JP3720949B2 - 液体金属冷却型原子炉の冷却設備 - Google Patents

液体金属冷却型原子炉の冷却設備 Download PDF

Info

Publication number
JP3720949B2
JP3720949B2 JP14002297A JP14002297A JP3720949B2 JP 3720949 B2 JP3720949 B2 JP 3720949B2 JP 14002297 A JP14002297 A JP 14002297A JP 14002297 A JP14002297 A JP 14002297A JP 3720949 B2 JP3720949 B2 JP 3720949B2
Authority
JP
Japan
Prior art keywords
liquid metal
pipe
steam generator
heat transfer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14002297A
Other languages
English (en)
Other versions
JPH10332882A (ja
Inventor
明洋 大音
亨 飯島
雅一 神保
浩 平山
廣藏 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14002297A priority Critical patent/JP3720949B2/ja
Publication of JPH10332882A publication Critical patent/JPH10332882A/ja
Application granted granted Critical
Publication of JP3720949B2 publication Critical patent/JP3720949B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子炉建屋内に設置されている液体金属冷却型原子炉の冷却設備に関する。
【0002】
【従来の技術】
液体金属冷却型高速増殖炉プラントでは一般に冷却材として液体金属、例えば液体ナトリウムが使用される。以下、本明細書では、液体金属をナトリウムの例で説明するが、ナトリウムに限定するものではない。図12により従来の液体金属冷却型原子炉としての高速増殖炉の冷却系設備を説明する。高速増殖炉において、原子炉容器の炉心(図示せず)で加熱された1次ナトリウムは、1次系配管1内を流れ、中間熱交換器2に入り2次ナトリウムと熱交換される。
【0003】
高温となった2次ナトリウムは、ホットレグ配管3内を流れ蒸気発生器4内に流入し、蒸気発生器4において水と熱交換を行う。低温となった2次ナトリウムは、ミドルレグ配管5を経て2次主循環ポンプ6に入り、そこで昇圧された後、コールドレグ配管7を経て再び中間熱交換器2に送られる。
【0004】
一方、蒸気発生器4に接続した給水配管8から流入した水は、蒸気発生器4内で2次ナトリウムとの熱交換し、蒸気となって主蒸気配管に流入し、図示しないタービン設備に送られる。
【0005】
これらの機器とは別の補助系設備として、2次ナトリウム受入初期段階で混入する不純物およびプラント運転時に蒸気発生器4内の伝熱管を介して混入する水素等の不純物を取り除くためにコールドトラップ11を使用する。そこで、ミドルレグ配管5から分岐して純化系配管10,10を接続し、この純化系配管10,10をコールドトラップ11にする循環系路を設けている。
【0006】
また、これらの冷却系システムを構成する機器の補修時など、2次ナトリウムのドレンが必要となった場合にドレンが可能なよう各機器からのドレン配管12および2次ナトリウムを貯溜するダンプタンク13が設置されている。
【0007】
蒸気発生器4において、蒸気発生器4内の伝熱管から水リークが発生すると、2次ナトリウムと反応し、熱の発生とともに急激な圧力上昇が生じる。この圧力上昇を緩和するために、蒸気発生器4には放出系配管14が設置され、この放出系配管14はダンプタンク13に接続されている。
【0008】
放出系配管14は、通常時はラプチャーディスク15により仕切られているが、水リーク時には上昇した圧力によりラプチャーディスク15が破裂し、圧力がダンプタンク13に開放されることにより過大な圧力の発生を防止している。ナトリウムと水の反応生成物は、放出系配管14を経由してダンプタンク13に流入した後、図示しないサイクロンセパレータへ移送される。なお、図中符号16は格納容器で、格納容器壁を部分的に示している。
【0009】
【発明が解決しようとする課題】
従来の冷却系システムでは、2次主配管(ホットレグ配管3,ミドルレグ配管5,コールドレグ配管7)は、蒸気発生器4と2次主循環ポンプ6が別置きの独立機器となっているため、中間熱交換器2とこれら2つの機器を結ぶ必要があることおよび、2次主配管の熱膨張をエルボの曲げ変形で吸収するため長大な配管系となっており、これらを収納するための原子炉建屋体積が大規模なものとなっていた。
【0010】
また、コールドトラップ11,ダンプタンク13,放出系配管14などの補助系設備を結ぶ配管系の引回しに対しても広いスペースが必要であった。このように液体金属(ナトリウム)を内包する配管系が長大であるため、液体金属漏洩対策として、漏洩した液体金属を受け止めるための鋼製のライナなどの設備が広範囲にって必要であり、物量の増加を招いていた。
【0011】
さらに、ダンプタンク13内に充填ドレンのためのドレン配管12やガス抜き用配管、および蒸気発生器4内の伝熱管からの水リークを検出するための水リーク検出用分岐管等の多数の枝管を必要とし、これら構造不連続部からの潜在的な漏洩の可能性が高くなる課題がある。
【0012】
上述したように、従来技術による高速増殖炉の冷却系システムでは、独立した機器を直線的に配管で接合した場合、配管に生じる熱応力が過大となり成立しないことから、配管を引回すことにより熱膨張を吸収する構造としていた。このため、配管長さが長大となるとともにこれを収納する原子炉建屋自体も大きくなり、機器および建屋物量の増加に繋がっていた。
【0013】
また、液体金属配管の長大化に伴い、これに付属する枝管等の構造不連続部が増え、潜在的な液体金属漏洩の可能性が増加し、さらに、液体金属漏洩対策設備の物量が増加する課題がある。
【0014】
本発明は、上記各課題を解決するためになされたもので、冷却系設備の合体化により配管長の短縮化および原子炉建屋のコンパクト化を図るとともに、枝管等の構造不連続部の削減と液体金属機器を集中的に配置し、これらをエンクロージャで囲うことにより、液体金属漏洩対策を強化することで、プラントコストの低減および信頼性の向上を図ることができる液体金属冷却型原子炉の冷却設備を提供することにある。
【0015】
【課題を解決するための手段】
請求項1の発明は、原子炉建屋内に配設した中間熱交換器と蒸気発生器とを配管接続してなる液体金属冷却型原子炉の冷却設備において、前記蒸気発生器は上下両端部が上鏡板および下鏡板により閉塞され内部に液体金属が通流する本体胴と、この本体胴内に配設された伝熱管と、前記本体胴に設けられ前記伝熱管の管束に接続した給水管板および蒸気管板を固定する給水管台および蒸気管台と、前記伝熱管の管束内に設けられた内筒と、この内筒内に設置された電磁ポンプと、前記本体胴に設けた液体金属入口ノズルと、前記上鏡板に突設されて内部に不活性ガスを保持し前記電磁ポンプの吐出側空間を包囲するエンクロージャと、前記電磁ポンプに接続され前記エンクロージャ内に設けられたポンプ出口ノズルと、このポンプ出口ノズルに接続されて前記エンクロージャ内に設けられ計装用ウェルを設けてなる連絡管と、この連絡管に接続された液体金属出口ノズルとを具備したことを特徴とする。
【0026】
請求項の発明は、原子炉建屋内に配設した中間熱交換器と蒸気発生器とを配管接続してなる液体金属冷却型原子炉の冷却設備において、前記蒸気発生器は上下両端部が上鏡板および下鏡板により閉塞され内部に液体金属が通流する本体胴と、この本体胴内に配置された伝熱管と、前記本体胴に設けられ前記伝熱管の管束に接続した給水管板および蒸気管板を固定する給水管台および蒸気管台と、前記下鏡板を貫通して前記本体胴内にされた上昇管と、前記本体胴内に設置された電磁ポンプと、前記上昇管の外側に前記液体金属の流路を有して同心円状に設けられた下降管とからなり、前記上昇管および下降管の下部を挿着し前記蒸気発生器の下方にデッキを介して配置されたダンプタンクを有することを特徴とする。
【0027】
請求項の発明は、前記ダンプタンク内にコールドトラップを配置してなることを特徴とする。
請求項の発明は、前記伝熱管は内管と外管とからなる同心円状二重伝熱管でヘリカルコイル状に形成されてなり、前記内管と外管の間に組網線を充填してなることを特徴とする。
【0028】
請求項の発明は、前記下降管と前記上昇管とを分離し、それぞれ前記下鏡板を貫通してを独立に設置してなることを特徴とする。
請求項の発明は、前記下降管と前記上昇管にそれぞれ止弁を設置してなることを特徴とする。
【0029】
本発明の請求項1によれば、電磁ポンプ内蔵蒸気発生器の上部空間内に枝管類や計装用ウェルを配置することにより、当該部からの液体金属漏洩が生じた場合、漏洩液体金属を系外に出すことなく事故の終息が可能であるとともに、これら付随する液体金属漏洩対策設備を削減できる。
【0037】
請求項およびによれば、蒸気発生器の下部に設けられた下降管は蒸気発生器下部に配置されたダンプタンクと接続され、これによって、充填ドレンに必要な配管・弁類を削除できる。また、コールドトラップをダンプタンク内に設置することにより、2次液体金属の純化に必要な配管・弁類の大幅削減が可能となる。
【0038】
請求項およびによれば、二重伝熱管を採用することにより、内管あるいは外管が破損しても、その破損を検出し、内管および外管の両方の伝熱管が破損することを防止し、伝熱管破損事故をなくすことができ、プラントの信頼性の向上を図ることができる。
【0039】
【発明の実施の形態】
図1(a),(b)により本発明に係る液体金属冷却型原子炉の冷却設備の第1の実施の形態を説明する。
この第1の実施の形態は本発明の請求項1に対応するもので、従来例と異なる点は図12に示した蒸気発生器4を改良したことにあり、図1(a)は本実施の形態の蒸気発生器17を一部側面で示す縦断面図で、同図(b)は(a)をA−A矢視方向から見た上面図である。
【0040】
すなわち、第1の実施の形態における蒸気発生器17は上下端部が上鏡板18および下鏡板19で閉塞された本体胴20と、この本体胴20内に配設されたヘリカルコイル状に巻回された多数本の伝熱管21と、これらの伝熱管がヘリカルコイル状に巻回され層状に配置されて構成した伝熱管束22と、この伝熱管束22の両端部にそれぞれ接続する蒸気管板23および給水管板24と、この蒸気管板23および給水管板24を固定し、本体胴20の上下側面に設けられた蒸気管台25および給水管台26と、伝熱管束22内に設けられた内筒27と、この内筒27の上部に設けられたセンターリターン型電磁ポンプ28と、本体胴20の上部側面に接続した液体金属入口ノズル29と、電磁ポンプ28の吐出側に接続したポンプ出口ノズル30と、このポンプ出口ノズル30に連絡管31を介して接続された液体金属出口ノズル32を具備している。
【0041】
液体金属入口ノズル29に対向した本体胴20内には環状堰33が設けられており、この堰33の上方の液体ナトリウム金属(以下、液体金属と記す)液体金属34の上面は上部プレナム35となっている。電磁ポンプ28はポンプケーシング36内に配置され、ポンプケーシング36の外側は上鏡板18から上方に突設したエンクロージャ37で気密に包囲されている。
【0042】
ポンプケーシング36の上端には支持フランジ38が設けられ、支持フランジ38に平板39が設けられてエンクロージャ37内は気密に閉塞され、不活性ガスを封入することにより不活性ガス雰囲気となっている。電磁ポンプ28は吊り下げられた状態で平板39と円周方向にボルト(図示せず)で結合されている。
【0043】
本体胴20はその胴部に設けられたスカート40により架台(図示せず)に支持される。内筒27は本体胴20内の中心位置に軸線に沿って配置される。堰33は液体金属入口ノズル29から上部プレナム35内に流入した液体金属34を流量配分するためのものである。
【0044】
本実施の形態によれば、給水管台26と蒸気管台25を本体胴20の上下部側面に設け、液体金属入口ノズル29を本体胴20の上部側面に設け、液体金属出口ノズル32を本体胴20の上鏡板18の上方に配置することにより蒸気発生器17の全高を低減することができる。
【0045】
また、電磁ポンプ28を内筒27および平板39を介して支持フランジ38とボルトで接続すること、およびポンプ出口ノズル30と連絡管31を嵌め合い構造により接続することにより電磁ポンプ28の保守、点検、修理の際に本体胴20から容易に引き抜くことができるので、メンテナンス作業が容易となる。
【0046】
次に、図2により図1に示した上記発生器 17 の細部を説明する。図2は図1におけるエンクロージャ37内を透視的に拡大して示す斜視図である。
【0047】
すなわち、エンクロージャ37内にはポンプ出口ノズル30と、このポンプノズル30に接続した連絡管31が配置されており、エンクロージャ37内は例えば窒素ガス等の不活性ガスが封入されて不活性ガス雰囲気41となっている。連絡管31には止め弁42を有するガス抜き管43が接続され、このガス抜き管43には分岐管44の一端が接続され、この分岐管44の他端は伝熱管水リーク検出系45に接続している。
【0048】
伝熱管水リーク検出系45と連絡管31との間に戻り管46が接続しており、連絡管31には計装用ウェル47が設けられている。分岐管44は水リーク検出系45に液体金属を導くためのもので、戻り管46は水リーク検出系45からの液体金属を連絡管31に戻すためものである。
【0049】
本実施の形態によればガス抜き管43,分岐管44および計装用ウェル47等の潜在的にリークの可能性の高い構造不連結部をエンクロージャ37で包囲することにより、液体金属の漏洩に対しても漏洩液体金属を系外に漏らすことなく漏洩事由を終息できる。
【0050】
次に図3により蒸気発生器と他の機器との接続について説明する。図3は図12における中間熱交換器2と本実施の形態における蒸気発生器17とを接続する短尺コールドレグ配管48と短尺ホットレグ配管49との配置関係を示している。
【0051】
蒸気発生器17はリングガーダ50上に支持スカート40を介して設置されている。高温の1次液体金属は、中間熱交換器2により2次液体金属と熱交換され、高温となった2次液体金属は短尺ホットレグ配管49内を流れ、蒸気発生器17内に流入し、蒸気発生器17において水と熱交換を行う。蒸気発生器17は図1に示したように電磁ポンプ28を内蔵している。
【0052】
水との熱交換により低温となった2次液体金属は、蒸気発生器17に内蔵した電磁ポンプ28により昇圧され、短尺コールドレグ配管48を経由して再び中間熱交換器2に送られる。水側は、蒸気発生器17の下部足部に接続した給水管台26から流入し、伝熱管(図示せず)内を流れることで2次液体金属と熱交換を行い、蒸気となって蒸気管台25を経てタービン設備(図示せず)へと送られる。
【0053】
電磁ポンプは蒸気発生器17に内蔵されていることから、図12に示したミドルレグ配管5は削除されている。また、短尺ホットレグ配管49および短尺コールドレグ配管48は中間熱交換器2と蒸気発生器17を直線的に結ぶとともに、中間熱交換器2側から見て蒸気発生器17側が上り勾配となるようにしている。また、短尺ホットレグ配管49および短尺コールドレグ配管48には予熱のためのヒータは設けられていない。
【0054】
本実施の形態によれば、短尺コールドレグ配管48の蒸気発生器17の出口部が最頂部となるため、充填ドレンに際してのガス抜き管を当該部に1カ所のみ設置しておけばよく、これによりガス抜き管の削減が可能となる。また、配管系が簡素であり、配管長が短いことから、ヒータを布設しなくても、中間熱交換器2および蒸気発生器17に布設したヒータで配管部の予熱が可能である。
【0055】
次に、図4により本発明に係る液体金属冷却型原子炉の冷却設備の第2の実施の形態を説明する。図4中、図3および図12と同一部分には同一符号を付して重複する部分の説明は省略する。
【0056】
本実施の形態が第1の実施の形態および従来例と異なる点は蒸気発生器17の直下にダンプタンク13とコールドトラップ11を近接配置したことにある。
すなわち、蒸気発生器17の下鏡板19の中央部を貫通して直管型短尺放出系配管51の上端部を接続し、この放出系配管51の下端部をダンプタンク13内に挿着してなり、放出系配管51の下部外側面とダンプタンク13との間にベローズ52を取り付けて気密にシールしている。放出系配管51にはラプチャディスク15が設けられている。
【0057】
ラプチャディスク15より上方の放出系配管51の上部側面から分岐しダンプタンク13に接続する短尺ドレン配管53が設けられている。短尺ドレン配管53には止め弁54とベローズ55が設けられ、ベローズ55は短尺ドレン配管53とダンプタンク13との間を接続している。
【0058】
下鏡板19とコールドトラップ11との間には2本の短尺純化系配管56が設けられており、短尺純化系配管56には開閉弁57,58が接続され、また短尺純化系配管56とコールドトラップ11との間にはベローズ59が介在されている。
【0059】
本実施の形態によれば、蒸気発生器17の下部には、冷却系の補助設備である2次液体金属を収容するダンプタンク13とコールドトラップ11が蒸気発生器17の下方に近接して配置されている。蒸気発生器17の下鏡板19からは、蒸気発生器17内の伝熱管(図示せず)破損時の水リークが生じた場合のために、放出系配管51がダンプタンク13まで引き回されており、通常時はラプチャディスク15により蒸気発生器17とダンプタンク13とは隔離されている。放出系配管51とダンプタンク13とはベローズ52で取り合っており、蒸気発生器17が水平移動する際の相対変位を吸収できる構造となっている。
【0060】
さらに、放出系配管51の他に、短尺ドレン配管53が放出系配管51から分岐され、また、短尺純化系配管56が蒸気発生器17の下部から直接引き回されているが、ダンプタンク13およびコールドトラップ11とは、各々ベローズ55,59で取り合っており、蒸気発生器17が水平移動する際の相対変位を吸収できる構造となっている。
【0061】
しかして、補助系設備を蒸気発生器17の近接して配置することで、補助系の液体金属配管長さを低減することができることから、配管物量の削減とともに、ライナ等の液体金属漏洩対策設備も削減でき、プラントのコストダウンおよび液体金属漏洩の可能性を低減するといったプラントの信頼性向上につながる効果がある。
【0062】
次に図5(a),(b)により、第1および第2の実施の形態における蒸気発生器17内の伝熱管21の構造について説明する。
【0063】
図5(a)は第1の例の伝熱管21aを示し、図5(b)は第2の例の伝熱管21bを示している。第1の例の伝熱管21aは、内管60および外管61により二重の耐圧バウンダリーを有しており、両管60,61の隙間には伝熱管21aと同材質からなる組網線を用いた多孔質金属層62が充填されている。また、隙間には不活性ガスとして熱伝導率の高いヘリウムガスが封入されている。
【0064】
図5(b)に示す第2の例の伝熱管21bは、内管60および外管61により二重の耐圧バウンダリーを有しており、外管61の内側にはリーク検出用の半円状溝63が周方向に4カ所設けられている。両管60,61の界面64はプレストレスで密着されており、隙間には不活性ガスとして熱伝導率の高いヘリウムガスが封入されている。
【0065】
しかして、本伝熱管21a, 21bによれば、内管60または外管61が破損しても、その破損を早期に検出し、内管60および外管61の両方の伝熱管が破損することを防止し、両伝熱管破損による液体金属−水反応事故をなくすことができ、プラントの信頼性向上を図ることができる。
【0066】
次に、図6により本発明の液体金属冷却型原子炉の冷却設備の第3の実施の形態を説明する。図6は図4と対応しているので、図6中図4と同一部分には同一符号を付して重複する部分の説明は省略する。
【0067】
図6において図4と異なる点は型のダンプタンク13の代りに縦型のダンプタンク64を設け、このダンプタンク64をダンプタンク保護容器65で包囲するとともにコールドトラップ11をコールドトラップ保護容器66で包囲し、ダンプタンク保護容器65とコールドトラップ保護容器66を大型収納構造物67内に収納したことにある。また、大型収納構造物67の上端開口部に上部デッキ68を設け、上部デッキ68とリングガーダ50との間にシール構造物69を設けたことにある。その他短尺純化系配管56の一方を直管型短尺放出系配管51に接続している。
【0068】
本実施の形態においては補助系機器である2次液体金属を充填する縦型のダンプタンク64と、2次液体金属を精製するコールドトラップ11を大型収納構造物67内に設置されており、収納構造物67上の上部デッキ68から吊り下げられている。ダンプタンク収納構造物67は蒸気発生器17のほぼ真下に置かれている。蒸気発生器17を支持しているリングガーダ50と収納構造物67との間には、シール構造物69が設けられ、内外の雰囲気が遮断されている。
【0069】
また、蒸気発生器17とダンプタンク64およびコールドトラップ11を結ぶ配管は、収納構造物67内で引き回されている。また、コールドトラップ11は 500℃まで昇温可能なヒータが外部に布設され、さらに、コールドトラップ11内のカバーガスは真空引き装置(図示せず)に接続されている。
【0070】
本実施の形態によれば、ダンプタンク64,コールドトラップ11および液体金属配管の集中配置を図ったことで、機器および配管から液体金属漏洩が生じた場合は、漏洩液体金属はダンプタンク保護容器65および大型収納構造物67内で受け止められ、漏洩液体金属を系外に出すことなく漏洩事由の終息が可能であるとともに、これらに付随する液体金属漏洩対策設備を削減できる。また、プラント運転中でもコールドトラップの再生運転が可能となり、交換用のコールドトラップや交換作業等の削除が可能となる。
【0071】
次に図7により本実施の形態の上記以外の構成を説明する。
本実施の形態は図6に示した大型収納構造物67内の底部70に複数の堰板71を立設し、かつ大型収納構造物67に漏洩液体金属の貯溜ポット72を設け、この貯溜ポット72内から上部デッキ68を貫通して連通管73を設け、大型収納構造物67内に不活性ガス供給配管74を設け、この不活性ガス供給配管74を不活性ガス供給装置75に接続したことにある。
【0072】
しかして、大型収納構造物67内には漏洩液体金属を移送するための連通管73と漏洩液体金属を貯溜するための貯溜ポット72が設置されている。また、大型収納構造物67の底部には、貯溜ポット72から溢れた漏洩液体金属が大型収納構造物67の底部70全体に広がらないように堰板71を複数配置している。また、大型収納構造物67内に貯溜された漏洩液体金属の燃焼を抑制するため大型収納構造物67には、例えばCO2 等の不活性ガス注入装置75が接続されている。
【0073】
以上のような構成により大型収納構造物67内に貯溜ポット72を設けたことで、漏洩規模が小さい場合には連通管73で移送された漏洩液体金属を一旦貯溜ポット72で溜め、大型収納構造物67内での液体金属の燃焼を防止することができる。また、漏洩規模が大きい場合には、大型収納構造物67の底部70に設けた堰板71により、貯溜ポット72を溢れた漏洩液体金属が収納構造物67の底部70に広がり、底部70全体での液体金属の燃焼を防止できる。さらに、液体金属漏洩時にはCO2 等の不活性ガスを注入し、収納構造物67内での窒息消火が可能である。
【0074】
次に図8により本発明の第4の実施の形態を説明する。
本実施の形態は、図6に示した左側の中間熱交換器2を図示していないが、実際には設置されている。本実施の形態が第3の実施の形態と異なる点は蒸気発生器17の下鏡板19を除く全周囲を包囲して上端部からスカート40の上部までにわたる長尺エンクロージャ76を設けるとともに長尺エンクロージャ76の下部から上部デッキ68を貫通して大型収納構造物67内にまで達する長さの連通管を設けたことにある。その他の部分は図6と同様である。
【0075】
すなわち本実施の形態は蒸気発生器17の外側には長尺エンクロージャ76が設けられており、その下端は蒸気発生器17を支持するスカート40に接続され、封止されている。また、スカート40と長尺エンクロージャ76との接続部には、蒸気発生器17の本体胴20が破損した場合の漏洩液体金属を大型収納構造物67に移送するための連通管が設置されている。
【0076】
本実施の形態によれば、蒸気発生器17の本体胴20が破損した場合でも、漏洩液体金属を系外に流出させることなく、大型収納構造物67内に貯溜でき、液体金属漏洩事由が生じた場合にはその影響を最小限に抑えることができる。
【0077】
次に図9(a),(b)により図1(a)に示した電磁ポンプ28のコイル77と可変周波数電源装置78との接続例を説明する
【0078】
図9(a),(b)においては電磁ポンプ28を液体金属の吐出方向を通常運転時の方向と、逆方向の運転も行うことができるようにしたもので、可変周波数電源装置78は母線79と接続している。
【0079】
通常運転時、電磁ポンプ28は図9(a)に示すように、電磁ポンプコイル77側のU相80,V相81,W相82が1つとなり、これが4極からなる構成で、母線79から可変周波数電源78側のU相83,V相84,W相85と1対1で接続され給電されている。また、電磁ポンプ28は図9(b)に示すように、例えば運転制御室からのスイッチ(図示せず)により、U相80,V相81が、可変周波数電源78のV相84およびU相83と接続を入れ替えることにより、電磁ポンプ28からの吐出流量の方向を変えることが可能な構成としている。
【0080】
本実施の形態によれば、電磁ポンプ28本体側と可変周波数電源装置78側のコイル配線を運転形態に応じて変更することにより、電磁ポンプ28の吐出方向を逆転させることが可能となり、コールドレグ配管破損時の液体金属の急速ドレンおよび早期のサイホンブレイクが可能となる。
【0081】
次に図10により本発明の液体金属冷却型原子炉の冷却設備の第5の実施の形態を説明する。本実施の形態は蒸気発生器17の下鏡板19を貫通して下降管83と上昇管84を同心円状の二重管として下鏡板19に取付け、下降管83および上昇管84の下端を縦型のダンプタンク64内の底面近傍に達するまで設けたことにある。下降管83の外面とダンプタンク64との間にはシールベローズ85が設けられて気密にシールされている。
【0082】
ダンプタンク64内にはコールドトラップ11がコールドトラップ保護容器66を介して設けられている。コールドトラップ11の下部には短小純化系配管86が設けられ、短小純化系配管86の先端はダンプタンク64内の底部近傍に開口している。
【0083】
ダンプタンク64はダンプタンク保護容器65内に収納されており、ダンプタンク保護容器65の外側には大型収納構造物67が設けられており、ダンプタンク64はダンプタンク保護容器65と、大型収納構造物67とにより二重に保護されている。
【0084】
蒸気発生器17の下部には、冷却系の補助設備であるダンプタンク64と蒸気発生器17の下鏡板19に接続された下降管83とが接続されている。蒸気発生器17内の伝熱管21(図1参照)で熱交換されたコールド液体金属は、下降管83を経て2次ナトリウムダンプタンク64内に開放される。
【0085】
その後、下降管83内に同心円状に配置された上昇管84を経て、図1に示した内27に流入し、電磁ポンプ28により昇圧された後、図3に示すようにコールドレグ配管48を経由して中間熱交換器2に戻される。ダンプタンク64には、コールドトラップ11が内蔵されており、ダンプタンク64内の液体金属はコールドトラップ11により精製される。
【0086】
しかして、本実施の形態によれば、ダンプタンク64を蒸気発生器17と接合して合体化したことにより、充填ドレンに必要な配管・弁類を削除できる。また、コールドトラップ11をダンプタンク64に内蔵したことにより、液体金属純化用の配管・弁類の削除が可能となる。さらに、これら配管・弁類の削除とともに、ライナ等の液体金属の漏洩対策設備も削減でき、プラントのコストダウンおよび液体金属漏洩の可能性を低減するといったプラントの信頼性向上につながる。
【0087】
次に図11により本発明の液体金属冷却型原子炉の冷却設備の第6の実施の形態を説明する。すなわち、本実施の形態は第5の実施の形態における同心円状の下降管83と上昇管84を分割して細径下降管87と細径上昇管88を下鏡板19を貫通して下鏡板19に取付けたことにある。その他の部分は第5の実施の形態と同様である。なお、下降管87と上昇管88はそれぞれ開閉弁89が設けられダンプタンク64との間にはシールベローズ90が設けられている。
【0088】
蒸気発生器17の下部には、冷却系の補助設備であるダンプタンク64と蒸気発生器17の下端に接続された下降管87とが接続されている。蒸気発生器17内の伝熱管(図示せず)で熱交換されたコールド液体金属は、下降管87を経てダンプタンク67内に開放された後、下降管87とは独立に設置された上昇管88を経て、この上昇管88は図1に示した内27と接合されることにより、電磁ポンプ28(図1参照)により昇圧された後、図3に示すようにコールドレグ配管48を経由して中間熱交換器2に戻される。
【0089】
本実施の形態によれば、第5の実施の形態で説明した作用効果の他、細径上昇管88を独立に設け、さらにそれぞれの配管に弁を設置したことにより蒸気発生器17および2次主配管との物理的分離が可能となり、電磁ポンプや蒸気発生器等の保守・補修作業が容易となる。
【0090】
【発明の効果】
本発明によれば、2次主配管の長さが大幅に短縮され、配管物量および建屋物量の低減が可能となる。また、液体金属漏洩対策設備の合理化が図れるとともに、液体金属漏洩の可能性を大幅に低減でき、プラントの安全性および信頼性向上が図れる。
【図面の簡単な説明】
【図1】(a)は本発明に係る液体金属冷却型原子炉の冷却設備の第1の実施の形態を一部側面で示す縦断面図、(b)は(a)のA−A矢視方向から見た上面図。
【図2】図1におけるエンクロージャ部を拡大して透視的に示す斜視図。
【図3】図1における蒸気発生器と中間熱交換器とを接続する配管接続状態を説明するための装置配置図。
【図4】本発明に係る液体金属冷却型原子炉の冷却設備の第2の実施の形態を示す装置配置図。
【図5】(a)は図1または図4における二重伝熱管の第1の例を示す横断面図、(b)は同じく第2の例を示す横断面図。
【図6】本発明に係る液体金属冷却型原子炉の冷却設備の第3の実施の形態を示す装置配置図。
【図7】図6における収納構造物とその内部を概略的に示す縦断面図。
【図8】本発明に係る液体金属冷却型原子炉の冷却設備の第4の実施の形態を示す装置配置図。
【図9】(a)は図8における電磁ポンプコイルと可変周波数電源との接続例を示す結線図、(b)は(a)における他の例を示す結線図。
【図10】本発明に係る液体金属冷却型原子炉の冷却設備の第5の実施の形態を示す装置配置図。
【図11】本発明に係る液体金属冷却型原子炉の冷却設備の第6の実施の形態を示す装置配置図。
【図12】従来の液体金属冷却型原子炉の冷却設備を示す装置配置図。
【符号の説明】
1…1次系配管、2…中間熱交換器、3…ホットレグ配管、4…蒸気発生器、5…ミドルレグ配管、6…2次主循環ポンプ、7…コールドレグ配管、8…給水配管、9…主蒸気配管、10…純化系配管、11…コールドトラップ、12…ドレン配管、13…ダンプタンク、14…放出系配管、15…ラプチャディスク、16…格納容器、17…蒸気発生器(本発明)、18…上鏡板、19…下鏡板、20…本体胴、21…伝熱管、22…伝熱管束、23…蒸気管板、24…給水管板、25…蒸気管台、26…給水管台、27…内筒、28…電磁ポンプ、29…液体金属入口ノズル、30…ポンプ出口ノズル、31…連絡管、32…液体金属出口ノズル、33…堰、34…液体金属、35…上部プレナム、36…ポンプケーシング、37…エンクロージャ、38…支持フランジ、39…平板、40…スカート、41…不活性ガス雰囲気、42…止め弁、43…ガス抜き管、44…分岐管、45…伝熱管水リーク検出系、46…戻り管、47…計装用ウェル、48…短尺コールドレグ配管、49…短尺ホットレグ配管、50…リングガーダ、51…直管型短尺放出系配管、52…ベローズ、53…短尺ドレン配管、54…止め弁、55…ベローズ、56…短尺純化系配管、57,58…開閉弁、59…ベローズ、60…内管、61…外管、62…多孔質金属層、63…半円状溝、64…縦型のダンプタンク、65…ダンプタンク保護容器、66…コールドトラップ保護容器、67…大型収納構造物、68…上部デッキ、69…シール構造物、70…底部、71…堰板、72…貯溜ポット、73…連通管、74…不活性ガス供給配管、75…不活性ガス供給装置、76…長尺エンクロージャ、77…電磁ポンプコイル、78…可変周波数電源装置、79…母線、80…U相、81…V相、82…W相、83…下降管、84…上昇管、85…シールベローズ、86…短小純化系配管、87…細径下降管、88…細径上昇管、89…開閉弁、90…シールベローズ。

Claims (6)

  1. 原子炉建屋内に配設した中間熱交換器と蒸気発生器とを配管接続してなる液体金属冷却型原子炉の冷却設備において、前記蒸気発生器は上下両端部が上鏡板および下鏡板により閉塞され内部に液体金属が通流する本体胴と、この本体胴内に配設された伝熱管と、前記本体胴に設けられ前記伝熱管の管束に接続した給水管板および蒸気管板を固定する給水管台および蒸気管台と、前記伝熱管の管束内に設けられた内筒と、この内筒内に設置された電磁ポンプと、前記本体胴に設けた液体金属入口ノズルと、前記上鏡板に突設されて内部に不活性ガスを保持し前記電磁ポンプの吐出側空間を包囲するエンクロージャと、前記電磁ポンプに接続され前記エンクロージャ内に設けられたポンプ出口ノズルと、このポンプ出口ノズルに接続されて前記エンクロージャ内に設けられ計装用ウェルを設けてなる連絡管と、この連絡管に接続された液体金属出口ノズルとを具備したことを特徴とする液体金属冷却型原子炉の冷却設備。
  2. 原子炉建屋内に配設した中間熱交換器と蒸気発生器とを配管接続してなる液体金属冷却型原子炉の冷却設備において、前記蒸気発生器は上下両端部が上鏡板および下鏡板により閉塞され内部に液体金属が通流する本体胴と、この本体胴内に配置された伝熱管と、前記本体胴に設けられ前記伝熱管の管束に接続した給水管板および蒸気管板を固定する給水管台および蒸気管台と、前記下鏡板を貫通して前記本体胴内にされた上昇管と、前記本体胴内に設置された電磁ポンプと、前記上昇管の外側に前記液体金属の流路を有して同心円状に設けられた下降管とからなり、前記上昇管および下降管の下部を挿着し前記蒸気発生器の下方にデッキを介して配置されたダンプタンクを有することを特徴とする液体金属冷却型原子炉の冷却設備。
  3. 前記ダンプタンク内にコールドトラップを配置してなることを特徴とする請求項記載の液体金属冷却型原子炉の冷却設備。
  4. 前記伝熱管は内管と外管とからなる同心円状二重伝熱管でヘリカルコイル状に形成されてなり、前記内管と外管の間に組網線を充填してなることを特徴とする請求項記載の液体金属冷却型原子炉の冷却設備。
  5. 前記下降管と前記上昇管とを分離し、それぞれ前記下鏡板を貫通して独立に設置してなることを特徴とする請求項記載の液体金属冷却型原子炉の冷却設備。
  6. 前記下降管と前記上昇管にそれぞれ止弁を設置してなることを特徴とする請求項記載の液体金属冷却型原子炉の冷却設備。
JP14002297A 1997-05-29 1997-05-29 液体金属冷却型原子炉の冷却設備 Expired - Lifetime JP3720949B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14002297A JP3720949B2 (ja) 1997-05-29 1997-05-29 液体金属冷却型原子炉の冷却設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14002297A JP3720949B2 (ja) 1997-05-29 1997-05-29 液体金属冷却型原子炉の冷却設備

Publications (2)

Publication Number Publication Date
JPH10332882A JPH10332882A (ja) 1998-12-18
JP3720949B2 true JP3720949B2 (ja) 2005-11-30

Family

ID=15259132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14002297A Expired - Lifetime JP3720949B2 (ja) 1997-05-29 1997-05-29 液体金属冷却型原子炉の冷却設備

Country Status (1)

Country Link
JP (1) JP3720949B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10685752B2 (en) 2015-02-10 2020-06-16 Nuscale Power, Llc Steam generator with inclined tube sheet

Also Published As

Publication number Publication date
JPH10332882A (ja) 1998-12-18

Similar Documents

Publication Publication Date Title
US5223210A (en) Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
US9818495B2 (en) Containment vessel and nuclear power plant
US5158742A (en) Reactor steam isolation cooling system
US4115192A (en) Fast neutron nuclear reactor
US3937651A (en) Nuclear reactor facility
EP0462810A1 (en) Passive cooling safety system for liquid metal cooled nuclear reactors
US4737337A (en) Nuclear reactor having double tube helical coil heat exchanger
US4056439A (en) Secondary heat transfer circuits for nuclear reactor plant
CN105960680A (zh) 整体式反应堆压力容器管板
JP2983290B2 (ja) 原子炉特に加圧水形原子炉の熱放出装置
US4644906A (en) Double tube helical coil steam generator
US4753773A (en) Double tube steam generator
US5158741A (en) Passive cooling system for top entry liquid metal cooled nuclear reactors
JPH024877B2 (ja)
US4645633A (en) Double tank type fast breeder reactor
JP3720949B2 (ja) 液体金属冷却型原子炉の冷却設備
US4786462A (en) Support structure for a nuclear reactor
US4909981A (en) Nuclear reactor
JP3950517B2 (ja) 液体金属冷却型原子炉の蒸気発生器および冷却システム
US4761261A (en) Nuclear reactor
US4026675A (en) Heat exchanger for nuclear reactor installations
JPH0426079B2 (ja)
EP0349014A2 (en) Support structure for a nuclear reactor
US4519978A (en) Secondary heat transfer circuit for a nuclear reactor
JP2004085234A (ja) 原子炉格納設備

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050909

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

EXPY Cancellation because of completion of term