evaporator 2 flows to the absorber 3 and is absorbed by the concentrated absorbent to be dispersed.
[0020]
On the other hand, the intermediate absorption liquid whose concentration has been increased by separation of the refrigerant vapor in the high temperature regenerator 4 flows to the low temperature regenerator 11 through the intermediate absorption liquid pipe 22, the high temperature heat exchanger 8 and the intermediate absorption liquid pipe 23. In this low temperature regenerator 11, the intermediate absorbent is heated by a heater 14 through which the refrigerant vapor from the high temperature regenerator 4 flows. Then, the refrigerant vapor is separated from the intermediate absorption liquid, and the concentration of the absorption liquid further increases to become a concentrated absorption liquid.
[0021]
The concentrated absorbent flows into the concentrated absorbent pipe 25, flows through the low-temperature heat exchanger 7 and the concentrated absorbent pipe 26 to the absorber 3, and is dropped from the spray device 30 onto the cooling water pipe 29. And the concentrated absorption liquid cooled by the cooling water pipe 29 absorbs the refrigerant vapor entering via the evaporator 2 well, the refrigerant concentration becomes high, and becomes a rare absorption liquid. This rare absorbent is preheated by the low temperature heat exchanger 7, the exhaust heat exchanger 35, the exhaust heat exchanger 37, and the high temperature heat exchanger 8 by the driving force of the absorbent pump P 1 and flows into the high temperature regenerator 4. To do.
[0022]
That is, the rare absorbent supplied from the absorber 3 to the high-temperature regenerator 4 is first subjected to heat exchange with the concentrated absorbent flowing from the low-temperature regenerator 11 in the low-temperature heat exchanger 7 and then discharged. In the heat heat exchanger 35, heat is exchanged with exhaust heat supplied from a cogeneration system or the like, and in the exhaust gas heat exchanger 37, heat is exchanged with exhaust gas discharged from the burner 5 of the high temperature regenerator 4. Finally, heat exchange is performed with the high temperature intermediate absorbent supplied from the high temperature regenerator 4 in the high temperature heat exchanger 8.
[0023]
(Effect of embodiment)
By providing the exhaust heat exchanger 35 and the exhaust gas heat exchanger 37 in the rare absorbent liquid pipe 6 on the upstream side of the high temperature heat exchanger 8, before the rare absorbent performs heat exchange with the high temperature intermediate absorbent. In addition, heat can be exchanged with exhaust heat or exhaust gas supplied from a cogeneration system or the like, so that the amount of recovered heat can be increased.
[0024]
In the above-described embodiment, the rare absorbent is considerably heated by heat exchange in the low-temperature heat exchanger 7, the exhaust heat exchanger 35, and the exhaust gas heat exchange 37. The intermediate absorbing liquid that has been subjected to heat exchange with the high-temperature heat exchanger 8 does not drop much in temperature, and is considerably higher than before.
[0025]
Then, when this intermediate absorption liquid directly flows into the low temperature regenerator 11, it is considered that the flash that releases pressure and rapidly evaporates becomes active, and the absorption liquid may be mixed into the refrigerant vapor, as shown in FIG. 2. Is provided with a flash box 39 in the middle of the intermediate absorption liquid pipe 23 extending from the high temperature heat exchanger 8 to the low temperature regenerator 11, and the intermediate absorption liquid after sufficient flashing and the refrigerant vapor generated by the flash are separately provided. It is preferable to lay down so as to lead to the low-temperature regenerator 11 by the tubes 41 and 43.
[0026]
(Other embodiments)
In the above embodiment, the exhaust gas heat exchanger 37 is provided in the rare absorbent liquid pipe 6 between the exhaust heat exchanger 35 and the high-temperature heat exchanger 8, but in other embodiments, FIG. As shown, it may be provided in the rare absorption liquid pipe 6 on the downstream side of the high temperature heat exchanger 8.
[0027]
In this configuration, the rare absorbent in the rare absorbent pipe 6 exchanges heat with the exhaust gas in a sufficiently warmed state, so that the amount of heat recovered from the exhaust gas is small. COP using exhaust heat (coefficient of performance based on enthalpy, or energy use exchange rate) can be made high.
[0028]
Further, in the above embodiment, the high temperature heat exchanger 8 and the exhaust gas heat exchanger 37 are provided in series with the rare absorbent liquid pipe 6, but in other embodiments as shown in FIG. Can be provided in parallel.
[0029]
That is, for example, a parallel flow pipe section 45 that branches downstream from the rare absorption liquid pipe 6 where the exhaust heat exchanger 35 is provided and joins again is provided, and a high-temperature heat exchanger 8 is provided on one of the branch pipes. The exhaust gas heat exchanger 37 may be provided in the other branch pipe.
[0030]
Thus, by providing the heat exchangers 8 and 37 in parallel, it is possible to reduce the size of the heat exchanger, and it is possible to make the entire absorption chiller / heater compact.
[0031]
【The invention's effect】
As described above, according to the present invention, heating of the rare absorbent sent from the absorber to the high-temperature regenerator can be performed more than before, so that the energy saving property of the absorption water heater is improved.
[0032]
Further, according to the first aspect of the present invention, since the heating with the exhaust gas is performed before the heating with the intermediate absorbent in the high temperature heat exchanger, the amount of heat recovered from the exhaust gas can be increased.
[0033]
Further, according to the invention of claim 2, it is possible to reduce the adverse effect of the intermediate absorption liquid due to the flash in the low temperature regenerator, that is, the possibility that the absorption liquid is mixed into the refrigerant vapor.
[0034]
Further, according to the invention of claim 3, although the amount of heat recovered from the exhaust gas is smaller than that of the invention of claim 1, the COP utilizing the exhaust heat of the exhaust gas (coefficient of performance based on enthalpy, or energy Use efficiency).
[0035]
According to the invention of claim 4, by providing the exhaust gas heat exchanger and the high-temperature heat exchanger in parallel, it is possible to reduce the size of this portion, and thus it is possible to reduce the size of the entire chilled water heater.
[Brief description of the drawings]
1 is an overall schematic circuit diagram of an exhaust heat input type absorption chiller / heater according to a first embodiment of the present invention;
FIG. 2 is an overall schematic circuit diagram of an exhaust heat input type absorption chiller / heater according to a second embodiment of the present invention.
FIG. 3 is an overall schematic circuit diagram of an exhaust heat input type absorption chiller / heater according to a third embodiment of the present invention.
FIG. 4 is an overall schematic circuit diagram of an exhaust heat input type absorption chiller / heater according to a fourth embodiment of the present invention.
FIG. 5 is a schematic circuit diagram of an entire conventional absorption chiller / heater.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaporation absorber cylinder 2 Evaporator 3 Absorber 4 High temperature regenerator 5 Burner 6 Rare absorption liquid pipe 7 Low temperature heat exchanger 8 High temperature heat exchanger 10 High temperature cylinder 11 Low temperature regenerator 12 Condenser 13 Refrigerant vapor pipe 16 Under refrigerant liquid flow Pipe 17 Refrigerant circulation pipe 21 Cold water pipes 22 and 23 Intermediate absorption liquid pipes 25 and 26 Concentrated absorption liquid pipes 29 Cooling water pipes 30 and 31 Dispersing device 35 Waste heat heat exchanger 37 Exhaust gas heat exchanger 39 Flash box 45 Cocurrent flow pipe part P1 Absorption liquid pump P2 Refrigerant pump

Claims (4)

高温再生器、低温再生器、凝縮器、蒸発器、および吸収器を備えて構成される吸収冷温水機において、
低温再生器から吸収器へと供給される濃吸収液との間で熱交換を行う低温熱交換器が上流側に設けられ、高温再生器から低温再生器へと供給される中間吸収液との間で熱交換を行う高温熱交換器が下流側に設けられた吸収器から高温再生器に至る稀吸収液管の低温熱交換器と高温熱交換器との間に、コジェネレーションシステムから供給される排熱との間で熱交換を行う排熱熱交換器と、高温再生器から供給される排ガスとの間で熱交換を行う排ガス熱交換器とを設け、前記低温熱交換器寄りに前記排熱熱交換器を、前記高温熱交換器寄りに排ガス熱交換器を配設したことを特徴とする排熱投入型吸収冷温水機。
In an absorption chiller / heater comprising a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber,
A low-temperature heat exchanger that performs heat exchange with the concentrated absorbent supplied from the low-temperature regenerator to the absorber is provided on the upstream side, and the intermediate absorbent supplied from the high-temperature regenerator to the low-temperature regenerator A high-temperature heat exchanger that exchanges heat is supplied from the cogeneration system between the low-temperature heat exchanger and the high-temperature heat exchanger in the rare absorption liquid pipe from the absorber installed downstream to the high-temperature regenerator. An exhaust heat exchanger that exchanges heat with the exhaust heat that is exhausted, and an exhaust gas heat exchanger that exchanges heat with the exhaust gas supplied from the high-temperature regenerator, and close to the low-temperature heat exchanger An exhaust heat input type absorption chiller / heater characterized in that an exhaust gas heat exchanger is disposed near the high temperature heat exchanger .
高温熱交換器から低温再生器に至る中間吸収液管の途中にフラッシュボックスを設けたことを特徴とする請求項1記載の排熱投入型吸収冷温水機。  The exhaust heat input type absorption chiller / heater according to claim 1, wherein a flash box is provided in the middle of the intermediate absorption liquid pipe from the high temperature heat exchanger to the low temperature regenerator. 高温再生器、低温再生器、凝縮器、蒸発器、および吸収器を備えて構成される吸収冷温水機において、
低温再生器から吸収器へと供給される濃吸収液との間で熱交換を行う低温熱交換器が上流側に設けられ、高温再生器から低温再生器へと供給される中間吸収液との間で熱交換を行う高温熱交換器が下流側に設けられた吸収器から高温再生器に至る稀吸収液管の低温熱交換器と高温熱交換器との間に、コジェネレーションシステムなどから供給される排熱との間で熱交換を行う排熱熱交換器を設けると共に、高温熱交換器の下流側の稀吸収液管に高温再生器から供給される排ガスとの間で熱交換を行う排ガス熱交換器を設けたことを特徴とする排熱投入型吸収冷温水機。
In an absorption chiller / heater comprising a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber,
A low-temperature heat exchanger that performs heat exchange with the concentrated absorbent supplied from the low-temperature regenerator to the absorber is provided on the upstream side, and the intermediate absorbent supplied from the high-temperature regenerator to the low-temperature regenerator A high-temperature heat exchanger that exchanges heat is supplied from a cogeneration system, etc., between the low-temperature heat exchanger and the high-temperature heat exchanger of the rare absorption liquid pipe from the absorber installed downstream to the high-temperature regenerator. Rutotomoni provided exhaust heat exchanger for exchanging heat between the exhaust heat that is, the heat exchange between the exhaust gas supplied from the high temperature regenerator diluted absorption liquid pipe on the downstream side of the high temperature heat exchanger An exhaust heat input type absorption chiller / heater having an exhaust gas heat exchanger to perform.
高温再生器、低温再生器、凝縮器、蒸発器、および吸収器を備えて構成される吸収冷温水機において、
低温再生器から吸収器へと供給される濃吸収液との間で熱交換を行う低温熱交換器が上流側に設けられ、高温再生器から低温再生器へと供給される中間吸収液との間で熱交換を行う高温熱交換器が下流側に設けられた吸収器から高温再生器に至る稀吸収液管の低温熱交換器の下流側に、コジェネレーションシステムなどから供給される排熱との間で熱交換を行う排熱熱交換器を設けると共に、この排熱熱交換器の下流側の稀吸収液管を分岐し、分岐した一方の稀吸収液管には高温熱交換器を配設し、他方の前記高温熱交換器を備えない稀吸収液管には、高温再生器から供給される排ガスとの間で熱交換を行う排ガス熱交換器を配設したことを特徴とする排熱投入型吸収冷温水機。
In an absorption chiller / heater comprising a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber,
A low-temperature heat exchanger that performs heat exchange with the concentrated absorbent supplied from the low-temperature regenerator to the absorber is provided on the upstream side, and the intermediate absorbent supplied from the high-temperature regenerator to the low-temperature regenerator Exhaust heat supplied from a cogeneration system, etc. downstream of the low-temperature heat exchanger of the rare absorption liquid pipe from the absorber provided on the downstream side to the high-temperature regenerator. Rutotomoni provided exhaust heat exchanger for exchanging heat between the branches a diluted absorbent liquid pipe downstream of the exhaust heat exchanger, the diluted absorption liquid pipe while the branch hot heat exchanger An exhaust gas heat exchanger for exchanging heat with the exhaust gas supplied from the high temperature regenerator is provided in the rare absorption liquid pipe that is provided and does not include the other high temperature heat exchanger. Exhaust heat input type absorption chiller / heater.
JP05588499A 1999-03-03 1999-03-03 Waste heat input type absorption chiller / heater Expired - Fee Related JP3723373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05588499A JP3723373B2 (en) 1999-03-03 1999-03-03 Waste heat input type absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05588499A JP3723373B2 (en) 1999-03-03 1999-03-03 Waste heat input type absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2000257978A JP2000257978A (en) 2000-09-22
JP3723373B2 true JP3723373B2 (en) 2005-12-07

Family

ID=13011540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05588499A Expired - Fee Related JP3723373B2 (en) 1999-03-03 1999-03-03 Waste heat input type absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3723373B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180152B2 (en) * 2013-03-29 2017-08-16 川重冷熱工業株式会社 Absorption refrigerator
CN104567079B (en) * 2014-12-31 2016-09-28 北京京诚科林环保科技有限公司 Hot water type lithium bromide absorption water chilling unit

Also Published As

Publication number Publication date
JP2000257978A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
JP2004257705A (en) Concentration device using absorption heat pump
WO2002018849A1 (en) Absorption refrigerating machine
JP4184197B2 (en) Hybrid absorption heat pump system
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JP3851764B2 (en) Absorption refrigerator
JP2000205691A (en) Absorption refrigerating machine
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP3481530B2 (en) Absorption chiller / heater
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
JP3297720B2 (en) Absorption refrigerator
JP2009168271A (en) Double effect absorption type cold and heat generating/outputting device
JP2008020094A (en) Absorption type heat pump device
WO2002018850A1 (en) Absorption refrigerating machine
JP3331363B2 (en) Absorption refrigerator
CN115371285B (en) Absorption heat exchange system
JPH04116352A (en) Absorption cooler/heater
JP4288799B2 (en) Waste heat input type absorption refrigeration system
JP4540086B2 (en) Exhaust gas driven absorption chiller / heater
JP4322997B2 (en) Absorption refrigerator
JP2002267276A (en) Solar cooling system
JP2004257704A (en) Absorption heat pump device
JP3418315B2 (en) Absorption refrigerator
JP4260099B2 (en) Absorption refrigerator
KR100781880B1 (en) Absorption chiller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees