JP3721389B2 - Multi-branched polymer chain derived from anhydrosugar and method for producing the same - Google Patents

Multi-branched polymer chain derived from anhydrosugar and method for producing the same Download PDF

Info

Publication number
JP3721389B2
JP3721389B2 JP2004027160A JP2004027160A JP3721389B2 JP 3721389 B2 JP3721389 B2 JP 3721389B2 JP 2004027160 A JP2004027160 A JP 2004027160A JP 2004027160 A JP2004027160 A JP 2004027160A JP 3721389 B2 JP3721389 B2 JP 3721389B2
Authority
JP
Japan
Prior art keywords
hydrogen atom
integer
formula
hydrocarbon group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027160A
Other languages
Japanese (ja)
Other versions
JP2004256804A (en
Inventor
晴生 加我
豊次 覚知
敏文 佐藤
知子 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004027160A priority Critical patent/JP3721389B2/en
Publication of JP2004256804A publication Critical patent/JP2004256804A/en
Application granted granted Critical
Publication of JP3721389B2 publication Critical patent/JP3721389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、生体適合性のハイドロゲルとして増粘剤や人工被覆剤などの医用材料として有用なアンヒドロ糖由来の多分岐ポリマー鎖及びその製造方法に関する。   The present invention relates to an anhydrosugar-derived multi-branched polymer chain useful as a biocompatible hydrogel as a medical material such as a thickener and an artificial coating agent, and a method for producing the same.

有機合成的手法による多分岐多糖の合成は、Schuerch等により、グルコース誘導体などの無水糖(アンヒドロ糖)をカチオン開環重合する事により行なっている[J.Am.Chem.Soc.1959,81,4054(非特許文献1)]。
しかしながら、この方法では、分岐度および分子量の制御は困難である。さらに、生成多分岐多糖は天然に存在するピラノース環からなるグルコシド結合を有するものに限定され、例えばフラノース環からなるものやグルコシド結合を有しないものなど多分岐多糖の多様な設計は困難である。
最近では多分岐多糖を得る化学合成的な例として、糖オキサゾリン誘導体のグルコシル化反応による多分岐アミノ多糖の合成が門川等によって報告されている[Angew.Chem.Int.Ed.1998,37,2373−2376(非特許文献2)、Polym.Adv.Technol.2000,11,122(非特許文献3)]。しかしながら、この方法の適合範囲はアミノ糖のみに限られ、その他の糖類への応用が困難である。
Synthesis of multi-branched polysaccharides by an organic synthetic method is performed by cation ring-opening polymerization of anhydrosugar (anhydrosugar) such as a glucose derivative by Schuerch et al. [J. Am. Chem. Soc. 1959, 81, 4054 (Non-Patent Document 1)].
However, with this method, it is difficult to control the degree of branching and the molecular weight. Furthermore, the resulting multibranched polysaccharide is limited to those having a glucoside bond consisting of a naturally occurring pyranose ring, and it is difficult to design various multibranched polysaccharides such as those consisting of a furanose ring and those having no glucoside bond.
Recently, as a chemical synthesis example of obtaining a multibranched polysaccharide, the synthesis of a multibranched aminopolysaccharide by glucosylation reaction of a sugar oxazoline derivative has been reported by Kadokawa et al. [Angew. Chem. Int. Ed. 1998, 37, 2373-2376 (Non-Patent Document 2), Polym. Adv. Technol. 2000, 11, 122 (non-patent document 3)]. However, the applicable range of this method is limited to amino sugars only, and application to other sugars is difficult.

J.Am.Chem.Soc.1959,81,4054J. et al. Am. Chem. Soc. 1959, 81, 4054 Angew.Chem.Int.Ed.1998,37,2373−2376Angew. Chem. Int. Ed. 1998, 37, 2373-2376 Polym.Adv.Technol.2000,11,122Polym. Adv. Technol. 2000, 11, 122

本発明は、簡便に合成することのできるアンヒドロ糖由来の多分岐ポリマー鎖及びその製造方法を提供することをその課題とする。   An object of the present invention is to provide an anhydrosugar-derived multi-branched polymer chain that can be easily synthesized and a method for producing the same.

本発明によれば、以下に示す多分岐ポリマー鎖及びその製造方法が提供される。
(1)下記一般式(1)

Figure 0003721389
(式中、分子中に含まれるn個のRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及びp個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物の重合体からなる多分岐ポリマー鎖。
(2)下記一般式(1)
Figure 0003721389
(式中、分子中に含まれるn個のRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及び該p個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物と、下記一般式(3)〜(7)で表されるアンヒドロ糖の中から選ばれる少なくとも1種の糖化合物との共重合体からなる多分岐ポリマー鎖。
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(前記式中、R、R及びRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示す)
(3)該炭化水素基が、アルキル基、アリール基又はアリールアルキル基である前記(1)〜(2)のいずれかに記載の多分岐ポリマー鎖。
(4)分岐度が、0.05〜1.00である前記(1)〜(3)のいずれかに記載の多分岐ポリマー鎖。
(5)下記一般式(1)
Figure 0003721389
(式中、分子中に含まれるn個のRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及び該p個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物を、カチオン開始剤又はアニオン開始剤の存在下で重合させることを特徴とする多分岐ポリマー鎖の製造方法。
(6)下記一般式(1)
Figure 0003721389
(式中、分子中に含まれるn個のRは水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及び該p個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物と、下記一般式(3)〜(7)で表されるアンヒドロ糖の中から選ばれる少なくとも1種の化合物とを、カチオン開始剤又はアニオン開始剤の存在下で反応させることを特徴とする多分岐ポリマー鎖の製造方法。
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(前記式中、各R、R及びRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示す)
(7)該炭化水素基が、アルキル基、アリール基又はアリールアルキル基である前記(5)〜(6)のいずれかに記載の方法。
(8)該多分岐ポリマー鎖の分岐度が、0.05〜1.00である前記(5)〜(6)のいずれかに記載の方法。 According to the present invention, the following multi-branched polymer chain and a method for producing the same are provided.
(1) The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n Rs) Is a hydrogen atom, and n represents an integer of 1 to 10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to 20 Indicates an integer)
A multi-branched polymer chain comprising a polymer of at least one sugar-derived compound selected from the anhydrosugar alcohols represented by the formula:
(2) The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n Rs) Is a hydrogen atom, and n represents an integer of 1 to 10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and the p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to Represents an integer of 20)
At least one sugar-derived compound selected from among the anhydro sugar alcohols represented by the formula: and at least one sugar compound selected from among the anhydro sugars represented by the following general formulas (3) to (7): A multi-branched polymer chain made of a copolymer.
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(In the above formula, R 5 , R 6 and R 7 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms)
(3) The multi-branched polymer chain according to any one of (1) to (2), wherein the hydrocarbon group is an alkyl group, an aryl group, or an arylalkyl group.
(4) The multi-branched polymer chain according to any one of (1) to (3), wherein the degree of branching is 0.05 to 1.00.
(5) The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n Rs) Is a hydrogen atom, and n represents an integer of 1 to 10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and the p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to Represents an integer of 20)
A method for producing a multi-branched polymer chain, comprising polymerizing at least one sugar-derived compound selected from the group consisting of an anhydro sugar alcohol represented by the above formula in the presence of a cationic initiator or an anionic initiator.
(6) The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n R is a hydrogen atom, and n is 1 Represents an integer of -10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and the p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to Represents an integer of 20)
At least one sugar-derived compound selected from among anhydrosugar alcohols represented by: and at least one compound selected from among anhydrosugars represented by the following general formulas (3) to (7): A method for producing a multi-branched polymer chain, wherein the reaction is carried out in the presence of a cationic initiator or an anionic initiator.
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(In the above formula, each R 5 , R 6 and R 7 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms)
(7) The method according to any one of (5) to (6), wherein the hydrocarbon group is an alkyl group, an aryl group, or an arylalkyl group.
(8) The method according to any one of (5) to (6), wherein the degree of branching of the multi-branched polymer chain is 0.05 to 1.00.

本発明によれば、水溶性の多分岐多ポリマー鎖を再現性よく、かつ大量に合成することが出来、これにより工業的規模で多分岐ポリマー鎖を機能材料として使用することができる。さらに、本発明は、アミロペクチンなどの天然分岐糖鎖からの調達では不可能であった構造を有し、分子量、分岐度の調整も可能となり、用途に応じた多分岐糖鎖を得ることができる。
本発明の多分岐ポリマー鎖は、ハイドロゲルとしての増粘剤や生体適合性医用基盤材料等として用いられる。
According to the present invention, a water-soluble multi-branched multi-polymer chain can be synthesized with high reproducibility and in large quantities, whereby the multi-branched polymer chain can be used as a functional material on an industrial scale. Furthermore, the present invention has a structure that was impossible by procurement from natural branched sugar chains such as amylopectin, the molecular weight and the degree of branching can be adjusted, and a multi-branched sugar chain according to the application can be obtained. .
The multi-branched polymer chain of the present invention is used as a thickener as a hydrogel, a biocompatible medical base material, or the like.

前記一般式(1)において、分子中に含まれるn個のRは水素原子又は炭素数1〜30、好ましくは1〜10の炭化水素基を示すが、この場合の炭化水素基には、鎖状及び環状の炭化水素基が包含される。鎖状炭化水素基には、炭素数1〜30、好ましくは1〜4のアルキル基及び炭素数2〜30、好ましくは2〜5のアルケニル基等の鎖状脂肪族炭化水素由来の炭化水素基が包含される。環状の炭化水素基には、炭素数3〜30、好ましくは5〜7のシクロアルキル基又はシクロアルケニル基等の脂環族炭化水素由来の炭化水素基及び芳香族炭化水素基が包含される。
芳香族炭化水素基には、炭素数6〜30、好ましくは6〜12のアリール基及び炭素数7〜30、好ましくは7〜10のアリールアルキル基等の芳香族炭化水素由来の炭化水素基が包含される。
本発明で好ましく用いられる炭化水素基は、アルキル基、アリール基及びアリールアルキル基の中から選ばれる炭化水素基である。
In the general formula (1), n R contained in the molecule represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms. In this case, the hydrocarbon group includes a chain. Shaped and cyclic hydrocarbon groups are included. The chain hydrocarbon group includes a hydrocarbon group derived from a chain aliphatic hydrocarbon such as an alkyl group having 1 to 30 carbon atoms, preferably 1 to 4 carbon atoms and an alkenyl group having 2 to 30 carbon atoms, preferably 2 to 5 carbon atoms. Is included. The cyclic hydrocarbon group includes a hydrocarbon group and an aromatic hydrocarbon group derived from an alicyclic hydrocarbon such as a cycloalkyl group or a cycloalkenyl group having 3 to 30, preferably 5 to 7 carbon atoms.
The aromatic hydrocarbon group includes a hydrocarbon group derived from an aromatic hydrocarbon such as an aryl group having 6 to 30 carbon atoms, preferably 6 to 12 carbon atoms, and an arylalkyl group having 7 to 30 carbon atoms, preferably 7 to 10 carbon atoms. Is included.
The hydrocarbon group preferably used in the present invention is a hydrocarbon group selected from an alkyl group, an aryl group and an arylalkyl group.

前記一般式(1)において、nは1〜10の整数であるが、好ましくは1〜4の整数である。
また、前記一般式(1)のジアンヒドロ糖アルコールに含まれるn個のRのうちその少なくとも1つは水素原子である。この水素原子は、ジアンヒドロ糖アルコールの重合反応において、その反応に関与し、得られる多分岐ポリマー鎖(多分岐多糖)の分岐度を高める。
In the said General formula (1), although n is an integer of 1-10, Preferably it is an integer of 1-4.
In addition, at least one of n R contained in the dianhydrosugar alcohol of the general formula (1) is a hydrogen atom. This hydrogen atom participates in the polymerization reaction of dianhydrosugar alcohol and increases the degree of branching of the resulting multibranched polymer chain (multibranched polysaccharide).

前記一般式(1)で表されるジアンヒドロ糖アルコールを例示すると、1,2:5,6−ジアンヒドロ−D−マンニトール系化合物、1,2:5,6−ジアンヒドロ−L−イジトール系化合物、1,2:5,6−ジアンヒドロ−アリトール系化合物、1,2:5,6−ジアンヒドロ−ガラクチトール系化合物、1,2:5,6−ジアンヒドロ−グルシトール系化合物、1,2:4,5−ジアンヒドロ−キシリトール系化合物等が挙げられる。   Examples of the dianhydrosugar alcohol represented by the general formula (1) include 1,2: 5,6-dianhydro-D-mannitol compound, 1,2: 5,6-dianhydro-L-iditol compound, , 2: 5,6-dianhydro-allitol compound, 1,2: 5,6-dianhydro-galactitol compound, 1,2: 5,6-dianhydro-glucitol compound, 1,2: 4,5- Examples thereof include dianhydro-xylitol compounds.

前記一般式(2)において、分子中に含まれるR、m個のR、p個のR及びRは水素原子又は炭素数1〜30の炭化水素基を示す。
この場合の炭化水素基には、前記前記一般式(1)のRに関して示したものと同様の炭化水素基が包含される。好ましい炭化水素基は、アルキル基、アリール基又はアリールアルキル基である。
In the general formula (2), R 1 , m R 2 , p R 3 and R 4 contained in the molecule represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
The hydrocarbon group in this case includes the same hydrocarbon groups as those shown for R in the general formula (1). Preferred hydrocarbon groups are alkyl groups, aryl groups or arylalkyl groups.

一般式(2)において、mは0〜20、好ましくは0〜4の整数を示し、pは1〜20、好ましくは1〜4の整数を示し、m+pは1〜20の整数を示す。
また、前記一般式(2)のアンヒドロ糖アルコールに含まれるm個のR及びp個のRのうちその少なくとも1つは水素原子である。この水素原子は、アンヒドロ糖アルコールの重合反応において、その反応に関与し、得られる多分岐ポリマー鎖(多分岐ポリエーテル)の分岐度を高める。
In the general formula (2), m represents an integer of 0 to 20, preferably 0 to 4, p represents an integer of 1 to 20, preferably 1 to 4, and m + p represents an integer of 1 to 20.
In addition, at least one of m R 2 and p R 3 contained in the anhydrosugar alcohol of the general formula (2) is a hydrogen atom. This hydrogen atom participates in the polymerization reaction of an anhydro sugar alcohol and increases the degree of branching of the resulting multi-branched polymer chain (multi-branched polyether).

前記一般式(2)で表されるアンヒドロ糖アルコールを例示すると、1,2−アンヒドロ−D−マンニトール系化合物、1,2−アンヒドロ−L−イジトール系化合物、1,2−アンヒドロ−アリトール系化合物、1,2−アンヒドロ−ガラクチトール系化合物、1,2−アンヒドロ−グリシトール系化合物、1,2−アンヒドロ−キシリトール系化合物、1,2−アンヒドロ−スレイトール系化合物系化合物等が挙げられる。   Examples of the anhydrosugar alcohol represented by the general formula (2) include 1,2-anhydro-D-mannitol compound, 1,2-anhydro-L-iditol compound, 1,2-anhydro-allitol compound. 1,2-anhydro-galactitol compounds, 1,2-anhydro-glycitol compounds, 1,2-anhydro-xylitol compounds, 1,2-anhydro-threitol compounds, and the like.

本発明の多分岐ポリマー鎖は、前記一般式(1)及び一般式(2)で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物を、重合開始剤として、カチオン開始剤又はアニオン開始剤を用いて重合させることによって製造することができる。   The multi-branched polymer chain of the present invention is a cationic initiator using, as a polymerization initiator, at least one sugar-derived compound selected from the anhydrosugar alcohols represented by the general formula (1) and the general formula (2). Alternatively, it can be produced by polymerization using an anionic initiator.

カチオン開始剤としては、従来公知のもの、例えば、スルフォニウムアントモネートなどの熱カチオン開始剤や光カチオン開始剤、三フッ化ホウ素エーテラート、四塩化スズ、五塩化アンチモン、五フッ化リンなどのルイス酸、トリフルオロメタンスルホン酸などのブレンステッド酸等を用いることができる。
アニオン開始剤としては、従来公知のもの、例えば、KOHなどの水酸化物、tert−BuOKやZn(OCHなどの金属アルコラート等の使用が好ましい。
開始剤の使用量は、原料糖化合物に対して、1〜10wt%程度である。
As the cationic initiator, conventionally known ones, for example, thermal cationic initiators such as sulfonium anemonate, photocationic initiators, boron trifluoride etherate, tin tetrachloride, antimony pentachloride, phosphorus pentafluoride, etc. Bronsted acids such as Lewis acid and trifluoromethanesulfonic acid can be used.
As the anion initiator, conventionally known ones such as hydroxides such as KOH, metal alcoholates such as tert-BuOK and Zn (OCH 3 ) 2 are preferably used.
The usage-amount of an initiator is about 1-10 wt% with respect to a raw material sugar compound.

重合反応においては、有機溶媒を使用することができるが、この場合の有機溶媒としては、テトラヒドロフラン、ジクロロメタン、プロピレンカーボネートなどを用いることができる。   In the polymerization reaction, an organic solvent can be used. In this case, tetrahydrofuran, dichloromethane, propylene carbonate, or the like can be used as the organic solvent.

本発明におけるアンヒドロ糖アルコールの重合のメカニズムを示すと、前記一般式(1)のジアンヒドロ糖アルコールの重合反応の場合は、原料であるジアンヒドロ糖アルコールの一方のアンヒドロ基が開環し、他方のアンヒドロ基へ求核あるいは求電子攻撃することで環化、さらに他の糖の水酸基と結合する。その結果、グルコシド結合を有しない天然にはない構造単位からなる分岐した糖鎖ポリマー(多分岐糖鎖ポリマー)が形成される。一方、前記一般式(2)のアンヒドロ糖アルコールの場合には、1,2−、1,4−、1,5−、2,3−、3,5−等のアンヒドロ結合が開環し、他の糖の水酸基と結合することで、分岐したポリエーテル鎖(多分岐ポリエーテル)が形成される。また、一般式(1)および(2)のアンヒドロ糖アルコールを混合した場合の重合反応は、上記のメカニズムが共存し、多分岐多糖と多分岐ポリエーテルが共存した重合体が形成される。   The polymerization mechanism of the anhydrosugar alcohol in the present invention is shown. In the case of the polymerization reaction of the dianhydrosugar alcohol of the general formula (1), one anhydro group of the starting dianhydrosugar alcohol is ring-opened, and the other anhydrosugar is opened. By nucleophilic or electrophilic attack on the group, it cyclizes and binds to the hydroxyl group of other sugars. As a result, a branched sugar chain polymer (multi-branched sugar chain polymer) composed of a non-natural structural unit having no glucoside bond is formed. On the other hand, in the case of the anhydrosugar alcohol of the general formula (2), anhydro bonds such as 1,2-, 1,4-, 1,5-, 2,3-, 3,5-and the like are opened, A branched polyether chain (multi-branched polyether) is formed by bonding with a hydroxyl group of another sugar. In addition, in the polymerization reaction when the anhydrosugar alcohols of the general formulas (1) and (2) are mixed, the above mechanism coexists and a polymer in which the multibranched polysaccharide and the multibranched polyether coexist is formed.

前記一般式(1)のジアンヒドロ糖アルコール(n=2)の重合体の構造式を示すと、下記一般式(a)で表される。

Figure 0003721389
The structural formula of the polymer of dianhydrosugar alcohol (n = 2) represented by the general formula (1) is represented by the following general formula (a).
Figure 0003721389

前記一般式(2)のアンヒドロ糖アルコール(R=R=H、m=p=2)の重合体の構造式を示すと、下記一般式(b)で表される。 The structural formula of the polymer of the anhydrosugar alcohol (R 1 = R 4 = H, m = p = 2) of the general formula (2) is represented by the following general formula (b).

Figure 0003721389
Figure 0003721389

本発明の多分岐ポリマー鎖において、その分岐度は、好ましくは0.05〜1.00、より好ましくは0.45〜1.0である。この場合の多分岐度は、Frechetの式:[分岐度=(分岐ユニット数+ポリマー末端数)/(分岐ユニット数+ポリマー末端数+直鎖ユニット数)]によって算出される。このFrechetの式によると、直鎖状ポリマーの分岐度は0で、デンドリマーの分岐度は1となる。   In the multi-branched polymer chain of the present invention, the degree of branching is preferably 0.05 to 1.00, more preferably 0.45 to 1.0. The degree of multi-branching in this case is calculated by the Frechet equation: [degree of branching = (number of branch units + number of polymer terminals) / (number of branch units + number of polymer terminals + number of linear units)]. According to the Frechet equation, the degree of branching of the linear polymer is 0 and the degree of branching of the dendrimer is 1.

本発明による多分岐ポリマー鎖は、樹枝状に近い形をしており、分岐鎖からもさらに分岐が出来ていると考えられる。本発明の多分岐ポリマー鎖は、フラノース型の糖ユニットからなるグルコシド結合を有しない天然にはない特殊な構造単位からなる糖鎖である。   The multi-branched polymer chain according to the present invention has a shape close to a dendritic shape and is considered to be further branched from the branched chain. The multi-branched polymer chain of the present invention is a sugar chain composed of a special structural unit that does not have a glucoside bond composed of a furanose type sugar unit and does not have a natural structure.

本発明による前記一般式(1)及び(2)の糖化合物(アンヒドロ糖アルコール)の重合体において、その分子量は(静的光散乱法)は、通常、1万以上、好ましくは20万以上である。   In the polymer of the sugar compounds (anhydro sugar alcohol) of the general formulas (1) and (2) according to the present invention, the molecular weight (static light scattering method) is usually 10,000 or more, preferably 200,000 or more. is there.

以下、本発明を実施例により詳述する。   Hereinafter, the present invention will be described in detail by way of examples.

実施例1
(1,2:5,6−ジアンヒドロ−D−マンニトールのカチオン重合)
窒素雰囲気下、シュレンク管内に1,2−5,6−ジアンヒドロ−D−マンニトール(0.5g,D−マンニトールより合成した)、乾燥ジクロロメタン(6.8mL、関東化学、モノマー濃度0.5mol・L−1)を入れ、0℃に冷却後、開始剤として三フッ化ホウ素エーテラート2.6μL、関東化学)を滴下し、重合を開始した。200時間後、重合溶液をメタノール中に注ぎ重合を停止した。アンモニア水溶液にて中和後、溶媒を留去し、水中で透析膜(スペクトラポアM500)を用いて精製した。収量0.209g、収率41.8%。重量平均分子量1,900(SEC,0.2mol・L−1硝酸ナトリウム水溶液、40℃)、分散度2.23。重量平均分子量3.1×10(SLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。慣性半径83nm(SLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。流体力学半径67nm(DLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。
生成物(多分岐糖鎖)の各種溶媒に対する溶解度(濃度:30mg/mL、溶解時間1時間)を表1に示す。
Example 1
(Cationic polymerization of 1,2: 5,6-dianhydro-D-mannitol)
In a Schlenk tube under a nitrogen atmosphere, 1,2-5,6-dianhydro-D-mannitol (0.5 g, synthesized from D-mannitol), dry dichloromethane (6.8 mL, Kanto Chemical, monomer concentration 0.5 mol·L) -1 ) was added, and after cooling to 0 ° C, boron trifluoride etherate (2.6 µL, Kanto Chemical) was added dropwise as an initiator to initiate polymerization. After 200 hours, the polymerization solution was poured into methanol to stop the polymerization. After neutralization with an aqueous ammonia solution, the solvent was distilled off and the residue was purified in water using a dialysis membrane (Spectrapore M W 500). Yield 0.209 g, yield 41.8%. Weight average molecular weight 1,900 (SEC, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.), dispersity 2.23. Weight average molecular weight 3.1 × 10 5 (SLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.). Inertia radius 83 nm (SLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.). Hydrodynamic radius 67 nm (DLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.).
Table 1 shows the solubility (concentration: 30 mg / mL, dissolution time 1 hour) of the product (multi-branched sugar chain) in various solvents.

Figure 0003721389
表中、○は溶解、×は不溶を表す。
Figure 0003721389
In the table, ○ indicates dissolution and × indicates insolubility.

生成物のHNMRスペクトルおよび13CNMRスペクトルをそれぞれ図1および図2に示す。直鎖の糖鎖では末端(C1)の炭素由来のピークがほとんどみられないのに対し、本発明の糖鎖末端(C1)の炭素由来のピーク(60ppm付近)が大きく見られる。さらに他の炭素に由来するピークも数本に***していることから、多分岐状になっていることがわかる。SECで測定した重量平均分子量が静的光散乱法で測定した重量平均分子量よりも小さく出る。この傾向はポリマーの有効体積のちがいによるもので、多分岐ポリマーにはよく観察される。 The 1 HNMR spectrum and 13 CNMR spectrum of the product are shown in FIGS. 1 and 2, respectively. In the linear sugar chain, the carbon-derived peak at the terminal (C1) is hardly observed, whereas the carbon-derived peak (around 60 ppm) at the sugar chain terminal (C1) of the present invention is greatly observed. Furthermore, since the peaks derived from other carbons are also split into several, it can be seen that they are multi-branched. The weight average molecular weight measured by SEC appears smaller than the weight average molecular weight measured by the static light scattering method. This tendency is due to differences in the effective volume of the polymer and is often observed for multi-branched polymers.

実施例2
(1,2:5,6−ジアンヒドロ−D−マンニトールのアニオン重合)
窒素雰囲気下、シュレンク管内に1,2−5,6−ジアンヒドロ−D−マンニトール(0.5g,D−マンニトールより合成した)、乾燥テトラヒドロフラン(3.4mL、関東化学、モノマー濃度1.0mol・L−1)を入れ、開始剤として1.0mol・L−1 tert−ブトキシカリウム/THF溶液(0.17mL、関東化学)を滴下し、重合を開始した。30時間後、重合溶液をメタノール中に注ぎ重合を停止した。ドライアイスにて中和後、溶媒を留去し、水中で、透析膜(スペクトラポアM500)を用いて精製した。収量0.085g、収率17.0%、比旋光度+19.7(c 1.0,HO,23℃)。重量平均分子量1600(SEC,0.2mol・L−1硝酸ナトリウム水溶液、40℃)、分散度5.07、重量平均分子量13.1×10(SLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)、慣性半径131nm(SLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)、流体力学半径132nm(DLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。
生成物のHNMRスペクトルおよび13CNMRスペクトルをそれぞれ図3および図4に示す。
Example 2
(Anionic polymerization of 1,2: 5,6-dianhydro-D-mannitol)
In a Schlenk tube under a nitrogen atmosphere, 1,2-5,6-dianhydro-D-mannitol (0.5 g, synthesized from D-mannitol), dry tetrahydrofuran (3.4 mL, Kanto Chemical, monomer concentration 1.0 mol·L) −1 ) was added, and 1.0 mol·L −1 tert-butoxy potassium / THF solution (0.17 mL, Kanto Chemical) was added dropwise as an initiator to initiate polymerization. After 30 hours, the polymerization solution was poured into methanol to stop the polymerization. After neutralized with dry ice, the solvent was distilled off in water and purified using dialysis membrane (Spectra Pore M W 500). Yield 0.085 g, Yield 17.0%, Specific rotation + 19.7 (c 1.0, H 2 O, 23 ° C.). Weight average molecular weight 1600 (SEC, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.), dispersity 5.07, weight average molecular weight 13.1 × 10 5 (SLS, 0.2 mol·L −1 sodium nitrate aqueous solution , 40 ° C.), radius of inertia 131 nm (SLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.), hydrodynamic radius 132 nm (DLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.).
The 1 H NMR spectrum and 13 C NMR spectrum of the product are shown in FIGS. 3 and 4, respectively.

実施例3
(2,3−アンヒドロ−エリスリトールのカチオン重合)
窒素雰囲気下、シュレンク管内に2,3−アンヒドロ−エリスリトール(1.0g,シス−2−ブテン−1,4−ジオールより合成した)を入れ、100℃に加熱後、開始剤として三フッ化ホウ素エーテラート(6.2μL、関東化学)を滴下し、重合を開始した。120時間後、重合溶液を水中に注ぎ重合を停止した。アンモニア水溶液にて中和後、溶媒を留去し、水中で透析膜(スペクトラポアM500)を用いて精製した。収量 0.294g、収率29.4%。重量平均分子量970(SEC,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。重量平均分子量3.0×10(SLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。慣性半径116nm(SLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。固有粘度0.022dL・g−1
生成物(多分岐糖鎖)の各種溶媒に対する溶解度(濃度:30mg/mL、溶解時間1時間)を表1に示す。
Example 3
(Cationic polymerization of 2,3-anhydro-erythritol)
2,3-Anhydro-erythritol (1.0 g, synthesized from cis-2-butene-1,4-diol) was placed in a Schlenk tube under a nitrogen atmosphere, heated to 100 ° C., and boron trifluoride as an initiator. Etherate (6.2 μL, Kanto Chemical) was added dropwise to initiate polymerization. After 120 hours, the polymerization solution was poured into water to stop the polymerization. After neutralization with an aqueous ammonia solution, the solvent was distilled off and the residue was purified in water using a dialysis membrane (Spectrapore M W 500). Yield 0.294 g, yield 29.4%. Weight average molecular weight 970 (SEC, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.). Weight average molecular weight 3.0 × 10 5 (SLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.). Inertia radius 116 nm (SLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.). Intrinsic viscosity 0.022 dL · g −1 .
Table 1 shows the solubility (concentration: 30 mg / mL, dissolution time 1 hour) of the product (multi-branched sugar chain) in various solvents.

Figure 0003721389
表中、○は溶解、×は不溶を表す。
Figure 0003721389
In the table, ○ indicates dissolution and × indicates insolubility.

生成物のHNMRスペクトルおよび13CNMRスペクトルをそれぞれ図5および図6に示す。直鎖の糖鎖でわずかに見られる末端(C3)の炭素由来のピークが本発明の糖鎖では、70ppm付近に大きく見られる。さらに他の炭素に由来するピークも数本に***していることから、多分岐状になっていることがわかる。SECで測定した重量平均分子量が静的光散乱法で測定した重量平均分子量よりも小さく出る。さらに動粘度測定において固有粘度が小さな値を示した。この傾向はポリマーの有効体積のちがいによるもので、多分岐ポリマーにはよく観察される。 The 1 HNMR spectrum and 13 CNMR spectrum of the product are shown in FIGS. 5 and 6, respectively. The peak derived from the carbon at the terminal (C3), which is slightly seen in the straight-chain sugar chain, is greatly seen in the vicinity of 70 ppm in the sugar chain of the present invention. Furthermore, since the peaks derived from other carbons are also split into several, it can be seen that they are multi-branched. The weight average molecular weight measured by SEC appears smaller than the weight average molecular weight measured by the static light scattering method. Furthermore, the intrinsic viscosity showed a small value in the kinematic viscosity measurement. This tendency is due to differences in the effective volume of the polymer and is often observed for multi-branched polymers.

実施例4
窒素雰囲気下、シュレンク管内に2,3−アンヒドロ−エリスリトール(1.0g)、1,6−アンヒドロ−β−D−マンノピラノース(0.162g)、そしてプロピレンカーボネート(2.5mL)を入れ、130℃で原料を溶解し、66重量%2−ブテニル−テトラメチレンスルフォニウムヘキサフルオロアンチモネート溶液を添加して重合を開始した。192時間重合した。重合溶液を水中に注ぎ重合を停止した。アンモニア水溶液にて中和後、溶媒を留去し、水中で透析膜(スペクトラポアM500)を用いて精製した。収量 0.304g、収率26.2%。重量平均分子量1200(SEC,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。重量平均分子量7.3×10(SLS,0.2mol・L−1硝酸ナトリウム水溶液、40℃)。
Example 4
Under a nitrogen atmosphere, 2,3-anhydro-erythritol (1.0 g), 1,6-anhydro-β-D-mannopyranose (0.162 g), and propylene carbonate (2.5 mL) were placed in a Schlenk tube. The raw material was dissolved at 130 ° C., and a polymerization was started by adding a 66 wt% 2-butenyl-tetramethylenesulfonium hexafluoroantimonate solution. Polymerized for 192 hours. The polymerization solution was poured into water to stop the polymerization. After neutralization with an aqueous ammonia solution, the solvent was distilled off and the residue was purified in water using a dialysis membrane (Spectrapore M W 500). Yield 0.304 g, yield 26.2%. Weight average molecular weight 1200 (SEC, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.). Weight average molecular weight 7.3 × 10 5 (SLS, 0.2 mol·L −1 sodium nitrate aqueous solution, 40 ° C.).

実施例1で作製した多分岐糖鎖の400MHz、HNMR(溶媒:重水、25℃)の測定スペクトルを示す図である。1 is a diagram showing a measurement spectrum of 400 MHz, 1 HNMR (solvent: heavy water, 25 ° C.) of a hyperbranched sugar chain produced in Example 1. FIG. 実施例1で作製した多分岐糖鎖の400MHz、13CNMR(溶媒:重水、25℃)の測定スペクトルを示す図である。4 is a diagram showing a measurement spectrum of a 400 MHz, 13 CNMR (solvent: heavy water, 25 ° C.) of the hyperbranched sugar chain prepared in Example 1. FIG. 実施例2で作製した多分岐糖鎖の400MHz、HNMR(溶媒:重水、25℃)の測定スペクトルを示す図である。It is a figure which shows the measurement spectrum of 400 MHz and 1 HNMR (solvent: heavy water, 25 degreeC) of the hyperbranched sugar chain produced in Example 2. 実施例2で作製した多分岐糖鎖の400MHz、13CNMR(溶媒:重水、25℃)の測定スペクトルを示す図である。It is a figure which shows the measurement spectrum of 400 MHz and 13 CNMR (solvent: heavy water, 25 degreeC) of the hyperbranched sugar chain produced in Example 2. FIG. 実施例3で作製した多分岐糖鎖の400MHz、HNMR(溶媒:重水、25℃)の測定スペクトルを示す図である。It is a figure which shows the measurement spectrum of 400 MHz and 1 HNMR (solvent: heavy water, 25 degreeC) of the hyperbranched sugar chain produced in Example 3. 実施例3で作製した多分岐糖鎖の400MHz、13CNMR(溶媒:重水、25℃)の測定スペクトルを示す図である。It is a figure which shows the measurement spectrum of 400 MHz of a multi-branched sugar chain produced in Example 3, and 13 CNMR (solvent: heavy water, 25 degreeC).

Claims (8)

下記一般式(1)
Figure 0003721389
(式中、分子中に含まれるn個のRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及びp個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物の重合体からなる多分岐ポリマー鎖。
The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n Rs) Is a hydrogen atom, and n represents an integer of 1 to 10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to 20 Indicates an integer)
A multi-branched polymer chain comprising a polymer of at least one sugar-derived compound selected from the anhydrosugar alcohols represented by the formula:
下記一般式(1)
Figure 0003721389
(式中、分子中に含まれるn個のRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及び該p個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物と、下記一般式(3)〜(7)で表されるアンヒドロ糖の中から選ばれる少なくとも1種の糖化合物との共重合体からなる多分岐ポリマー鎖。
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(前記式中、R、R及びRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示す)
The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n Rs) Is a hydrogen atom, and n represents an integer of 1 to 10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and the p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to Represents an integer of 20)
At least one sugar-derived compound selected from among the anhydro sugar alcohols represented by the formula: and at least one sugar compound selected from among the anhydro sugars represented by the following general formulas (3) to (7): A multi-branched polymer chain made of a copolymer.
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(In the above formula, R 5 , R 6 and R 7 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms)
該炭化水素基が、アルキル基、アリール基又はアリールアルキル基である請求項1〜2のいずれかに記載の多分岐ポリマー鎖。   The multi-branched polymer chain according to claim 1, wherein the hydrocarbon group is an alkyl group, an aryl group, or an arylalkyl group. 分岐度が、0.05〜1.00である請求項1〜3のいずれかに記載の多分岐ポリマー鎖。   The multibranched polymer chain according to any one of claims 1 to 3, wherein the degree of branching is 0.05 to 1.00. 下記一般式(1)
Figure 0003721389
(式中、分子中に含まれるn個のRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及び該p個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物を、カチオン開始剤又はアニオン開始剤の存在下で重合させることを特徴とする多分岐ポリマー鎖の製造方法。
The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n Rs) Is a hydrogen atom, and n represents an integer of 1 to 10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and the p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to Represents an integer of 20)
A method for producing a multi-branched polymer chain, comprising polymerizing at least one sugar-derived compound selected from the group consisting of an anhydro sugar alcohol represented by the above formula in the presence of a cationic initiator or an anionic initiator.
下記一般式(1)
Figure 0003721389
(式中、分子中に含まれるn個のRは水素原子又は炭素数1〜30の炭化水素基を示すが、該n個のRのうちその少なくとも1つは水素原子であり、nは1〜10の整数を示す)
で表されるジアンヒドロ糖アルコール及び下記一般式(2)
Figure 0003721389
(式中、分子中に含まれるR、m個のR、p個のR及びRは同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示すが、該m個のR及び該p個のRのうちその少なくとも1つは水素原子であり、mは0〜20の整数を示し、pは1〜20の整数を示し、m+pは1〜20の整数を示す)
で表されるアンヒドロ糖アルコールの中から選ばれる少なくとも1種の糖由来化合物と、下記一般式(3)〜(7)で表されるアンヒドロ糖の中から選ばれる少なくとも1種の化合物とを、カチオン開始剤又はアニオン開始剤の存在下で反応させることを特徴とする多分岐ポリマー鎖の製造方法。
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(前記式中、各R、R及びRはそれぞれ同一又は異なっていてもよく、水素原子又は炭素数1〜30の炭化水素基を示す)
The following general formula (1)
Figure 0003721389
(In the formula, n R contained in the molecule represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and at least one of the n R is a hydrogen atom, and n is 1 Represents an integer of -10)
Dianhydrosugar alcohol represented by the following general formula (2)
Figure 0003721389
(In the formula, R 1 , m R 2 , p R 3 and R 4 contained in the molecule may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , At least one of the m R 2 and the p R 3 is a hydrogen atom, m represents an integer of 0 to 20, p represents an integer of 1 to 20, and m + p represents 1 to Represents an integer of 20)
At least one sugar-derived compound selected from among anhydrosugar alcohols represented by: and at least one compound selected from among anhydrosugars represented by the following general formulas (3) to (7): A method for producing a multi-branched polymer chain, wherein the reaction is carried out in the presence of a cationic initiator or an anionic initiator.
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
Figure 0003721389
(In the above formula, each R 5 , R 6 and R 7 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms)
該炭化水素基が、アルキル基、アリール基又はアリールアルキル基である請求項5〜6のいずれかに記載の方法。   The method according to claim 5, wherein the hydrocarbon group is an alkyl group, an aryl group, or an arylalkyl group. 該多分岐ポリマー鎖の分岐度が、0.05〜1.00である請求項5〜6のいずれかに記載の方法。   The method according to any one of claims 5 to 6, wherein the degree of branching of the multi-branched polymer chain is 0.05 to 1.00.
JP2004027160A 2003-02-03 2004-02-03 Multi-branched polymer chain derived from anhydrosugar and method for producing the same Expired - Lifetime JP3721389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027160A JP3721389B2 (en) 2003-02-03 2004-02-03 Multi-branched polymer chain derived from anhydrosugar and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003026406 2003-02-03
JP2004027160A JP3721389B2 (en) 2003-02-03 2004-02-03 Multi-branched polymer chain derived from anhydrosugar and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004256804A JP2004256804A (en) 2004-09-16
JP3721389B2 true JP3721389B2 (en) 2005-11-30

Family

ID=33133629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027160A Expired - Lifetime JP3721389B2 (en) 2003-02-03 2004-02-03 Multi-branched polymer chain derived from anhydrosugar and method for producing the same

Country Status (1)

Country Link
JP (1) JP3721389B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098041A1 (en) * 2006-02-17 2007-08-30 Medtronic, Inc. Polyketal polymers, and methods of making and using same
JP5649161B2 (en) * 2010-05-10 2015-01-07 独立行政法人産業技術総合研究所 Multi-branched polymer and method for producing the same
JP6179953B2 (en) * 2014-09-19 2017-08-16 国立研究開発法人産業技術総合研究所 Hyperbranched polymer

Also Published As

Publication number Publication date
JP2004256804A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
Erberich et al. Polyglycidols with two orthogonal protective groups: preparation, selective deprotection, and functionalization
Klein et al. Aliphatic polyethers: classical polymers for the 21st century
Chen et al. ABA and Star Amphiphilic Block Copolymers Composed of Polymethacrylate Bearing a Galactose Fragment and Poly (ε‐caprolactone)
RU2193574C2 (en) Polyoxyethylene with sugar by one end and other functional group by other end and method of its synthesis
Kanaoka et al. Star-shaped polymers by living cationic polymerization. 2. Synthesis of amphiphilic star-shaped block polymers of vinyl ethers with hydroxyl groups
US20120294813A1 (en) Functional branched polyether copolymers and method for the production thereof
Hilf et al. Poly (carbonate) copolymers with a tailored number of hydroxyl groups from glycidyl ethers and CO 2
Lach et al. Hyperbranched carbosilane oxazoline‐macromonomers: polymerization and coupling to a trimesic acid core
Li et al. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: A modular platform for drug delivery
Sumitomo et al. Ring-opening polymerization of bicyclic acetals, oxalactone, and oxalactam
JP3721389B2 (en) Multi-branched polymer chain derived from anhydrosugar and method for producing the same
JPH0768336B2 (en) Process for producing polyether copolymer having oligooxyethylene side chain
Vandenberg et al. Poly (3‐hydroxyoxetane)—an analog of poly (vinyl alcohol): Synthesis, characterization, and properties
Silvers et al. Strategies in aliphatic polyester synthesis for biomaterial and drug delivery applications
Satoh et al. Synthesis of hyperbranched carbohydrate polymers by ring‐opening multibranching polymerization of anhydro sugar
US20220002460A1 (en) Branched polymers
Okada et al. Chemical synthesis of polysaccharides I. Synthetic polysaccharide having one hydroxyl group in its repeating unit, 3, 4-Dideoxy-(1→ 6)-α-DL-erythro-hexopyranan
JP4170641B2 (en) Hyperbranched polysaccharide
JP4280824B2 (en) Multi-branched polyol derived from alcohol containing tetrahydrofuran ring
Satoh et al. Cyclopolymerization of dianhydro sugar leading to novel carbohydrate polymers as macromolecular ionophores
US7473757B2 (en) Hyperbranched polymers derived from anhydrosugar-related compounds and process for the preparation thereof
JP5649161B2 (en) Multi-branched polymer and method for producing the same
Okada Ring-opening polymerization of bicyclic and spiro compounds. Reactivities and polymerization mechanisms
JP6179953B2 (en) Hyperbranched polymer
Steinmann et al. Reactive poly (phosphoester)-telechelics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Ref document number: 3721389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term