JP3720827B2 - Method for producing resist polymer - Google Patents

Method for producing resist polymer Download PDF

Info

Publication number
JP3720827B2
JP3720827B2 JP2004013877A JP2004013877A JP3720827B2 JP 3720827 B2 JP3720827 B2 JP 3720827B2 JP 2004013877 A JP2004013877 A JP 2004013877A JP 2004013877 A JP2004013877 A JP 2004013877A JP 3720827 B2 JP3720827 B2 JP 3720827B2
Authority
JP
Japan
Prior art keywords
group
formula
polymerization
repeating unit
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004013877A
Other languages
Japanese (ja)
Other versions
JP2004269855A (en
Inventor
孝則 山岸
知 及川
一郎 加藤
和彦 水野
賢志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Original Assignee
Maruzen Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd filed Critical Maruzen Petrochemical Co Ltd
Priority to JP2004013877A priority Critical patent/JP3720827B2/en
Publication of JP2004269855A publication Critical patent/JP2004269855A/en
Application granted granted Critical
Publication of JP3720827B2 publication Critical patent/JP3720827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、半導体の製造に使用されるレジスト用ポリマー製造方法に関するものである。更に詳しくは、本発明は遠紫外線、X線、電子線などの各種放射線を用いる微細加工に好適な、保存安定性に優れたレジスト用ポリマー製造方法に関するものである。 The present invention relates to a manufacturing method for a resist polymer for use in the manufacture of semiconductors. More particularly, the present invention is far ultraviolet, X-rays, suitable for microfabrication using various radiations such as an electron beam, a process for producing a superior resist polymer storage stability.

半導体の製造のために用いられるリソグラフィーにおいては、集積度の増大に伴い、より微細なパターンの形成が求められている。パターンの微細化には露光光源の短波長化が不可欠であるが、現在ではフッ化クリプトン(KrF)エキシマレーザー光(波長248nm)によるリソグラフィーが主流になりつつあり、フッ化アルゴン(ArF)エキシマレーザー光(波長193nm)による線幅100nm以下のリソグラフィーも実用化されようとしている。更には、フッ素ダイマー(F)エキシマレーザー光(波長157nm)、極紫外線(EUV)、X線、電子線等を用いたリソグラフィー技術が開発段階にある。 In lithography used for manufacturing semiconductors, the formation of finer patterns is required as the degree of integration increases. Shortening the wavelength of the exposure light source is indispensable for pattern miniaturization, but now lithography using krypton fluoride (KrF) excimer laser light (wavelength 248 nm) is becoming the mainstream, and argon fluoride (ArF) excimer laser Lithography using light (wavelength 193 nm) with a line width of 100 nm or less is also being put into practical use. Furthermore, a lithography technique using fluorine dimer (F 2 ) excimer laser light (wavelength 157 nm), extreme ultraviolet light (EUV), X-ray, electron beam, etc. is in the development stage.

これらのリソグラフィー技術に用いられるレジスト用ポリマーは、非極性置換基を有すると共に、この非極性置換基が酸によって分解してアルカリ現像液に可溶な極性基が発現する構造を有する繰り返し単位と、半導体基板に対する密着性を高めるための極性基を有する繰り返し単位を必須成分とし、必要に応じてレジスト溶剤やアルカリ現像液への溶解性を調節するための非極性の置換基を有する繰り返し単位を含んで構成される。これらの繰り返し単位としては、例えば、露光源としてKrFエキシマレーザーを用いる場合ではヒドロキシスチレン類及びその誘導体が主に用いられており、ArFエキシマレーザーを用いる場合では、ヒドロキシスチレン類が波長193nmの光を吸収するため、(メタ)アクリレート類及びその誘導体などが検討されている。   The resist polymer used in these lithography techniques has a non-polar substituent and a repeating unit having a structure in which the non-polar substituent is decomposed by an acid and a polar group soluble in an alkali developer is expressed, A repeating unit having a polar group for improving adhesion to a semiconductor substrate is an essential component, and a repeating unit having a nonpolar substituent for adjusting the solubility in a resist solvent or an alkaline developer is included as necessary. Consists of. As these repeating units, for example, when using a KrF excimer laser as an exposure source, hydroxystyrenes and derivatives thereof are mainly used. When using an ArF excimer laser, hydroxystyrenes emit light having a wavelength of 193 nm. In order to absorb, (meth) acrylates and derivatives thereof have been studied.

このようなレジスト用ポリマーの具体例としては、KrFエキシマレーザーを用いる系では、例えば(メタ)アクリル酸系モノマーとスチレン系モノマーを組み合わせたコポリマー(例えば、特許文献1〜4等参照)やヒドロキシスチレンの一部をアセタールで保護したポリマー(例えば、特許文献5〜8等参照)などが知られており、ArFエキシマレーザーを用いる系では、例えば、ラクトン構造を有する(メタ)アクリル酸系モノマーのコポリマー(例えば、特許文献9〜10等参照)などが知られている。   Specific examples of such a resist polymer include, for example, a copolymer using a (meth) acrylic acid monomer and a styrene monomer (for example, see Patent Documents 1 to 4) or hydroxystyrene in a system using a KrF excimer laser. Polymers partially protected with acetal (for example, see Patent Documents 5 to 8, etc.) are known, and in systems using ArF excimer laser, for example, copolymers of (meth) acrylic acid monomers having a lactone structure (For example, refer to Patent Documents 9 to 10).

一方、レジストパターンが微細化するにつれ、レジスト用ポリマーの品質に対する要求が厳しくなって来ており、特に、ロット間差、反応器差、スケール差の小さい安定したレジスト用ポリマーの製造方法が強く求められている。レジスト用ポリマーの最も一般的な製造方法としては、原料モノマー、重合開始剤及び、必要に応じて連鎖移動剤を重合溶媒に溶解し、加熱重合させる重合法、いわゆる一括重合法が知られている。しかし、一括重合法では、昇温速度を常に一定にコントロールすることが難しく、このため、昇温速度の微妙な変化によって昇温段階でのラジカル発生量に差異が生じ、ロットによって分子量分布に差が生じ易いという欠点があった。又、反応器の形状やスケールの異なる系では、同じ昇温速度を再現するために加熱条件を検討・変更する必要があった。更に、一括重合法の場合、例えロット間、或いは、反応器の形状やスケールの異なる系において同じ昇温速度が再現されたとしても、昇温過程で重合開始剤の一部が分解して発生した微量のラジカルが、重合溶媒中の溶存酸素に捕捉されるため、重合反応のバッチ毎の溶存酸素濃度の違いにより、昇温過程におけるラジカル濃度に差違が生じ、重量平均分子量や分子量分布に差が生じ易いという欠点があった。加えて、一括重合法における昇温過程では、ラジカルがごく低濃度で、モノマーが高濃度という状態を経るため、分子量が10万以上の微量の高分子量成分(ハイポリマー)が生成するという問題があった。   On the other hand, as the resist pattern becomes finer, the requirements for the quality of the resist polymer have become stricter. In particular, there is a strong demand for a method for producing a stable resist polymer with small lot differences, reactor differences, and scale differences. It has been. As the most common method for producing a resist polymer, a polymerization method in which a raw material monomer, a polymerization initiator and, if necessary, a chain transfer agent are dissolved in a polymerization solvent and heat-polymerized, so-called batch polymerization method is known. . However, in the batch polymerization method, it is difficult to always control the temperature rising rate to be constant. For this reason, a slight change in the temperature rising rate causes a difference in the amount of radicals generated at the temperature rising stage, resulting in a difference in molecular weight distribution depending on the lot. There was a fault that it was easy to occur. Also, in systems with different reactor shapes and scales, it was necessary to study and change the heating conditions in order to reproduce the same heating rate. Furthermore, in the case of batch polymerization, even if the same heating rate is reproduced between lots or in systems with different reactor shapes and scales, a part of the polymerization initiator is decomposed during the heating process. Since a small amount of radicals are trapped by the dissolved oxygen in the polymerization solvent, the radical concentration in the temperature rising process varies due to the difference in the dissolved oxygen concentration in each batch of the polymerization reaction, and the weight average molecular weight and molecular weight distribution differ. There was a fault that it was easy to occur. In addition, in the temperature rising process in the batch polymerization method, since the radicals are in a very low concentration and the monomer is in a high concentration state, there is a problem that a very small amount of high molecular weight component (high polymer) having a molecular weight of 100,000 or more is generated. there were.

昇温速度の影響を受けない重合方法としては、モノマーと、必要に応じて連鎖移動剤を重合溶媒に溶解し、重合温度に加熱した後、重合開始剤を一括又は分割して添加する方法(例えば、特許文献11等参照)や、一定時間かけて滴下する方法(例えば、特許文献12等参照)が知られているが、これらの方法には、モノマーを重合開始剤なしで重合温度まで加熱するため、微量のハイポリマーが生成するという問題があった。   As a polymerization method that is not affected by the rate of temperature increase, a monomer and, if necessary, a chain transfer agent are dissolved in a polymerization solvent, heated to a polymerization temperature, and then a polymerization initiator is added all at once or dividedly ( For example, Patent Document 11 and the like) and methods of dropping over a certain period of time (for example, see Patent Document 12 and the like) are known. In these methods, the monomer is heated to the polymerization temperature without a polymerization initiator. Therefore, there is a problem that a very small amount of high polymer is generated.

又、重合溶媒と同じ又は異なる溶媒に原料モノマー、重合開始剤及び必要に応じて連鎖移動剤を溶解した溶液を、重合温度に加熱した溶媒中に滴下して重合を行う方法、いわゆる滴下重合法が知られている(例えば、特許文献13〜15等参照)。しかしながら、この方法では、滴下の間、モノマーを重合開始剤の共存下に保持するため、微量のハイポリマーが生成するという問題があった。   In addition, a method in which a raw material monomer, a polymerization initiator and, if necessary, a solution of a chain transfer agent dissolved in a solvent different from or different from a polymerization solvent are dropped into a solvent heated to a polymerization temperature, so-called dropping polymerization method Is known (see, for example, Patent Documents 13 to 15). However, this method has a problem that a very small amount of high polymer is produced because the monomer is maintained in the presence of the polymerization initiator during the dropping.

モノマーと重合開始剤の混合溶液中におけるハイポリマーの生成を抑制する方法としては、重合禁止剤を添加する方法が考えられる。しかしながら、ハイポリマーの生成を抑制するために多量の重合禁止剤を添加すると重合反応に影響を及ぼす可能性があり、更に、ArF系の場合、一般に重合禁止剤として用いられる4−メトキシフェノール等のフェノール系の化合物は、ポリマー中に残存して波長193nmの光を吸収するため問題があった。又、本発明者等が検討したところによれば、重合禁止剤を添加する代わりに、モノマーと重合開始剤の混合溶媒を空気雰囲気下に保持することにより、発生したラジカル種を溶存酸素により消費し、ハイポリマーの生成をある程度抑制することができるが、この方法では爆発や火災のおそれがあり、安全性の面で工業的に実施することが出来なかった。   As a method for suppressing the formation of a high polymer in a mixed solution of a monomer and a polymerization initiator, a method of adding a polymerization inhibitor can be considered. However, if a large amount of a polymerization inhibitor is added in order to suppress the formation of a high polymer, it may affect the polymerization reaction. In addition, in the case of ArF type, such as 4-methoxyphenol generally used as a polymerization inhibitor The phenolic compound has a problem because it remains in the polymer and absorbs light having a wavelength of 193 nm. Further, according to the study by the present inventors, instead of adding a polymerization inhibitor, the generated radical species are consumed by dissolved oxygen by maintaining a mixed solvent of a monomer and a polymerization initiator in an air atmosphere. However, although the formation of high polymer can be suppressed to some extent, this method has a risk of explosion and fire, and cannot be industrially implemented in terms of safety.

上記ハイポリマーが生成すると、得られたレジスト用ポリマーのレジスト溶媒やアルカリ現像液への溶解性が悪くなり、又、製造直後は溶解していても、経時保存時にハイポリマーを核として不溶解性の異物が成長し析出してくる場合がある。これらの不溶解分はレジストパターンの欠陥の原因となる可能性が高く、このため、ハイポリマーを含まないレジスト樹脂及びその製造方法の提供が強く望まれていた。
特開昭59−045439号公報 特開平05−113667号公報 特開平07−209868号公報 特開平11−065120号公報 特開昭62−115440号公報 特開平04―219757号公報 特開平03−223860号公報 特開昭04−104251号公報 特開平09−073173号公報 特開平10−239846号公報 特開2001−109153号公報 特開2002−006501号公報(実施例) 特開平04−269754号公報(実施例) 特開平11−295894号公報 国際公開第99/50322号
When the above-mentioned high polymer is formed, the solubility of the resulting resist polymer in a resist solvent or an alkaline developer is deteriorated, and even if it is dissolved immediately after production, it is insoluble with the high polymer as the core during storage over time. May grow and precipitate. These insoluble components are highly likely to cause defects in the resist pattern. Therefore, it has been strongly desired to provide a resist resin not containing a high polymer and a method for producing the same.
JP 59-045439 A Japanese Patent Laid-Open No. 05-113667 Japanese Patent Application Laid-Open No. 07-209868 JP-A-11-0665120 JP 62-115440 A Japanese Patent Laid-Open No. 04-219757 Japanese Patent Laid-Open No. 03-223860 Japanese Patent Laid-Open No. 04-104251 JP 09-073173 A Japanese Patent Laid-Open No. 10-239846 JP 2001-109153 A JP 2002-006501 A (Example) JP 04-269754 A (Example) JP-A-11-295894 International Publication No. 99/50322

本発明は前記の背景技術に鑑みなされたものであり、その目的は、半導体の製造において使用されるレジスト用ポリマーであって、ロット間差、反応器差、スケール差が小さく、且つ、ハイポリマーを含まず、溶解性及び保存安定性に優れ、微細なパターン形成に好適なレジスト用ポリマー製造方法を提供することにある。 The present invention has been made in view of the above-described background art, and an object of the present invention is a resist polymer used in the manufacture of semiconductors , which has a small lot- to- lot difference, a reactor difference, a scale difference, and a high polymer. not including, excellent solubility and storage stability, and to provide a manufacturing method suitable resist polymer for fine pattern formation.

本発明者らは上記課題を解決するため、鋭意検討した結果、滴下重合法において特定の方法により原料モノマー及び重合開始剤を導入することにより、昇温速度の影響を受けることなく系内にモノマーを導入することができると同時に、ハイポリマーの生成を抑制することが可能であり、溶解性及び保存安定性に優れたレジスト用ポリマーが得られることを見出し、本発明を完成した。   As a result of diligent investigations to solve the above problems, the present inventors have introduced a monomer and a polymerization initiator by a specific method in the dropping polymerization method, so that the monomer is not affected by the rate of temperature rise in the system. At the same time, it was possible to suppress the formation of a high polymer, and it was found that a resist polymer having excellent solubility and storage stability was obtained, and the present invention was completed.

即ち本発明は、有機溶媒中のラジカル重合による、少なくとも、酸によって分解してアルカリ現像液に可溶となる構造を有する繰り返し単位(A)と、半導体基板に対する密着性を高めるための極性基を有する繰り返し単位(B)とを有するレジスト用ポリマーの製造方法であって、
前記繰り返し単位(A)と繰り返し単位(B)が、一般式

(1)
(式中、R は水素原子若しくはメチル基を表す。)

(2)
(式中、R は水素原子、メチル基、トリフルオロメチル基から選ばれる基を表す。)

(3)
(式中、R は水素原子若しくはトリフルオロメチル基を表す。)

(4)
(式中、R はメチル基を表す。)

(5)
(式中、R は水素原子若しくはメチル基表す。)

(6)
(式中、R は水素原子若しくはトリフルオロメチル基を表す。)

(7)
{Rは以下の一般式(8)〜(10)から選ばれる酸解離性基若しくは一般式(11)〜(16)から選ばれる極性基であって、Rが酸解離性基の場合は繰り返し単位(A)を、極性基の場合は繰り返し単位(B)を表す。}

(8)
(式中、R 11 は炭素数1又は2のアルキル基、R 12 及びR 13 は共にメチル基若しくはいずれか一方がメチル基で他方が1−アダマンチル基若しくはR 12 とR 14 が相互に結合して形成した炭素数5、6、10又は12の単環若しくは有橋環構造を有する脂環式アルキル基を表す。)

(9)
{式中、R 14 はメチル基、R 15 は炭素数1〜4の鎖状アルキル基若しくは炭素数1、2、5、6又は10の脂環式のアルキル基を、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(10)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(11)
{式中、R 21 及びR 22 はそれぞれ独立して水素原子若しくはメチル基(但し、共にメチル基となることはない)、m及びnはそれぞれ独立して0若しくは1であって、共に0となることはない整数を、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(12)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(13)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(14)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(15)
(式中、R 23 は炭素数1〜3の2価のアルキル基を、oは一般式(1)〜(7)の繰り
返し単位との接合部位を表す。)

(16)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}
のいずれかで表される1種以上であると共に、
繰り返し単位(A)と繰り返し単位(B)との組成比が(A)10から70モル%、(B)30から90モル%であり、
ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、分子量10万以上の高分子量成分(ハイポリマー)のピーク面積が、全体のピーク面積に対して0.1%以下であることを特徴とするレジスト用ポリマーの製造方法を提供するものである。
That is, the present invention comprises at least a repeating unit (A) having a structure that is decomposed by an acid and becomes soluble in an alkali developer by radical polymerization in an organic solvent, and a polar group for enhancing adhesion to a semiconductor substrate. A method for producing a resist polymer having a repeating unit (B) having:
The repeating unit (A) and the repeating unit (B) are represented by the general formula:

(1)
(In the formula, R 1 represents a hydrogen atom or a methyl group.)

(2)
(In the formula, R 2 represents a group selected from a hydrogen atom, a methyl group, and a trifluoromethyl group.)

(3)
(In the formula, R 3 represents a hydrogen atom or a trifluoromethyl group.)

(4)
(In the formula, R 4 represents a methyl group.)

(5)
(In the formula, R 1 represents a hydrogen atom or a methyl group.)

(6)
(In the formula, R 5 represents a hydrogen atom or a trifluoromethyl group.)

(7)
{R is an acid dissociable group selected from the following general formulas (8) to (10) or a polar group selected from general formulas (11) to (16), and when R is an acid dissociable group, the reaction is repeated. The unit (A) represents a repeating unit (B) in the case of a polar group. }

(8)
(Wherein R 11 is an alkyl group having 1 or 2 carbon atoms, R 12 and R 13 are both methyl groups, or one of them is a methyl group and the other is a 1-adamantyl group, or R 12 and R 14 are bonded to each other. Represents an alicyclic alkyl group having a monocyclic or bridged ring structure having 5, 6, 10 or 12 carbon atoms formed by

(9)
{In the formula, R 14 represents a methyl group, R 15 represents a chain alkyl group having 1 to 4 carbon atoms or an alicyclic alkyl group having 1, 2, 5, 6 or 10 carbon atoms, and o represents a general formula (1 ) To (7) represents a bonding site with the repeating unit. }

(10)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(11)
{In the formula, R 21 and R 22 are each independently a hydrogen atom or a methyl group (however, both are not methyl groups); m and n are each independently 0 or 1; An integer that never becomes, and o represents a bonding site with the repeating unit of the general formulas (1) to (7). }

(12)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(13)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(14)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(15)
(In the formula, R 23 represents a divalent alkyl group having 1 to 3 carbon atoms, and o represents a repeating group represented by the general formulas (1) to (7).
Represents the junction with the return unit. )

(16)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }
And at least one type represented by any one of
The composition ratio of the repeating unit (A) to the repeating unit (B) is (A) 10 to 70 mol%, (B) 30 to 90 mol%,
In the molecular weight distribution measured by gel permeation chromatography (GPC), the peak area of a high molecular weight component (high polymer) having a molecular weight of 100,000 or more is 0.1% or less with respect to the entire peak area. A method for producing a resist polymer is provided.

本発明によれば、従来の滴下重合法と同等に昇温速度の影響を受けにくいため、ロット間差、反応器差、スケール差の小さい安定したレジスト用ポリマーが得られると同時に、ハイポリマーを含まないため、溶解性に優れ、経時保存時においても不溶解性の異物の成長が見られず、安定で、微細なレジストパターンの形成に好適なレジスト用ポリマーを提供することができる。   According to the present invention, since it is not easily affected by the rate of temperature increase as in the conventional drop polymerization method, a stable resist polymer with small lot-to-lot differences, reactor differences, and scale differences can be obtained, and at the same time, a high polymer can be used. Therefore, it is possible to provide a resist polymer that is excellent in solubility and does not show growth of insoluble foreign matter even when stored over time, and is stable and suitable for forming a fine resist pattern.

本発明に用いられる重合性モノマーとしては、重合可能なエチレン性二重結合を有するモノマーであれば特に制約なく使用し得るが、得られたレジスト用ポリマーは、少なくとも、酸によって分解してアルカリ現像液に可溶となる構造を有する繰り返し単位、より具体的には、非極性置換基が酸によって解離してアルカリ現像液に可溶な極性基が発現する構造を有する繰り返し単位(A)と、半導体基板に対する密着性を高めるための極性基を有する繰り返し単位(B)とを必須成分とし、必要に応じてレジスト溶剤やアルカリ現像液への溶解性を調節するための非極性の置換基を有する繰り返し単位(C)を含んで構成される。   As the polymerizable monomer used in the present invention, any monomer having a polymerizable ethylenic double bond can be used without any particular limitation. However, the obtained resist polymer is at least decomposed with an acid and subjected to alkali development. A repeating unit having a structure that is soluble in a liquid, more specifically, a repeating unit (A) having a structure in which a nonpolar substituent is dissociated by an acid and a polar group soluble in an alkali developer is expressed; A repeating unit (B) having a polar group for enhancing adhesion to a semiconductor substrate is an essential component, and has a non-polar substituent for adjusting the solubility in a resist solvent or an alkali developer as necessary. It is configured to include the repeating unit (C).

本発明に用いられる重合性モノマーとしては、上記一般式(1)から(7)で表されるものを使用することができる。As the polymerizable monomer used in the present invention, those represented by the general formulas (1) to (7) can be used.

酸によって分解してアルカリ可溶性となる繰り返し単位(A)は、従来よりレジストとして一般的に用いられている構造を意味し、酸によって分解してアルカリ可溶性になる構造を有するモノマーを重合させるか、或いは、アルカリ可溶性の構造を有するモノマーを重合させた後、アルカリ可溶性の構造におけるアルカリ可溶性を有する置換基(アルカリ可溶性基)を、アルカリに溶解せず酸によって解離する置換基(酸解離性基)で保護することにより得ることができる。   The repeating unit (A) which is decomposed by an acid and becomes alkali-soluble means a structure generally used as a resist from the past, and a monomer having a structure which is decomposed by an acid and becomes alkali-soluble is polymerized. Alternatively, after polymerizing a monomer having an alkali-soluble structure, the alkali-soluble substituent (alkali-soluble group) in the alkali-soluble structure is not dissolved in an alkali but is dissociated by an acid (acid-dissociable group). It can obtain by protecting with.

酸によって分解してアルカリ可溶性になる構造を有するモノマーとしては、アルカリ可溶性置換基を含有する重合性化合物に、酸解離性基が結合した化合物を挙げることができ、例えば、非極性の酸解離性基で保護されたフェノール性水酸基、カルボキシル基やヒドロキシフルオロアルキル基を有する化合物などを挙げることができる。   Examples of the monomer having a structure that is decomposed by an acid to become alkali-soluble include a compound in which an acid-dissociable group is bonded to a polymerizable compound containing an alkali-soluble substituent. And compounds having a phenolic hydroxyl group, a carboxyl group or a hydroxyfluoroalkyl group protected with a group.

従って、このアルカリ可溶性置換基を含有する重合性化合物としては、具体的には例えば、p−ヒドロキシスチレン、m−ヒドロキシスチレン、p−ヒドロキシ−α−メチルスチレン等のヒドロキシスチレン類;アクリル酸、メタクリル酸、トリフルオロメチルアクリル酸、5−ノルボルネン−2−カルボン酸、2−トリフルオロメチル−5−ノルボルネン−2−カルボン酸、カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデシルメタクリレート等のエチレン性二重結合を有するカルボン酸類;p−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)スチレン、2−(4−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル)−1,1,1,3,3,3−ヘキサフルオロプロピルアクリレート、2−(4−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル)−1,1,1,3,3,3−ヘキサフルオロプロピルトリフルオロメチルアクリレート、5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)メチル−2−ノルボルネンなどのヒドロキシフルオロアルキル基を有する重合性化合物などを挙げることができる。 Accordingly, specific examples of the polymerizable compound containing an alkali-soluble substituent include hydroxystyrenes such as p-hydroxystyrene, m-hydroxystyrene, and p-hydroxy-α-methylstyrene; acrylic acid, methacrylic acid, and the like. acid, trifluoromethyl acrylate, 5-norbornene-2-carboxylic acid, 2-trifluoromethyl-5-norbornene-2-carboxylic acid, carboxymethyl tetracyclo [4.4.0.1 2,5 .1 7, 10 ] carboxylic acids having an ethylenic double bond such as dodecyl methacrylate; p- (2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) styrene, 2- (4- ( 2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) cyclohexyl) -1,1,1,3,3,3-hexa Fluoropropyl acrylate, 2- (4- (2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) cyclohexyl) -1,1,1,3,3,3-hexa Polymerizable compounds having a hydroxyfluoroalkyl group such as fluoropropyl trifluoromethyl acrylate and 5- (2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) methyl-2-norbornene Can be mentioned.

酸解離性基としては、tert−ブチル基、tert−アミル基、1−メチル−1−シクロペンチル基、1−エチル−1−シクロペンチル基、1−メチル−1−シクロヘキシル基、1−エチル−1−シクロヘキシル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基、2−プロピル−2−アダマンチル基、2−(1−アダマンチル)−2−プロピル基、8−メチル−8−トリシクロ[5.2.1.02,6]デカニル基、8−エチル−8−トリシクロ[5.2.1.02,6]デカニル基、8−メチル−8−テトラシクロ[4.4.0.12,5.17,10]ドデカニル基、8−エチル−8−テトラシクロ[4.4.0.12,5.17,10]ドデカニル基等の飽和炭化水素基;1−メトキシエチル基、1−エトキシエチル基、1−iso−プロポキシエチル基、1−n−ブトキシエチル基、1−tert−ブトキシエチル基、1−シクロペンチルオキシエチル基、1−シクロヘキシルオキシエチル基、1−トリシクロ[5.2.1.02,6]デカニルオキシエチル基、メトキシメチル基、エトキシメチル基、iso−プロポキシメチル基、n−ブトキシメチル基、tert−ブトキシメチル基、シクロペンチルオキシメチル基、シクロヘキシルオキシメチル基、トリシクロ[5.2.1.02,6]デカニルオキシメチル基、tert−ブトキシカルボニル基等の含酸素炭化水素基などを挙げることができる。 Examples of the acid dissociable group include tert-butyl group, tert-amyl group, 1-methyl-1-cyclopentyl group, 1-ethyl-1-cyclopentyl group, 1-methyl-1-cyclohexyl group, 1-ethyl-1- Cyclohexyl group, 2-methyl-2-adamantyl group, 2-ethyl-2-adamantyl group, 2-propyl-2-adamantyl group, 2- (1-adamantyl) -2-propyl group, 8-methyl-8-tricyclo [5.2.1.0 2,6 ] decanyl group, 8-ethyl-8-tricyclo [5.2.1.0 2,6 ] decanyl group, 8-methyl-8-tetracyclo [4.4.0 .1 2,5 .1 7,10] dodecanyl group, 8-ethyl-8-tetracyclo [4.4.0.1 2,5 .1 7,10] dodecanyl saturated hydrocarbon group such as a group; 1-methoxy Ethyl group, 1-ethoxyethyl group, 1-iso-propoxyethyl Group, 1-n-butoxyethyl group, 1-tert-butoxyethyl group, 1-cyclopentyloxyethyl group, 1-cyclohexyloxyethyl group, 1-tricyclo [5.2.1.0 2,6 ] decanyl Oxyethyl group, methoxymethyl group, ethoxymethyl group, iso-propoxymethyl group, n-butoxymethyl group, tert-butoxymethyl group, cyclopentyloxymethyl group, cyclohexyloxymethyl group, tricyclo [5.2.1.0 2 , 6 ] decanyloxymethyl group, oxygen-containing hydrocarbon group such as tert-butoxycarbonyl group, and the like.

アルカリ可溶性の構造を有するモノマーを重合させた後、アルカリ可溶性の構造におけるアルカリ可溶性基を、酸解離性基で保護する場合は、前記のアルカリ可溶性基を有する化合物をそのまま重合反応に用い、その後、酸触媒のもとでビニルエーテルやハロゲン化アルキルエーテルなどのアルカリに溶解しない置換基を与える化合物と反応させることにより、酸解離性基を導入することができる。反応に用いる酸触媒としては、p−トルエンスルホン酸、トリフルオロ酢酸、強酸性イオン交換樹脂等を挙げることができる。   After polymerizing a monomer having an alkali-soluble structure, when the alkali-soluble group in the alkali-soluble structure is protected with an acid-dissociable group, the compound having the alkali-soluble group is used in the polymerization reaction as it is, An acid dissociable group can be introduced by reacting with a compound that gives a substituent that does not dissolve in an alkali such as vinyl ether or halogenated alkyl ether under an acid catalyst. Examples of the acid catalyst used in the reaction include p-toluenesulfonic acid, trifluoroacetic acid, and strongly acidic ion exchange resin.

一方、半導体基板に対する密着性を高めるための極性基を有する繰り返し単位(B)を与えるモノマーとしては、例えば、極性基としてフェノール性水酸基、カルボキシル基やヒドロキシフルオロアルキル基を有する化合物などを挙げることができ、具体的には例えばアルカリ可溶性置換基を含有する重合性化合物として前記説明したヒドロキシスチレン類やエチレン性二重結合を有するカルボン酸類、ヒドロキシフルオロアルキル基を有する重合性化合物、及び、これらに更に極性基が置換したモノマーのほか、ノルボルネン環、テトラシクロドデセン環等の脂環構造に極性基が結合したモノマーなどを挙げることができる。   On the other hand, examples of the monomer that gives the repeating unit (B) having a polar group for improving the adhesion to the semiconductor substrate include compounds having a phenolic hydroxyl group, a carboxyl group, or a hydroxyfluoroalkyl group as the polar group. Specifically, for example, hydroxystyrenes described above as polymerizable compounds containing an alkali-soluble substituent, carboxylic acids having an ethylenic double bond, polymerizable compounds having a hydroxyfluoroalkyl group, and further to these In addition to a monomer substituted with a polar group, a monomer having a polar group bonded to an alicyclic structure such as a norbornene ring or a tetracyclododecene ring can be used.

置換基として繰り返し単位(B)に導入される上記極性基としては、ラクトン構造を含むものが特に好ましく、例えば、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、1,3−シクロヘキサンカルボラクトン、2,6−ノルボルナンカルボラクトン、4−オキサトリシクロ[5.2.1.02,6]デカン−3−オン、メバロン酸δ−ラクトン等のラクトン構造を含む置換基を挙げることができる。又、ラクトン構造以外の極性基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、3−ヒドロキシ−1−アダマンチル基などのヒドロキシアルキル基などを挙げることができる。 As the polar group introduced into the repeating unit (B) as a substituent, those having a lactone structure are particularly preferable. For example, γ-butyrolactone, γ-valerolactone, δ-valerolactone, and 1,3-cyclohexanecarbolactone. Examples include substituents containing a lactone structure such as 2,6-norbornanecarbolactone, 4-oxatricyclo [5.2.1.0 2,6 ] decan-3-one, and mevalonic acid δ-lactone. . Examples of polar groups other than the lactone structure include hydroxyalkyl groups such as a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, and a 3-hydroxy-1-adamantyl group.

更に、必要に応じ含有される、レジスト溶剤やアルカリ現像液への溶解性を調整するための非極性の置換基を有する繰り返し単位(C)を与えるモノマーとしては、例えば、極性基を含まない置換又は非置換のアルキル基或いはアリール基、非極性の非酸解離性基で保護された極性基を有する化合物などを挙げることができ、具体的には例えば、スチレン、α−メチルスチレン、p−メチルスチレン等のスチレン類;アクリル酸、メタクリル酸、トリフルオロメチルアクリル酸、ノルボルネンカルボン酸、2−トリフルオロメチルノルボルネンカルボン酸、カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデシルメタクリレート等のエチレン性二重結合を有するカルボン酸に酸安定な非極性基が置換したエステル化合物;ノルボルネン、テトラシクロドデセン等のエチレン性二重結合を有する脂環式炭化水素化合物などを挙げることができる。又、前記カルボン酸にエステル置換する酸安定な非極性置換基の例としては、メチル基、エチル基、シクロペンチル基、シクロヘキシル基、イソボルニル基、トリシクロ[5.2.1.02,6]デカニル基、2−アダマンチル基、テトラシクロ[4.4.0.12,5.17,10]ドデシル基等を挙げることができる。 Furthermore, as a monomer that gives a repeating unit (C) having a non-polar substituent for adjusting the solubility in a resist solvent or an alkali developer, which is contained as necessary, for example, a substitution not containing a polar group Or a compound having a polar group protected by an unsubstituted alkyl group or aryl group, or a nonpolar non-acid-dissociable group. Specific examples include styrene, α-methylstyrene, p-methyl. styrenes such as styrene, acrylic acid, methacrylic acid, trifluoromethyl acrylate, norbornene carboxylic acid, 2-trifluoromethyl-norbornene carboxylic acid, carboxymethyl tetracyclo [4.4.0.1 2,5 .1 7,10 ] An ester compound in which an acid-stable nonpolar group is substituted for a carboxylic acid having an ethylenic double bond such as dodecyl methacrylate; norbornene, And the like alicyclic hydrocarbon compound having an ethylenic double bond such as tiger cyclododecene. Examples of acid-stable nonpolar substituents that are ester-substituted to the carboxylic acid include methyl group, ethyl group, cyclopentyl group, cyclohexyl group, isobornyl group, and tricyclo [5.2.1.0 2,6 ] decanyl. group, 2-adamantyl group, and a tetracyclo [4.4.0.1 2,5 .1 7,10] dodecyl group.

これらのモノマーは、繰り返し単位(A)、(B)及び(C)のそれぞれについて1種類若しくは2種類以上を混合して用いることができ、得られるレジスト用ポリマー中の各繰り返し単位の組成比は、レジストとしての基本性能を損なわない範囲で選択することができる。即ち、一般に、繰り返し単位(A)は10〜70モル%であることが好ましく、10〜60モル%であることがより好ましい。又、繰り返し単位(B)の組成比は、30〜90モル%であることが好ましく、40〜90モル%であることがより好ましいが、同一の極性基を有するモノマー単位については、70モル%以下とすることが好ましい。更に、繰り返し単位(C)の組成比は、0〜50モル%が好ましく、より好ましくは0〜40モル%の範囲で選択することが望ましい。   These monomers can be used by mixing one type or two or more types for each of the repeating units (A), (B) and (C), and the composition ratio of each repeating unit in the resulting resist polymer is The basic performance as a resist can be selected within a range not impairing. That is, in general, the repeating unit (A) is preferably 10 to 70 mol%, and more preferably 10 to 60 mol%. Further, the composition ratio of the repeating unit (B) is preferably 30 to 90 mol%, more preferably 40 to 90 mol%, but for the monomer unit having the same polar group, 70 mol% The following is preferable. Furthermore, the composition ratio of the repeating unit (C) is preferably 0 to 50 mol%, more preferably 0 to 40 mol%.

又、レジスト用ポリマーの重量平均分子量は、高すぎるとレジスト溶剤やアルカリ現像液への溶解性が低くなり、一方、低すぎるとレジストの塗膜性能が悪くなることから、2,000〜40,000の範囲内であることが好ましく、3,000〜30,000の範囲内であることがより好ましく、4,000〜25,000の範囲内であることが特に好ましい。   On the other hand, if the weight average molecular weight of the resist polymer is too high, the solubility in a resist solvent or an alkaline developer is lowered. On the other hand, if the weight average molecular weight is too low, the resist film performance deteriorates. Is preferably in the range of 3,000, more preferably in the range of 3,000 to 30,000, and particularly preferably in the range of 4,000 to 25,000.

重合反応に用いる重合開始剤としては、一般にラジカル発生剤として用いられているものであれば特に制限されないが、例えば2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(2−メチルブチロニトリル)、2,2'−アゾビスイソ酪酸ジメチル、1,1'−アゾビス(シクロヘキサン−1−カルボニトリル)、4,4'−アゾビス(4−シアノ吉草酸)等のアゾ化合物;デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、ビス(3,5,5−トリメチルヘキサノイル)パーオキサイド、コハク酸パーオキサイド、tert−ブチルパーオキシ−2−エチルへキサノエート等の有機過酸化物を単独若しくは混合して用いることができる。重合開始剤の使用量は、重合反応に用いる原料モノマーや、連鎖移動剤の種類、量及び重合温度や重合溶媒等の重合条件に応じて、広い範囲より選択することができる。   The polymerization initiator used in the polymerization reaction is not particularly limited as long as it is generally used as a radical generator. For example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2- Decanoyl such as methylbutyronitrile) dimethyl 2,2′-azobisisobutyrate, 1,1′-azobis (cyclohexane-1-carbonitrile), 4,4′-azobis (4-cyanovaleric acid); Organic peroxides such as peroxide, lauroyl peroxide, benzoyl peroxide, bis (3,5,5-trimethylhexanoyl) peroxide, succinic acid peroxide, tert-butylperoxy-2-ethylhexanoate alone Or it can mix and use. The amount of the polymerization initiator used can be selected from a wide range depending on the raw material monomer used in the polymerization reaction, the type and amount of the chain transfer agent, and the polymerization conditions such as the polymerization temperature and the polymerization solvent.

重合反応においては連鎖移動剤を用いてもよく、例えば、ドデカンチオール、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メルカプトプロピオン酸等のチオール化合物を単独若しくは混合して用いることができる。連鎖移動剤は、モノマーと共にモノマー溶液に溶解して使用しても良いし、重合開始剤と共に重合開始剤溶液に溶解して使用しても良い。   In the polymerization reaction, a chain transfer agent may be used. For example, thiol compounds such as dodecanethiol, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid and the like can be used alone or in combination. The chain transfer agent may be used after being dissolved in the monomer solution together with the monomer, or may be used after being dissolved in the polymerization initiator solution together with the polymerization initiator.

重合反応に用いる溶媒としては、原料モノマーを溶解させる溶媒、重合開始剤を溶解させる溶媒及び反応容器に張り込む溶媒が挙げられるが、これらは、原料モノマー、重合開始剤及び生成ポリマーを溶解するものであれば特に制限されるものではなく、各々同一であっても異なっていても良い。溶媒の具体例としては、アセトン、メチルエチルケトン、メチルアミルケトン等のケトン類;テトラヒドロフラン、ジオキサン、グライム、プロピレングリコールモノメチルエーテル等のエーテル類;酢酸エチル、乳酸エチル等のエステル類;プロピレングリコールメチルエーテルアセテート等のエーテルエステル類;γ−ブチロラクトン等のラクトン類等を挙げることができ、これらを単独又は混合して用いることができる。   Examples of the solvent used in the polymerization reaction include a solvent that dissolves the raw material monomer, a solvent that dissolves the polymerization initiator, and a solvent that is put into the reaction vessel. These are those that dissolve the raw material monomer, the polymerization initiator, and the generated polymer. As long as they are not particularly limited, they may be the same or different. Specific examples of the solvent include ketones such as acetone, methyl ethyl ketone and methyl amyl ketone; ethers such as tetrahydrofuran, dioxane, glyme and propylene glycol monomethyl ether; esters such as ethyl acetate and ethyl lactate; propylene glycol methyl ether acetate and the like Ether esters; lactones such as γ-butyrolactone, and the like, and these can be used alone or in combination.

本発明のレジスト用ポリマーは、上記説明をした原料となる重合性モノマーを含有するモノマー溶液(以下、「モノマー溶液」と記す。)と、重合開始剤を含有する溶液(以下、「開始剤溶液」と記す。)とを、各々独立した貯槽に保持し、重合系に連続的又は断続的に供給してラジカル共重合させて製造することにより、分子量が10万以上の高分子量成分であるハイポリマーの生成が抑制され、ハイポリマーの含有量を0.1%以下とすることができる。ここで、ハイポリマーの含有量は、GPCにより測定される分子量分布において、全体のピーク面積に対するハイポリマーのピーク面積の割合として求めることができる。尚、本発明において、GPCによる分子量分布は、検出器として屈折率検出器(RI)を用い、市販されているポリスチレン標準試料により作成された検量線に基づき算出した。The resist polymer of the present invention comprises a monomer solution (hereinafter referred to as “monomer solution”) containing a polymerizable monomer as a raw material as described above, and a solution containing a polymerization initiator (hereinafter referred to as “initiator solution”). Are stored in independent storage tanks, and are continuously or intermittently supplied to the polymerization system and produced by radical copolymerization to produce a high molecular weight component having a molecular weight of 100,000 or more. The production of the polymer is suppressed, and the content of the high polymer can be 0.1% or less. Here, the content of the high polymer can be determined as a ratio of the peak area of the high polymer to the entire peak area in the molecular weight distribution measured by GPC. In the present invention, the molecular weight distribution by GPC was calculated using a refractive index detector (RI) as a detector and based on a calibration curve prepared with a commercially available polystyrene standard sample.

重合系内に供給するモノマー溶液中のモノマー濃度、及び、開始剤溶液中の重合開始剤の濃度は、生産性の面で言えば高い方が好ましく、特に重合性モノマー若しくは重合開始剤が液体の場合は、溶媒に溶解することなく、そのまま供給することも可能である。しかしながら、重合性モノマー若しくは重合開始剤が粘調な液体であったり、固体である場合は、溶媒に溶解して用いる必要がある。重合性モノマー若しくは重合開始剤を溶媒に溶解して用いる場合、濃度があまりにも高すぎると溶液粘度が高くなって操作性が悪くなったり、重合性モノマー又は重合開始剤が固体である場合は析出したりする場合がある。従って、供給操作に問題のない粘度範囲で、各モノマー及び重合開始剤が十分に溶解し、且つ、供給中に析出することがない濃度を選択することが好ましい。具体的な濃度は、各溶液の溶質と溶媒の組合せ等により異なるが、通常、全モノマーの合計濃度及び重合開始剤濃度が、例えば各々5〜60質量%、好ましくは10〜50質量%の範囲となるように調製する。   In terms of productivity, the monomer concentration in the monomer solution supplied into the polymerization system and the concentration of the polymerization initiator in the initiator solution are preferably higher from the viewpoint of productivity. In particular, the polymerizable monomer or the polymerization initiator is liquid. In such a case, it can be supplied as it is without being dissolved in a solvent. However, when the polymerizable monomer or the polymerization initiator is a viscous liquid or a solid, it must be dissolved in a solvent and used. When the polymerizable monomer or polymerization initiator is dissolved in a solvent and used, if the concentration is too high, the solution viscosity becomes high and the operability is deteriorated, or precipitation occurs when the polymerizable monomer or polymerization initiator is solid. There is a case to do. Therefore, it is preferable to select a concentration at which each monomer and the polymerization initiator are sufficiently dissolved and do not precipitate during the supply within a viscosity range that does not cause a problem in the supply operation. The specific concentration varies depending on the combination of the solute and the solvent of each solution, but usually the total concentration of all monomers and the polymerization initiator concentration are each in the range of, for example, 5 to 60% by mass, preferably 10 to 50% by mass. Prepare so that.

又、上記各溶液を重合系内に供給する前に予備加熱することにより、重合性モノマーや重合開始剤の溶解度が向上するため、より高濃度の溶液を調製することができる。しかしながら、開始剤溶液の場合、温度が高すぎると重合開始剤が分解してしまうので、溶液の温度は通常、例えば50℃以下、好ましくは40℃以下とする。一方、モノマー溶液については、重合系内に供給する時の温度が低すぎると、加熱された重合系内で局部的に低温且つモノマー濃度が高い領域が形成され、この領域では低ラジカル濃度且つ高モノマー濃度となってハイポリマーが生成する可能性があるため、モノマー溶液は貯槽内若しくは重合系内に供給する直前で熱交換器等により予備加熱して供給することが好ましい。モノマー溶液の予備加熱の温度は25℃以上が好ましく、40℃以上がより好ましい。但し、モノマー溶液を貯槽内で予備加熱する場合は、加熱状態で長時間保持することになるため、温度が高いとハイポリマーが生成する可能性がある。このため、貯槽内で予備加熱する場合は、50℃以下とすることが好ましい。尚、重合系内に供給する直前で熱交換器等により予備加熱する場合に限っては、高温状態での保持時間が短いので、より高い温度まで加熱することが可能であり、例えば重合温度まで加熱することも可能である。   Moreover, since the solubility of a polymerizable monomer and a polymerization initiator improves by preheating before each said solution is supplied in a polymerization system, a higher concentration solution can be prepared. However, in the case of the initiator solution, since the polymerization initiator is decomposed when the temperature is too high, the temperature of the solution is usually 50 ° C. or less, preferably 40 ° C. or less. On the other hand, for the monomer solution, if the temperature when supplying into the polymerization system is too low, a region having a low temperature and a high monomer concentration is formed in the heated polymerization system. In this region, a low radical concentration and a high concentration are formed. Since there is a possibility that a high polymer is generated at a monomer concentration, the monomer solution is preferably preheated and supplied by a heat exchanger or the like immediately before being supplied into the storage tank or the polymerization system. The temperature for preheating the monomer solution is preferably 25 ° C. or higher, more preferably 40 ° C. or higher. However, when the monomer solution is preheated in the storage tank, it will be kept in a heated state for a long time. Therefore, a high polymer may be generated at a high temperature. For this reason, when preheating in a storage tank, it is preferable to set it as 50 degrees C or less. In addition, only in the case of preheating with a heat exchanger or the like immediately before being supplied into the polymerization system, since the holding time in a high temperature state is short, it is possible to heat to a higher temperature, for example, up to the polymerization temperature. Heating is also possible.

本発明においては、モノマー溶液及び開始剤溶液は、重合系内、即ち、あらかじめ重合温度に加熱された重合溶媒中に供給されるため、従来の滴下重合法と同等に昇温速度の影響を受けにくく、ロット間差、反応器差、スケール差の小さい安定したレジスト用ポリマーが得られる。特に、モノマー溶液を予備加熱して供給した場合は、重合系内の温度変化をより低く抑えることができ、より品質の安定したレジスト用ポリマーを得ることができる。   In the present invention, the monomer solution and the initiator solution are supplied in the polymerization system, that is, in the polymerization solvent heated to the polymerization temperature in advance, and thus are affected by the rate of temperature increase as in the conventional dropping polymerization method. It is difficult to obtain a stable resist polymer with small differences between lots, reactors and scale. In particular, when the monomer solution is preheated and supplied, the temperature change in the polymerization system can be suppressed to a lower level, and a resist polymer with more stable quality can be obtained.

反応容器に張り込む重合溶媒の量は、攪拌が可能な最低量以上であればよいが、初期張り込み量が必要以上に多いと、供給できるモノマー溶液量が少なくなり、生産効率が低下するため好ましくない。通常は、最終仕込量(即ち、初期仕込量、モノマー溶液及び開始剤溶液の総量)に対して、例えば容量比で1/20以上、好ましくは1/10〜1/2程度の範囲から選択する。   The amount of the polymerization solvent put into the reaction vessel may be at least the minimum amount that can be stirred, but if the initial filling amount is more than necessary, the amount of the monomer solution that can be supplied is reduced and production efficiency is reduced, which is preferable. Absent. Usually, the final charge amount (that is, the initial charge amount, the total amount of the monomer solution and the initiator solution) is selected from a range of, for example, a volume ratio of 1/20 or more, preferably about 1/10 to 1/2. .

重合温度は、使用する重合溶媒の沸点、重合開始剤の半減期温度等により異なるが、必要以上に高温にすると、モノマー及びレジスト用ポリマーの安定性の点で問題があるので、好ましくは60〜120℃、特に好ましくは70〜100℃の範囲で選択する。又、重合温度は、モノマー溶液及び開始剤溶液の供給により系内の温度が低下しないよう管理し、好ましくは設定温度±5℃以内、特に好ましくは設定温度±3℃以内に保持する。尚、重合系内の局所的な温度変化をより低く抑える方法としては、前記したようにモノマー溶液を予備加熱して供給する方法を挙げることができる。又、重合温度を重合溶媒の沸点以上に設定し、重合溶媒の還流条件下で反応を行う方法も、系内の温度変化を小さくできるため好ましい。   The polymerization temperature varies depending on the boiling point of the polymerization solvent to be used, the half-life temperature of the polymerization initiator, etc., but if the temperature is higher than necessary, there is a problem in terms of stability of the monomer and the resist polymer. It is selected in the range of 120 ° C, particularly preferably 70 to 100 ° C. The polymerization temperature is controlled so that the temperature in the system does not decrease due to the supply of the monomer solution and the initiator solution, and is preferably kept within the set temperature ± 5 ° C., particularly preferably within the set temperature ± 3 ° C. In addition, as a method for suppressing the local temperature change in the polymerization system to be lower, there can be mentioned a method in which the monomer solution is preheated and supplied as described above. A method in which the polymerization temperature is set to be equal to or higher than the boiling point of the polymerization solvent and the reaction is performed under the reflux condition of the polymerization solvent is preferable because the temperature change in the system can be reduced.

モノマー溶液及び開始剤溶液は、貯槽から各々独立に重合槽に供給しても良いし、重合の直前で予備混合しても良い。モノマー溶液と開始剤溶液の供給速度は、所望の分子量分布を有するレジスト用ポリマーが得られるように、それぞれ独立して設定することができる。二液の供給速度をどちらか一方或いは両方とも変化させることで、狭分散から多分散まで広範な分子量分布を持つレジスト用ポリマーを再現性良く得ることも可能である。例えば、反応前期の開始剤溶液の供給量を減らし、反応後期に開始剤溶液の供給量を増加させた場合、ラジカル濃度が低い反応前期に比較的分子量の高いポリマーが生成するので、多分散のレジスト用ポリマーを得ることができる。各供給速度は無段階もしくは段階的に変化させることができるが、少なくとも2段階以上の供給速度で変化させることが好ましい。   The monomer solution and the initiator solution may be independently supplied from the storage tank to the polymerization tank, or may be premixed immediately before the polymerization. The supply rates of the monomer solution and the initiator solution can be set independently so that a resist polymer having a desired molecular weight distribution can be obtained. It is possible to obtain a resist polymer having a wide molecular weight distribution from narrow dispersion to polydispersion with good reproducibility by changing either one or both of the two liquid supply speeds. For example, when the supply amount of the initiator solution in the first reaction period is decreased and the supply amount of the initiator solution is increased in the second reaction period, a polymer having a relatively high molecular weight is generated in the first reaction period with a low radical concentration. A resist polymer can be obtained. Each supply rate can be changed steplessly or stepwise, but is preferably changed at least at two or more steps.

又、二液はできるだけゆっくりと供給した方が、重合系内のモノマー組成と温度及びラジカル濃度を一定に保つことができ、これにより、重合初期と重合終期に生成するレジスト用ポリマーの組成及び分子量の変化を小さくすることができる。しかしながら、供給速度があまりに遅いと、供給にかかる時間が長くなって時間当たりの生産効率が悪くなり、又、安定性の低いモノマーについてはモノマー溶液の劣化が問題となる場合があるので、各溶液の供給にかかる時間は、各々0.5〜20時間、好ましくは1〜10時間の範囲から選択する。又、二液の供給開始順序に特に制限はないが、ハイポリマーの生成を避けるためには、二液同時又は開始剤溶液を先に供給することが好ましく、重合開始剤が重合系内で分解してラジカルが発生するまでに一定の時間が必要であるため、開始剤溶液をモノマー溶液よりも先に供給することが好ましい。   In addition, if the two liquids are supplied as slowly as possible, the monomer composition, temperature and radical concentration in the polymerization system can be kept constant, which makes it possible to maintain the composition and molecular weight of the resist polymer produced at the beginning and end of polymerization. Change can be reduced. However, if the supply rate is too slow, the time required for the supply becomes long and the production efficiency per hour deteriorates. Also, for monomers with low stability, deterioration of the monomer solution may become a problem. The time required for the supply of each is selected from the range of 0.5 to 20 hours, preferably 1 to 10 hours. In addition, there is no particular limitation on the supply start order of the two liquids, but in order to avoid the formation of a high polymer, it is preferable to supply the two liquids simultaneously or the initiator solution first, and the polymerization initiator is decomposed in the polymerization system. Since a certain time is required until radicals are generated, it is preferable to supply the initiator solution before the monomer solution.

重合反応は、モノマー溶液及び開始剤溶液の供給と共に開始され、継続されるが、供給終了後も一定時間重合温度を維持しながら熟成し、残存する未反応モノマーを反応させることが好ましい。尚、熟成時間は6時間以内、好ましくは1〜4時間の範囲から選択する。熟成時間が長すぎると時間当たりの生産効率が低下し、又、ポリマーに必要以上の熱履歴がかかるため好ましくない。   The polymerization reaction is started and continued with the supply of the monomer solution and the initiator solution, but it is preferable that the remaining unreacted monomer is reacted by aging while maintaining the polymerization temperature for a certain time after the supply is completed. The aging time is selected from the range of 6 hours or less, preferably from 1 to 4 hours. If the aging time is too long, the production efficiency per hour is lowered, and more heat history than necessary is applied to the polymer.

上記重合反応により得られた本発明のレジスト用ポリマーは、重合反応液を貧溶媒単独、若しくは貧溶媒と良溶媒の混合溶媒に滴下して析出させ、更に必要に応じて洗浄することにより、未反応モノマー、オリゴマー、重合開始剤及びその反応残査物等の不要物を除去し、精製することができる。貧溶媒としては、ポリマーが溶解しない溶媒であれば特に制限されないが、例えば、水やメタノール、イソプロパノール等のアルコール類、ヘキサン、ヘプタン等の飽和炭化水素類等を用いることができる。又、良溶媒としては、モノマー、オリゴマー、重合開始剤及びその残渣物が溶解する溶媒であれば特に制限されないが、製造工程の管理上、重合溶媒と同じものが好ましい。   The resist polymer of the present invention obtained by the above polymerization reaction is precipitated by dropping the polymerization reaction solution into a poor solvent alone or a mixed solvent of a poor solvent and a good solvent, and further washing as necessary. Unnecessary substances such as reaction monomers, oligomers, polymerization initiators and reaction residues thereof can be removed and purified. The poor solvent is not particularly limited as long as it does not dissolve the polymer. For example, water, alcohols such as methanol and isopropanol, saturated hydrocarbons such as hexane and heptane, and the like can be used. The good solvent is not particularly limited as long as it is a solvent in which the monomer, oligomer, polymerization initiator and residue thereof are soluble, but the same solvent as the polymerization solvent is preferable in terms of management of the production process.

精製後のレジスト用ポリマーには精製時に用いた溶媒が含まれているため、減圧乾燥したのちレジスト溶媒に溶解するか、若しくはレジスト溶媒や重合溶媒等の良溶媒に溶解した後、必要に応じてレジスト溶媒を供給しながら、その他の溶媒を減圧下で留去するなどしてレジスト溶液に仕上げられる。レジスト溶媒としては、レジスト用ポリマーを溶解するものであれば特に制限されないが、通常、沸点、半導体基板やその他の塗布膜への影響、リソグラフィーに用いられる放射線の吸収を勘案して選択される。一般的に用いられるレジスト溶媒の例としては、プロピレングリコールメチルエーテルアセテート、乳酸エチル、メチルアミルケトン、γ−ブチロラクトン、シクロヘキサノン等の溶媒が挙げられる。レジスト溶媒の使用量は特に制限されないが、通常、レジスト用ポリマー1重量部に対して1重量部〜20重量部の範囲である。   As the resist polymer after purification contains the solvent used during purification, it can be dissolved in a resist solvent after drying under reduced pressure, or after dissolving in a good solvent such as a resist solvent or a polymerization solvent. While supplying the resist solvent, the other solvent is distilled off under reduced pressure to finish the resist solution. The resist solvent is not particularly limited as long as it dissolves the resist polymer, but is usually selected in consideration of the boiling point, the influence on the semiconductor substrate and other coating films, and the absorption of radiation used in lithography. Examples of commonly used resist solvents include propylene glycol methyl ether acetate, ethyl lactate, methyl amyl ketone, γ-butyrolactone, cyclohexanone and the like. The amount of the resist solvent used is not particularly limited, but is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the resist polymer.

このレジスト溶液に、感放射線性酸発生剤及び放射線に暴露されない部分への酸の拡散を防止するための含窒素化合物等の酸拡散制御剤を添加して、レジスト組成物に仕上げることができる。感放射線性酸発生剤としては、オニウム塩化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物、ジスルホニルジアゾメタン化合物等、一般的にレジスト用原料として使用されているものを用いることができる。レジスト組成物には、更に必要に応じて、溶解抑止剤、増感剤、染料等レジスト用添加剤として慣用されている化合物を添加することができる。   The resist solution can be finished by adding a radiation sensitive acid generator and an acid diffusion control agent such as a nitrogen-containing compound for preventing acid diffusion to portions not exposed to radiation. As the radiation-sensitive acid generator, those generally used as a resist raw material such as an onium salt compound, a sulfone compound, a sulfonic acid ester compound, a sulfonimide compound, and a disulfonyldiazomethane compound can be used. If necessary, a compound commonly used as a resist additive such as a dissolution inhibitor, a sensitizer, and a dye can be added to the resist composition.

レジスト組成物中の各成分の配合比は、一般に、ポリマー濃度10〜50質量%、感放射線性酸発生剤0.1〜10質量%、酸拡散制御剤0.001〜10質量%(残部は溶媒)の範囲から選択される。   The compounding ratio of each component in the resist composition is generally such that the polymer concentration is 10 to 50% by mass, the radiation-sensitive acid generator is 0.1 to 10% by mass, the acid diffusion controller is 0.001 to 10% by mass (the remainder is Solvent).

次に、実施例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is further demonstrated, this invention is not limited to these Examples.

実施例中、濃度を表す%は、ハイポリマーの含有量(%:面積百分率)を除き、特に定義のない限り質量基準である。又、得られたレジスト用ポリマーの中のハイポリマーの定量、及び、保存安定性の評価は、次に示す方法で実施した。
(1)レジスト用ポリマー中のハイポリマーの定量方法
レジスト用ポリマー中のハイポリマーは、GPCにより定量した。分析条件及び定量方法は以下の通りである。
In Examples,% representing concentration is based on mass unless otherwise defined, except for the content of high polymer (%: area percentage). Further, the quantitative determination of the high polymer in the obtained resist polymer and the evaluation of storage stability were carried out by the following methods.
(1) Method for quantifying high polymer in resist polymer The high polymer in the resist polymer was quantified by GPC. Analysis conditions and quantification methods are as follows.

装 置: 東ソー製GPC8020
検出器: 示差屈折率(RI)検出器
カラム: 昭和電工製KF−804L(×3本)
試料量: 重合終了後の重合液をサンプリングし、ポリマー濃度が1%となるように、テトラヒドロフランで希釈して試料を調製した。
Equipment: Tosoh GPC8020
Detector: Differential refractive index (RI) detector Column: Showa Denko KF-804L (x3)
Sample amount: The polymerization solution after completion of the polymerization was sampled and diluted with tetrahydrofuran so that the polymer concentration was 1% to prepare a sample.

定 量: GPCに、上記試料15μl注入し、目的とするポリマーのピーク面積Apを求め、次いで、上記試料を150μl注入し、ハイポリマーピークの面積Ahを求めた。この結果から次の計算式に基づいてポリマー中のハイポリマーの含有量(%)を算出した。       Fixed amount: 15 μl of the sample was injected into GPC to determine the peak area Ap of the target polymer, and then 150 μl of the sample was injected to determine the area Ah of the high polymer peak. From this result, the high polymer content (%) in the polymer was calculated based on the following calculation formula.

(2)レジスト用ポリマーの保存安定性評価方法
レジスト用ポリマーの15%プロピレングリコールメチルエーテルアセテート(以下、「PGMEA」と記す。)溶液を0.05μmのメンブレンフィルターでろ過し、3ヶ月間室温にて保管後の液中パーティクルを測定した。
(2) Storage Stability Evaluation Method for Resist Polymer A 15% propylene glycol methyl ether acetate (hereinafter referred to as “PGMEA”) solution of a resist polymer is filtered through a 0.05 μm membrane filter and kept at room temperature for 3 months. The particles in the liquid after storage were measured.

装 置: リオン社製KS−40B
評 価: パーティクルサイズ0.2μm以上の異物が10個/ml未満の場合を◎、10個以上100個/ml未満の場合を○、100個/ml以上1,000個/ml未満の場合を△、1,000個/ml以上の場合を×とした。
Equipment: KS-40B manufactured by Rion
Evaluation: When the particle size is 0.2 μm or more and less than 10 particles / ml, ◎ When the particle size is 10 or more and less than 100 particles / ml, ○, When the particle size is 100 or more and less than 1,000 particles / ml Δ, the case of 1,000 / ml or more was marked as x.

実施例 1
共重合体1の製造:
窒素雰囲気に保ったタンクにメチルエチルケトン(以下、「MEK」と記す)4800gを仕込み、半導体基板に対する密着性を高めるための極性基を有する繰り返し単位(B){以下、実施例において化合物の先頭に付されている(B)は同意である。}としての5−アクリロイルオキシ−2,6−ノルボルナンカルボラクトン(以下、「NLA」と記す)2080g、酸によって分解してアルカリ可溶性となる繰り返し単位(A){以下、実施例において化合物の先頭に付されている(A)は同意である。}としての2−エチル−2−アダマンチルメタクリレート(以下、「EAM」と記す)2480gを溶解してモノマー溶液を調製した。又、窒素雰囲気に保った別の容器にMEK700g及びアゾビスイソブチロニトリル(以下、「AIBN」と記す)80gを仕込んで溶解し、開始剤溶液を調製した。窒素雰囲気に保った重合槽に、MEK3500gを投入して攪拌しながら80℃に昇温した後、温度25〜30℃に加温したモノマー溶液及び開始剤溶液を、各々4時間かけて80℃に保った重合槽内に供給した。供給終了後、重合温度を80℃に保ったまま2時間熟成させ、室温まで冷却して重合液を取り出した。得られた重合液を70kgの含水メタノールに滴下してポリマーを沈殿させ、ろ過した。得られたウエットケーキをメタノール70kgで洗浄してろ過した後、MEKに再溶解し、キュノ社製フィルター40QSHに通液して微量金属を除去した。次いで、減圧下で加熱してMEKを追い出しながらPGMEAを投入して溶媒置換し、ポリマー15%を含むPGMEA溶液を調製した。得られたポリマーの性状、ハイポリマーの含有量及びPGMEA溶液の保存安定性の評価結果を表1に示す。
Example 1
Production of copolymer 1:
A tank maintained in a nitrogen atmosphere is charged with 4800 g of methyl ethyl ketone (hereinafter referred to as “MEK”), and a repeating unit (B) having a polar group for enhancing adhesion to a semiconductor substrate {hereinafter, attached to the top of the compound in the examples. (B) is an agreement. }, 2080 g of 5-acryloyloxy-2,6-norbornanecarbolactone (hereinafter referred to as “NLA”), repeating unit (A) that decomposes with acid to become alkali-soluble {hereinafter referred to at the top of the compound in the Examples (A) attached is an agreement. }, 2480 g of 2-ethyl-2-adamantyl methacrylate (hereinafter referred to as “EAM”) was dissolved to prepare a monomer solution. Also, 700 g of MEK and 80 g of azobisisobutyronitrile (hereinafter referred to as “AIBN”) were charged and dissolved in another container kept in a nitrogen atmosphere to prepare an initiator solution. In a polymerization tank maintained in a nitrogen atmosphere, MEK 3500 g was charged and heated to 80 ° C. while stirring, and then the monomer solution and the initiator solution heated to 25 to 30 ° C. were heated to 80 ° C. over 4 hours each. It was fed into the maintained polymerization tank. After the completion of the supply, the polymerization temperature was kept at 80 ° C. for 2 hours, and the mixture was cooled to room temperature and the polymerization solution was taken out. The obtained polymerization solution was dropped into 70 kg of water-containing methanol to precipitate a polymer, followed by filtration. The obtained wet cake was washed with 70 kg of methanol and filtered, then redissolved in MEK, and passed through a filter 40QSH manufactured by Cuno to remove trace metals. Next, PGMEA was charged while heating under reduced pressure to expel MEK, and the solvent was replaced to prepare a PGMEA solution containing 15% polymer. Table 1 shows the properties of the polymer obtained, the high polymer content, and the storage stability evaluation results of the PGMEA solution.

実施例2
共重合体2の製造(1):
窒素雰囲気に保ったタンクにMEK8000gを仕込み、(B)NLA2080g、(A)EAM2480g、(B)3−ヒドロキシ−1−アダマンチルアクリレート(以下、「HAA」と記す)2220gを溶解してモノマー溶液を調製した。又、窒素雰囲気に保った別の容器にMEK1000gとAIBN110gを仕込んで溶解し、開始剤溶液を調製した。窒素雰囲気に保った重合槽に、MEK5000gを投入して攪拌しながら80℃に昇温した後、温度25〜30℃に加温したモノマー溶液及び開始剤溶液を、各々4時間かけて80℃に保った重合槽内に供給した。供給終了後、重合温度を80℃に保ったまま2時間熟成させ、室温まで冷却して重合液を取り出した。得られた重合液を100kgの含水メタノールに滴下してポリマーを沈殿させ、ろ過した。得られたウエットケーキをメタノール100kgで洗浄してろ過した後、MEKに再溶解し、キュノ社製フィルター40QSHに通液して微量金属を除去した。次いで、減圧下で加熱してMEKを追い出しながらPGMEAを投入して溶媒置換し、ポリマー15%を含むPGMEA溶液を調製した。得られたポリマーの性状、ハイポリマーの含有量及びPGMEA溶液の保存安定性の評価結果を表1に示す。
Example 2
Production of copolymer 2 (1):
MEK 8000 g is charged into a tank maintained in a nitrogen atmosphere, and (B) NLA 2080 g, (A) EAM 2480 g, (B) 3-hydroxy-1-adamantyl acrylate (hereinafter referred to as “HAA”) 2220 g is prepared to prepare a monomer solution. did. Moreover, MEK1000g and AIBN110g were prepared and melt | dissolved in another container kept in nitrogen atmosphere, and the initiator solution was prepared. In a polymerization tank maintained in a nitrogen atmosphere, 5000 g of MEK was added and heated to 80 ° C. while stirring, and then the monomer solution and the initiator solution heated to 25 to 30 ° C. were heated to 80 ° C. over 4 hours, respectively. It was fed into the maintained polymerization tank. After the completion of the supply, the polymerization temperature was kept at 80 ° C. for 2 hours, and the mixture was cooled to room temperature and the polymerization solution was taken out. The obtained polymerization solution was dropped into 100 kg of hydrous methanol to precipitate a polymer, followed by filtration. The obtained wet cake was washed with 100 kg of methanol and filtered, then redissolved in MEK, and passed through a filter 40QSH manufactured by Cuno Co., to remove trace metals. Next, PGMEA was charged while heating under reduced pressure to expel MEK, and the solvent was replaced to prepare a PGMEA solution containing 15% polymer. Table 1 shows the properties of the polymer obtained, the high polymer content, and the storage stability evaluation results of the PGMEA solution.

実施例3
共重合体3の製造(1):
窒素雰囲気に保ったタンクにMEK7000gを仕込み、(B)5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(以下、「NLM」と記す。)2220g、(A)EAM2480g、(B)メタクリル酸90gを溶解してモノマー溶液を調製した。又、窒素雰囲気に保った別の容器にMEK700gとAIBN80gを仕込んで溶解し、開始剤溶液を調製した。窒素雰囲気に保った重合槽に、MEK3300gを投入して攪拌しながら80℃に昇温した後、温度25〜30℃に加温したモノマー溶液及び開始剤溶液を、各々4時間かけて80℃に保った重合槽内に供給した。供給終了後、重合温度を80℃に保ったまま2時間熟成させ、室温まで冷却して重合液を取り出した。得られた重合液を80kgの含水メタノールに滴下してポリマーを沈殿させ、ろ過した。得られたウエットケーキをメタノール80kgで洗浄してろ過した後、MEKに再溶解し、キュノ社製フィルター40QSHに通液して微量金属を除去した。次いで、減圧下で加熱してMEKを追い出しながらPGMEAを投入して溶媒置換し、ポリマー15%を含むPGMEA溶液を調製した。得られたポリマーの性状、ハイポリマーの含有量及びPGMEA溶液の保存安定性の評価結果を表1に示す。
Example 3
Production of copolymer 3 (1):
MEK 7000 g was charged into a tank maintained in a nitrogen atmosphere, and (B) 5-methacryloyloxy-2,6-norbornanecarbolactone (hereinafter referred to as “NLM”) 2220 g, (A) EAM 2480 g, and (B) methacrylic acid 90 g A monomer solution was prepared by dissolution. Also, 700 g of MEK and 80 g of AIBN were charged and dissolved in another container kept in a nitrogen atmosphere to prepare an initiator solution. In a polymerization tank maintained in a nitrogen atmosphere, 3300 g of MEK was added and heated to 80 ° C. while stirring, and then the monomer solution and the initiator solution heated to 25 to 30 ° C. were heated to 80 ° C. over 4 hours, respectively. It was fed into the maintained polymerization tank. After the completion of the supply, the polymerization temperature was kept at 80 ° C. for 2 hours, and the mixture was cooled to room temperature and the polymerization solution was taken out. The obtained polymerization solution was dropped into 80 kg of hydrous methanol to precipitate a polymer, followed by filtration. The obtained wet cake was washed with 80 kg of methanol and filtered, then redissolved in MEK, and passed through a filter 40QSH manufactured by Cuno Co. to remove trace metals. Next, PGMEA was charged while heating under reduced pressure to expel MEK, and the solvent was replaced to prepare a PGMEA solution containing 15% polymer. Table 1 shows the properties of the polymer obtained, the high polymer content, and the storage stability evaluation results of the PGMEA solution.

実施例4
共重合体2の製造(2):
モノマー溶液を重合系内に供給する直前に熱交換器を用いて40℃に加熱して供給した以外は実施例2と同様の手順により重合、精製及びPGMEA溶液の調製を行った。得られたポリマーの性状、ハイポリマーの含有量及びPGMEA溶液の保存安定性の評価結果を表1に示す。
Example 4
Production of copolymer 2 (2):
Immediately before supplying the monomer solution into the polymerization system, polymerization, purification and preparation of the PGMEA solution were performed in the same manner as in Example 2 except that the monomer solution was heated to 40 ° C. and supplied using a heat exchanger. Table 1 shows the properties of the polymer obtained, the high polymer content, and the storage stability evaluation results of the PGMEA solution.

実施例5
共重合体3の製造(2):
AIBNの仕込量を140gとし、MEKの仕込量を1030gとして開始剤溶液を調製し、その供給速度を最初の1時間については0.6g/min、残りの3時間については6.3g/minとして供給した以外は実施例3と同様の手順により重合、精製及びPGMEA溶液の調製を行った。得られたポリマーの性状、ハイポリマーの含有量及びPGMEA溶液の保存安定性の評価結果を表1に示す。
Example 5
Production of copolymer 3 (2):
Prepare an initiator solution with AIBN charge of 140 g, MEK charge of 1030 g, and supply rate of 0.6 g / min for the first hour and 6.3 g / min for the remaining three hours. Polymerization, purification, and preparation of a PGMEA solution were carried out in the same procedure as in Example 3 except that it was supplied. Table 1 shows the properties of the polymer obtained, the high polymer content, and the storage stability evaluation results of the PGMEA solution.

実施例6
共重合体2の製造(3):
開始剤溶液の供給時間を4.5時間とし、開始剤溶液の供給を開始してから0.5時間後にモノマー溶液の供給を開始した以外は実施例2と同様の手順により重合、精製及びPGMEA溶液の調製を行った。得られたポリマーの性状、ハイポリマーの含有量及びPGMEA溶液の保存安定性の評価結果を表1に示す。
Example 6
Production of copolymer 2 (3):
Polymerization, purification, and PGMEA were performed in the same manner as in Example 2 except that the supply time of the initiator solution was 4.5 hours, and the supply of the monomer solution was started 0.5 hours after the start of the supply of the initiator solution. A solution was prepared. Table 1 shows the properties of the polymer obtained, the high polymer content, and the storage stability evaluation results of the PGMEA solution.

比較例1〜3
実施例1〜3において、モノマー溶液と開始剤溶液を一の容器に混合して保持し、そこから供給した以外はそれぞれ同様の手順により重合、精製及びPGMEA溶液の調製を行い、比較例1〜3とした。得られたポリマーの性状、ハイポリマーの含有量及びPGMEA溶液の保存安定性の評価結果を表1に示す。
Comparative Examples 1-3
In Examples 1 to 3, the monomer solution and the initiator solution were mixed and held in one container, and polymerization, purification, and preparation of the PGMEA solution were performed in the same manner except that the solution was supplied from the container. It was set to 3. Table 1 shows the properties of the polymer obtained, the high polymer content, and the storage stability evaluation results of the PGMEA solution.

この結果から明らかなように、モノマーと重合開始剤を混合して供給する従来の方法ではハイポリマーが生成し、保存期間中に不溶解性の異物の成長が認められた。一方、本発明においては、モノマー溶液と開始剤溶液を各々独立して供給することにより、ハイポリマーが発生せず、保存安定性に優れたレジスト用ポリマーが得られることがわかる。   As is apparent from this result, a high polymer was formed by the conventional method of supplying the monomer and the polymerization initiator in a mixed manner, and growth of insoluble foreign matters was observed during the storage period. On the other hand, in the present invention, it can be seen that by supplying the monomer solution and the initiator solution independently, a high polymer is not generated and a resist polymer having excellent storage stability can be obtained.

本発明により、半導体の製造において使用されるレジスト用ポリマーにおいて、ロット間差、反応器差、スケール差が小さく、且つ、ハイポリマーを含まず、溶解性及び保存安定性に優れ、微細なパターン形成に好適なレジスト用ポリマー製造方法が提供される。 According to the present invention, the resist polymer used in the production of semiconductors has small lot-to-lot differences, reactor differences and scale differences, does not contain high polymers, has excellent solubility and storage stability, and forms fine patterns. method of manufacturing a suitable resist polymer is provided.

Claims (6)

有機溶媒中のラジカル重合による、少なくとも、酸によって分解してアルカリ現像液に可溶となる構造を有する繰り返し単位(A)と、半導体基板に対する密着性を高めるための極性基を有する繰り返し単位(B)とを有するレジスト用ポリマーの製造方法であって、
前記繰り返し単位(A)と繰り返し単位(B)が、一般式

(1)
(式中、R は水素原子若しくはメチル基を表す。)

(2)
(式中、R は水素原子、メチル基、トリフルオロメチル基から選ばれる基を表す。)

(3)
(式中、R は水素原子若しくはトリフルオロメチル基を表す。)

(4)
(式中、R はメチル基を表す。)

(5)
(式中、R は水素原子若しくはメチル基表す。)

(6)
(式中、R は水素原子若しくはトリフルオロメチル基を表す。)

(7)
{Rは以下の一般式(8)〜(10)から選ばれる酸解離性基若しくは一般式(11)〜(16)から選ばれる極性基であって、Rが酸解離性基の場合は繰り返し単位(A)を、極性基の場合は繰り返し単位(B)を表す。}

(8)
(式中、R 11 は炭素数1又は2のアルキル基、R 12 及びR 13 は共にメチル基若しくはいずれか一方がメチル基で他方が1−アダマンチル基若しくはR 12 とR 14 が相互に結合して形成した炭素数5、6、10又は12の単環若しくは有橋環構造を有する脂環式アルキル基を表す。)

(9)
{式中、R 14 はメチル基、R 15 は炭素数1〜4の鎖状アルキル基若しくは炭素数1、2、5、6又は10の脂環式のアルキル基を、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(10)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(11)
{式中、R 21 及びR 22 はそれぞれ独立して水素原子若しくはメチル基(但し、共にメチル基となることはない)、m及びnはそれぞれ独立して0若しくは1であって、共に0となることはない整数を、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(12)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(13)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(14)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}

(15)
(式中、R 23 は炭素数1〜3の2価のアルキル基を、oは一般式(1)〜(7)の繰り
返し単位との接合部位を表す。)

(16)
{式中、oは一般式(1)〜(7)の繰り返し単位との接合部位を表す。}
のいずれかで表される1種以上であると共に、
繰り返し単位(A)と繰り返し単位(B)との組成比が(A)10から70モル%、(B)30から90モル%であり、
ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、分子量10万以上の高分子量成分(ハイポリマー)のピーク面積が、全体のピーク面積に対して0.1%以下であることを特徴とするレジスト用ポリマーの製造方法。
A repeating unit (A) having a structure that is at least decomposed by an acid and becomes soluble in an alkali developer by radical polymerization in an organic solvent, and a repeating unit (B) having a polar group for improving adhesion to a semiconductor substrate (B And a method for producing a resist polymer comprising:
The repeating unit (A) and the repeating unit (B) are represented by the general formula:

(1)
(In the formula, R 1 represents a hydrogen atom or a methyl group.)

(2)
(In the formula, R 2 represents a group selected from a hydrogen atom, a methyl group, and a trifluoromethyl group.)

(3)
(In the formula, R 3 represents a hydrogen atom or a trifluoromethyl group.)

(4)
(In the formula, R 4 represents a methyl group.)

(5)
(In the formula, R 1 represents a hydrogen atom or a methyl group.)

(6)
(In the formula, R 5 represents a hydrogen atom or a trifluoromethyl group.)

(7)
{R is an acid dissociable group selected from the following general formulas (8) to (10) or a polar group selected from general formulas (11) to (16), and when R is an acid dissociable group, the reaction is repeated. The unit (A) represents a repeating unit (B) in the case of a polar group. }

(8)
(Wherein R 11 is an alkyl group having 1 or 2 carbon atoms, R 12 and R 13 are both methyl groups, or one of them is a methyl group and the other is a 1-adamantyl group, or R 12 and R 14 are bonded to each other. Represents an alicyclic alkyl group having a monocyclic or bridged ring structure having 5, 6, 10 or 12 carbon atoms formed by

(9)
{In the formula, R 14 represents a methyl group, R 15 represents a chain alkyl group having 1 to 4 carbon atoms or an alicyclic alkyl group having 1, 2, 5, 6 or 10 carbon atoms, and o represents a general formula (1 ) To (7) represents a bonding site with the repeating unit. }

(10)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(11)
{In the formula, R 21 and R 22 are each independently a hydrogen atom or a methyl group (however, they are not both methyl groups); m and n are each independently 0 or 1; An integer that never becomes, and o represents a bonding site with the repeating unit of the general formulas (1) to (7). }

(12)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(13)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(14)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }

(15)
(In the formula, R 23 represents a divalent alkyl group having 1 to 3 carbon atoms, and o represents a repeating group represented by the general formulas (1) to (7).
Represents the junction with the return unit. )

(16)
{In the formula, o represents a bonding site with the repeating units of the general formulas (1) to (7). }
And at least one type represented by any one of
The composition ratio of the repeating unit (A) to the repeating unit (B) is (A) 10 to 70 mol%, (B) 30 to 90 mol%,
In the molecular weight distribution measured by gel permeation chromatography (GPC), the peak area of a high molecular weight component (high polymer) having a molecular weight of 100,000 or more is 0.1% or less with respect to the total peak area. A method for producing a resist polymer.
繰り返し単位(A)を与える重合性モノマー及び繰り返し単位(B)を与える重合性モノマーを含有する溶液と、重合開始剤を含有する溶液とを、各々独立した貯槽に保持し、重合系内に連続的又は断続的に1時間以上をかけて供給してラジカル共重合させる請求項1に記載のレジスト用ポリマーの製造方法。  A solution containing a polymerizable monomer that gives the repeating unit (A) and a polymerizable monomer that gives the repeating unit (B) and a solution containing the polymerization initiator are held in independent storage tanks, and are continuously in the polymerization system. The method for producing a resist polymer according to claim 1, wherein the radical copolymerization is carried out by intermittently or intermittently supplying over 1 hour. 重合系内に供給する前に予備加熱された、原料となる重合性モノマーを含有する溶液を使用する請求項2に記載のレジスト用ポリマーの製造方法。  The method for producing a resist polymer according to claim 2, wherein a solution containing a polymerizable monomer as a raw material, which has been preheated before being supplied into the polymerization system, is used. 予備加熱温度が25℃以上である請求項3に記載のレジスト用ポリマーの製造方法。  The method for producing a resist polymer according to claim 3, wherein the preheating temperature is 25 ° C or higher. 原料となる重合性モノマーを含有する溶液と、重合開始剤を含有する溶液とを、各々独立した貯槽から、重合温度に加熱された重合溶媒中に連続的又は断続的に供給し、重合槽内で混合する請求項1〜4のいずれかに記載のレジスト用ポリマーの製造方法。  A solution containing a polymerizable monomer as a raw material and a solution containing a polymerization initiator are continuously or intermittently supplied from a separate storage tank into a polymerization solvent heated to a polymerization temperature, The manufacturing method of the polymer for resists in any one of Claims 1-4 mixed by these. 原料となる重合性モノマーを含有する溶液及び重合開始剤を含有する溶液の少なくとも一方の、重合系内への供給速度を2段階以上に変化させる請求項1〜5のいずれかに記載のレジスト用ポリマーの製造方法。  The resist composition according to any one of claims 1 to 5, wherein the supply rate into the polymerization system of at least one of a solution containing a polymerizable monomer as a raw material and a solution containing a polymerization initiator is changed in two or more stages. A method for producing a polymer.
JP2004013877A 2003-02-20 2004-01-22 Method for producing resist polymer Expired - Lifetime JP3720827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013877A JP3720827B2 (en) 2003-02-20 2004-01-22 Method for producing resist polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003042536 2003-02-20
JP2004013877A JP3720827B2 (en) 2003-02-20 2004-01-22 Method for producing resist polymer

Publications (2)

Publication Number Publication Date
JP2004269855A JP2004269855A (en) 2004-09-30
JP3720827B2 true JP3720827B2 (en) 2005-11-30

Family

ID=33134175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013877A Expired - Lifetime JP3720827B2 (en) 2003-02-20 2004-01-22 Method for producing resist polymer

Country Status (1)

Country Link
JP (1) JP3720827B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484690B2 (en) * 2004-12-21 2010-06-16 ダイセル化学工業株式会社 Manufacturing method of resin for photoresist
JP4540524B2 (en) * 2005-03-31 2010-09-08 ダイセル化学工業株式会社 Method for producing polymer compound for photoresist and photoresist composition
JP4663456B2 (en) * 2005-09-05 2011-04-06 東京応化工業株式会社 Positive resist composition and resist pattern forming method
JP4743426B2 (en) * 2006-05-12 2011-08-10 信越化学工業株式会社 Polymer for resist material and manufacturing method thereof, resist material, pattern forming method
JP5588095B2 (en) * 2006-12-06 2014-09-10 丸善石油化学株式会社 Copolymer for semiconductor lithography and method for producing the same
US8030419B2 (en) 2006-12-22 2011-10-04 Maruzen Petrochemical Co., Ltd. Process for producing polymer for semiconductor lithography
JP2010006863A (en) * 2008-06-24 2010-01-14 Jsr Corp Method for producing copolymer
JP2010168434A (en) * 2009-01-21 2010-08-05 Jsr Corp Method for polymerizing methacrylic lactone copolymer and the copolymer
KR20120031053A (en) 2009-07-07 2012-03-29 미츠비시 레이온 가부시키가이샤 Copolymer for lithography and method for evaluating same
KR101432395B1 (en) 2009-07-07 2014-08-20 미츠비시 레이온 가부시키가이샤 Polymer production method, polymer for use in lithography, resist composition and substrate production method
JP5793825B2 (en) * 2009-09-10 2015-10-14 三菱レイヨン株式会社 Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP5656048B2 (en) * 2010-03-12 2015-01-21 三菱レイヨン株式会社 Polymer for semiconductor lithography and method for producing the same
JP5743858B2 (en) * 2011-11-14 2015-07-01 丸善石油化学株式会社 Method for producing copolymer for low molecular weight resist
JP2014237847A (en) * 2014-08-20 2014-12-18 三菱レイヨン株式会社 Polymer for semiconductor lithography and method for producing the same
JP6838863B2 (en) * 2015-04-22 2021-03-03 株式会社ダイセル Resin for photoresist, method for producing photoresist resin, resin composition for photoresist, and method for forming a pattern
KR20200135372A (en) 2018-03-19 2020-12-02 주식회사 다이셀 Photoresist resin, photoresist resin manufacturing method, photoresist resin composition and pattern formation method
JP7242216B2 (en) 2018-08-23 2023-03-20 株式会社ダイセル Polymer production method
KR20220029700A (en) 2019-07-01 2022-03-08 주식회사 다이셀 Resin for photoresist, manufacturing method of resin for photoresist, resin composition for photoresist and pattern forming method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2746053B2 (en) * 1993-04-12 1998-04-28 信越化学工業株式会社 Method for producing poly (p-tert-butoxystyrene)
JP4187815B2 (en) * 1996-12-09 2008-11-26 日本曹達株式会社 (Meth) acrylic ester copolymer and method for producing the same
JP2002121223A (en) * 2000-10-11 2002-04-23 Sanyo Chem Ind Ltd Polymer and method for producing the same
JP4929552B2 (en) * 2000-10-30 2012-05-09 住友化学株式会社 Method for producing solid resin
JP2002241429A (en) * 2001-02-21 2002-08-28 Hokushin Ind Inc METHOD FOR PRODUCING POLY(p-VINYLPHENOL)

Also Published As

Publication number Publication date
JP2004269855A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3720827B2 (en) Method for producing resist polymer
US8163852B2 (en) Resist polymer and method for producing the polymer
JP4284358B2 (en) Copolymer for semiconductor lithography, method for producing the same, and composition
TWI390349B (en) Positive type photosensitive resin and novel dithiol compound
JP4881566B2 (en) POSITIVE PHOTOSENSITIVE RESIN, PROCESS FOR PRODUCING THE SAME AND RESIST COMPOSITION CONTAINING POSITIVE PHOTOSENSITIVE RESIN
US20060058433A1 (en) Method for prevention of increase in particles in copolymer for semiconductor resist
US7045582B2 (en) Preparation process of copolymer for semiconductor lithography and a copolymer for semiconductor lithography available by this process
KR20040081039A (en) Novel thiol compound, copolymer and method for producing the copolymer
JP2009282507A (en) Photoresist composition
JP3694692B2 (en) Resist polymer solution and method for producing the same
JP4368593B2 (en) Thiol compound, copolymer and method for producing copolymer
JP3694685B2 (en) Resist polymer and radiation-sensitive resist composition
JP4484690B2 (en) Manufacturing method of resin for photoresist
JP5743858B2 (en) Method for producing copolymer for low molecular weight resist
JP5162111B2 (en) POSITIVE PHOTOSENSITIVE RESIN, PROCESS FOR PRODUCING THE SAME AND RESIST COMPOSITION CONTAINING POSITIVE PHOTOSENSITIVE RESIN
JP3679404B2 (en) Chain transfer agent, copolymer and method for producing copolymer using novel thiol compound
JP5298549B2 (en) Method for producing polymer for photoresist
JP5298550B2 (en) Method for producing polymer for photoresist
JP2006124716A (en) Preparation process of copolymer for semiconductor lithography
JP2010204306A (en) Method for producing resin solution for photoresist
JP5433999B2 (en) Manufacturing method of resin for photoresist

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040921

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Ref document number: 3720827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term