JP3719439B2 - Heterogeneous metal composite - Google Patents

Heterogeneous metal composite Download PDF

Info

Publication number
JP3719439B2
JP3719439B2 JP2003071609A JP2003071609A JP3719439B2 JP 3719439 B2 JP3719439 B2 JP 3719439B2 JP 2003071609 A JP2003071609 A JP 2003071609A JP 2003071609 A JP2003071609 A JP 2003071609A JP 3719439 B2 JP3719439 B2 JP 3719439B2
Authority
JP
Japan
Prior art keywords
copper
metal composite
dissimilar metal
brazing
brass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003071609A
Other languages
Japanese (ja)
Other versions
JP2004276072A (en
Inventor
忠士 井口
真弘 小楠
将史 坂本
教良 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2003071609A priority Critical patent/JP3719439B2/en
Publication of JP2004276072A publication Critical patent/JP2004276072A/en
Application granted granted Critical
Publication of JP3719439B2 publication Critical patent/JP3719439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄系の材料と真鍮などの銅−亜鉛合金からなる材料どうしを互いにろう付接合した異種金属複合体に係り、特に、ろう付の際の銅−亜鉛合金の成分の変化を抑制する技術に関する。
【0002】
【従来の技術】
銅−亜鉛合金には、鉛を添加することによって切削加工性を向上させた快削黄銅などがあり、このような銅−亜鉛合金は、各種機械加工を実施して高い加工精度が要求される部品の材料として様々な分野で使用されている。また、鉄系の材料は、その炭素含有量やその他の添加成分を調整することで多くの種類のものが提供されており、また、比較的安価に入手できるために多種多様な分野で使用されている。
【0003】
従来では、鉄系材料と銅−亜鉛合金は、例えばシャフトとギヤなどのように、それぞれの材料の適正を利用して個別に使用されることが多い。しかしながら、鉄系材料と例えば真鍮とを接合することにより、鉄系材料で全体の剛性と強度を保ちながら、真鍮の部分で機械加工の高い精度を得ることができる。また、両者を接合して使用する場合には、半田付のような低温接合を用いることが一般的である。
【0004】
しかしながら、鉄系材料の線膨張率は11×10−6(/K)であるのに対して真鍮のそれは19×10−6(/K)であるため、真鍮を機械加工した際に生じる熱によって両者に作用する熱応力が大きい。このため、半田付のような接合強度の低い方法で鉄系材料と真鍮とを接合すると、接合時の残留応力によって真鍮を機械加工する際に両者が剥離し易いという問題があった。そこで、鉄系材料と真鍮との接合強度を高めるために、両者をろう付で接合することが従来より提案されている。たとえば、特許文献1では、裏金と真鍮とをろう付するに際して、真鍮の接合面にニッケルメッキを施すことにより、ろう材との濡れ性を改善するとともに真鍮に含有されている亜鉛の蒸発を防止している。
【0005】
【特許文献1】
特許第2726796号
【0006】
【発明が解決しようとする課題】
しかしながら、ろう付は真空中で行われるため、上記特許文献1に記載の技術においても、真鍮に含有されている蒸気圧の低い亜鉛成分の蒸発は避けることはできない。その結果、接合後の真鍮の成分が変化してしまい、真鍮の加工特性をはじめその他の機械的・物理的特性が変化してしまうという問題が生じる。
【0007】
したがって、本発明は、ろう付の際における真鍮などの銅−亜鉛合金の成分の変化を効果的に抑制することができる異種金属複合体を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の異種金属複合体は、鉄系の心材と銅−亜鉛合金からなる材料とを互いにろう付接合した異種金属複合体において、銅−亜鉛合金からなる材料の全体にろう材のメッキが施され、心材と銅−亜鉛合金からなる材料とが互いに接触して加熱されることで接合されていることを特徴としている。
【0009】
上記構成の異種金属複合体にあっては、銅−亜鉛合金からなる材料の全体にろう材のメッキが施されているから、ろう付のための加熱に際して銅−亜鉛合金中の亜鉛成分の蒸発が抑制される。したがって、本発明によれば、銅−亜鉛合金の切削加工性を維持しつつ鉄系材料の剛性や低熱膨張率等の利点を生かした金属接合体を得ることができる。また、メッキによって銅−亜鉛合金にろう材が設けられるから、ろう材の箔を所定箇所に配置する作業やろう材のペーストを塗布する作業が省略され、製造工程が簡略化されるという利点もある。
【0010】
【発明の実施の形態】
以下、本発明の好適な実施の形態について説明する。
本発明で用いるろう材としては接合強度の高い銀ろうが好適である。銀ろうは、通常、銀を主成分として銅、亜鉛、カドミウム等が添加されたもので、鉄系材料と銅−亜鉛合金材料とのろう付に適している。本発明では、銀ろうを構成するために、亜鉛合金材料に銅をメッキし、その上に銀をメッキすることができる。なお、銀は亜鉛合金材料から離間させることが望ましく、そのためにメッキは上記の順番で行うことが望ましい。ろう材のメッキの厚さは、5〜200μmが好ましく、20〜100μmであればさらに好適である。
【0011】
心材および/または銅−亜鉛合金からなる材料に、ニッケルの下地メッキを施すことが望ましい。この下地メッキにより銀ろうとの濡れ性が向上し、両者の密着性が高められる。また、そのような下地メッキを銅−亜鉛合金に設けることにより、銅−亜鉛合金中に含まれる亜鉛や鉛と銀との合金化を抑制するとともに、亜鉛の蒸発を防止することもできる。
【0012】
心材に施す下地メッキの厚さは0.5〜30μmであることが望ましい。下地メッキの厚さが0.5μm未満では銅−亜鉛合金からなる材料との濡れ性向上の効果が得られず、また、厚さが30μmを超えてもそれ以上の濡れ性の向上は期待できない。心材に施す下地メッキの厚さは、1〜15μmがより好適である。
【0013】
快削黄銅中の鉛は、黄銅に対してほとんど固溶せず、粒界および粒内に微粒状となって分散している。この分散した鉛が快削性をもたらす訳であるが、そのような鉛が銀と合金化すると、粒状に分散した鉛が拡散して快削性が損なわれるばかりでなく、カーケンダール拡散によって鉛が存在していた部分がボイドとなり、その断面が露出されるような加工を行ったときに外観が損なわれる。特に、銀が鉛および亜鉛と合金化すると、その融点が低下するために合金化をさらに促進するようになる。
【0014】
したがって、上記のような銀の合金化を抑制するためには、銅−亜鉛合金材料へのニッケルの下地メッキにある程度の厚さが求められ、下地メッキの厚さは、鉄系材料の心材への下地メッキの厚さよりも厚いことが望ましい。本発明者等の検討によれば、銅−亜鉛合金材料へのニッケルの下地メッキは10μm以上であることが望ましく、25μm以上であればさらに好適である。ただし、下地メッキの厚さは50μmを超えても機能はさほど向上せず、40μmあればほぼ充分である。よって、下地メッキの厚さは、10〜50μmが望ましく、25〜40μmであればさらに好適である。
【0015】
銀と銅の共晶反応を利用した銀ろうによる接合温度(ろう付温度)は、一般に、780℃以上の温度(通常は810〜830℃)とされ、また、材料の酸化を防止するためにろう付の加熱を行うための加熱炉内は真空とされる。ところが、亜鉛の蒸気圧曲線からすると、真空中での上記のような温度は亜鉛が蒸発する領域に入っていることから、本発明においてもその対策を講じることが望ましい。
【0016】
本発明者等の検討によれば、ろう付の加熱を行うための加熱炉の雰囲気圧力を13KPa以上にすることにより、上記のような温度でも亜鉛の蒸発を抑制可能であることが判明している。よって、加熱炉の雰囲気圧力は13KPa以上であることが望ましい。ただし、この場合には、加熱炉の雰囲気をアルゴンガスまたは窒素ガスのような不活性ガスとすることが望ましい。
【0017】
加熱炉の雰囲気を不活性ガスとすることにより、雰囲気の圧力をさらに高めて亜鉛の蒸発を一層抑制することができる。たとえば、雰囲気を一旦真空にしてアルゴンガスまたは窒素ガスを導入して66KPa以上、好ましくは73KPa以上とすることにより、亜鉛の蒸発をさらに効果的に抑制することができる。なお、加熱炉の雰囲気圧力は、大気圧以上となっても何ら問題はない。また、加熱炉の雰囲気を不活性ガスとしない場合には、製品の酸化を防止するために加熱炉の雰囲気圧力は1.3×10−2KPa以下とすることが望ましい。
【0018】
なお、本発明における銅−亜鉛合金は真鍮と呼ばれる黄銅であり、それにはスズ入り黄銅、高力黄銅、鉛入り黄銅(快削黄銅)、洋白、アルミニウム黄銅、ケイ素黄銅などあらゆる黄銅が含まれる。また、本発明におけるろう材は、銀ろうに限定されるものではなく、アルミニウム合金ろう、リン銅ろう、金ろうなど種々のろう材を用いることができる。
【0019】
本発明に用いられる心材としては、機械構造用炭素鋼(SC材)、機械構造用合金鋼(SMC材)、低熱膨張合金(インバー材、スーパーインバー材など)、ステンレス鋼(SUS材)などあらゆる鉄系材料を用いることができる。
【0020】
以下、図面を参照して本発明の好適な実施形態をさらに詳細に説明する。図1は実施形態の異種金属複合体を示す斜視図である。この図に示す異種金属複合体は、鉄系材料からなる円板状の心材1の表裏面に、真鍮からなる円板状の上側部材2および下側部材3を接合したものである。心材1の全表面には、図5に示すように、ニッケルメッキ層10が設けられ、ニッケルメッキ層10の厚さは0.5〜30μmとされている。
【0021】
図4に示すように、上側部材2および下側部材3の全表面には、ニッケルメッキ層11、銅メッキ層12、および銀メッキ層13が順次設けられている。ニッケルメッキ層11の厚さは10〜50μmとされている。また、銅メッキ層12および銀メッキ層13はろう材を構成するもので、その厚さはそれぞれ5〜50μmおよび10〜100μmとされ、ろう材全体の厚さは25〜200μmとされている。
【0022】
上記構成の異種材料複合体は次のようにして製造される。まず、心材1および上側部材2、下側部材3にニッケルメッキを施し、次いで、上側部材2および下側部材3に、銅メッキおよび銀メッキを施す。次に、心材1、上側部材2および下側部材3を重ね合わせ、全体を上下方向から加圧した状態で加熱炉に装入する。加圧方法としては、重しを乗せる方法や、バイス等の工具あるいはプレスで加圧する方法を採用することができる。なお、加圧力は0.1〜5MPaが好適である。
【0023】
加熱炉の雰囲気圧力は13KPa以上に設定し、雰囲気温度は790〜860℃に設定する。そして、その状態で所定時間保持することにより、銅メッキ層12および銀メッキ層13が溶融して銀ろうとなる。そして、異種金属複合体を加熱炉から取り出して冷却することにより、心材1、上側部材2および下側部材3が互いに接合される。
【0024】
図2は、上記のような異種金属複合体の外周に真鍮製のリング4を嵌合したもので、リング4の全表面には、図4に示す上側部材2と同様にニッケルメッキ、銅メッキおよび銀メッキがこの順番で施されている。このような異種金属複合体は、リング4と、心材1、上側部材2および下側部材3とが銅メッキおよび銀メッキが溶融してなる銀ろうによって接合されている。図3は、図2に示す異種金属複合体において、心材1、上側部材2および下側部材3をリング状としたものである。
【0025】
上記のような異種金属複合体では、真鍮製の上側部材および下側部材を機械加工して高精度な部品に加工することができる。また、その部品は、鉄系材料によって剛性および強度が確保されるとともに、鉄系材料は真鍮に比べて熱膨張率が小さいため、温度変化が激しい用途にも有用である。このように、本発明では、鉄系材料および真鍮の利点を兼ね備えた複合材料を、真鍮の成分に変化を生じさせることなく製造することができる。しかも、その製造工程にはろう材のセットや塗布を必要としないから、製造工程が簡略化され自動化にも容易に対応することができる。
【0026】
【実施例】
以下に、本発明の実施例を図1を参照して説明する。
[製造例1]
円板状に加工した鉄系材料(材質:炭素工具鋼)の表裏面に、円板状に加工した真鍮(材質:快削黄銅、亜鉛含有量:37重量%)製の上側部材および下側部材を積層した。上側部材および下側部材には厚さ30μmのニッケルの下地メッキを行った後、表1に示す厚さの銅メッキおよび銀メッキを順次行い、一部のものには亜鉛メッキも行った。また、鉄系材料には、厚さ5μmのニッケルのメッキを行った。
【0027】
【表1】

Figure 0003719439
【0028】
上記心材、上側部材および下側部材を積層し、その上に錘を置いて1MPaに加圧した状態で真空炉に収容した。真空炉の内部を真空にした後、内部にアルゴンガスを導入し、雰囲気圧力を79KPaに設定した。次いで、真空炉を810℃まで昇温して60分間保持した後、異種金属複合体を真空炉から取り出して自然冷却した。
【0029】
[製造例2]
上側部材および下側部材へのニッケルの下地メッキの厚さを20μmとした以外は製造例1と同じ条件で金属積層体を作製した。
【0030】
[評価]
製造例1および2の金属積層体における真鍮の亜鉛含有量を測定した結果、いずれも37重量%であり、亜鉛の蒸発は認められなかった。
【0031】
また、図6に製造例1および2における真鍮と鉄系材料の接合部の顕微鏡写真を示す。図6(B)に示すように、上側部材および下側部材へのニッケル下地メッキの厚さを20μmとした製造例2では、ろう材を構成する銀と真鍮中の鉛との合金化が生じた結果、鉛粒子が拡散して抜けた痕にボイドが生じていた。これに対して、図6(A)に示すように、製造例1では、ニッケルの下地メッキを30μmとしているため鉛粒子の欠如は認められず、健全な接合界面が得られた。表1に製造例1におけるボイドの状態を記載したが、ボイドがある場合でも微少で殆ど問題ないと考えられる。以上の結果により、ニッケルの下地メッキの厚さの好ましい限界値は、20μmと30μmとの中間の25μmと推察され、25μm以上が好適であることが確認された。
【0032】
【発明の効果】
以上説明したように、本発明によれば、鉄系の心材と銅−亜鉛合金からなる材料とを互いにろう付接合した異種金属複合体において、銅−亜鉛合金からなる材料の全体にろう材のメッキが施され、心材と銅−亜鉛合金からなる材料とが互いに接触して加熱されることで接合されているから、銅−亜鉛合金の切削加工性を維持しつつ鉄系材料の剛性や低熱膨張率等の利点を生かした製品を得ることができ、また、製造工程が簡略化される等の効果が得られる。
【図面の簡単な説明】
【図1】 本発明の実施形態における異種金属複合体を示す一部破砕斜視図である。
【図2】 本発明の他の実施形態における異種金属複合体を示す一部破砕斜視図である。
【図3】 本発明のさらに他の実施形態における異種金属複合体を示す一部破砕斜視図である。
【図4】 本発明の実施形態における上側(下側)部材を示す断面図である。
【図5】 本発明の実施形態における心材を示す断面図である。
【図6】 (A)および(B)は本発明の実施例の異種金属複合体の接合部分を示す顕微鏡写真である。
【符号の説明】
1 心材
2 上側部材
3 下側部材
4 リング
11 ニッケルメッキ層
12 銅メッキ層
13 銀メッキ層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dissimilar metal composite in which an iron-based material and a copper-zinc alloy material such as brass are brazed to each other, and particularly suppresses changes in the components of the copper-zinc alloy during brazing. Related to technology.
[0002]
[Prior art]
Copper-zinc alloys include free-cutting brass whose cutting workability has been improved by adding lead, and such copper-zinc alloys are required to have high machining accuracy by performing various machining processes. It is used in various fields as a material for parts. In addition, many types of iron-based materials are provided by adjusting the carbon content and other additive components, and are also used in a wide variety of fields because they are available at a relatively low cost. ing.
[0003]
Conventionally, an iron-based material and a copper-zinc alloy are often used individually by utilizing the appropriateness of each material, such as a shaft and a gear. However, by joining an iron-based material and, for example, brass, high accuracy of machining can be obtained at the brass portion while maintaining the overall rigidity and strength of the iron-based material. Moreover, when joining and using both, it is common to use low temperature joining like soldering.
[0004]
However, the linear expansion coefficient of iron-based materials is 11 × 10 −6 (/ K), whereas that of brass is 19 × 10 −6 (/ K), so the heat generated when machining brass. Therefore, the thermal stress acting on both is large. For this reason, when a ferrous material and brass are joined by a method of low joining strength such as soldering, there is a problem that they are easily separated when machining brass due to residual stress at the time of joining. Therefore, in order to increase the bonding strength between the iron-based material and brass, it has been conventionally proposed to bond the two by brazing. For example, in Patent Document 1, when brazing a back metal and brass, nickel plating is applied to the joining surface of the brass, thereby improving wettability with the brazing material and preventing evaporation of zinc contained in the brass. are doing.
[0005]
[Patent Document 1]
Japanese Patent No. 2726796 [0006]
[Problems to be solved by the invention]
However, since brazing is performed in a vacuum, even in the technique described in Patent Document 1, evaporation of a zinc component having a low vapor pressure contained in brass cannot be avoided. As a result, the components of the brass after joining are changed, and there arises a problem that other mechanical and physical characteristics such as processing characteristics of brass are changed.
[0007]
Accordingly, an object of the present invention is to provide a dissimilar metal composite capable of effectively suppressing changes in components of a copper-zinc alloy such as brass during brazing.
[0008]
[Means for Solving the Problems]
The dissimilar metal composite of the present invention is a dissimilar metal composite in which an iron-based core material and a material comprising a copper-zinc alloy are brazed to each other, and the entire material comprising the copper-zinc alloy is plated with the brazing material. The core material and the copper-zinc alloy material are joined to each other by being brought into contact with each other and heated.
[0009]
In the dissimilar metal composite having the above-described structure, since the brazing material is plated on the entire material composed of the copper-zinc alloy, the zinc component in the copper-zinc alloy is evaporated during heating for brazing. Is suppressed. Therefore, according to the present invention, it is possible to obtain a metal joined body that makes use of advantages such as rigidity and low thermal expansion coefficient of the iron-based material while maintaining the machinability of the copper-zinc alloy. Also, since the brazing material is provided on the copper-zinc alloy by plating, the work of placing the brazing material foil at a predetermined location and the work of applying the brazing material paste are omitted, and the manufacturing process is simplified. is there.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
As the brazing material used in the present invention, silver brazing having high bonding strength is suitable. The silver brazing is usually one containing silver as a main component and added with copper, zinc, cadmium and the like, and is suitable for brazing between an iron-based material and a copper-zinc alloy material. In the present invention, in order to constitute a silver brazing, copper can be plated on a zinc alloy material, and silver can be plated thereon. Note that it is desirable to separate silver from the zinc alloy material, and for this reason, plating is preferably performed in the above order. The plating thickness of the brazing material is preferably 5 to 200 μm, and more preferably 20 to 100 μm.
[0011]
It is desirable to apply nickel base plating to a material made of a core material and / or a copper-zinc alloy. This base plating improves the wettability with the silver solder and improves the adhesion between them. Moreover, by providing such a base plating on the copper-zinc alloy, it is possible to suppress alloying of zinc, lead, and silver contained in the copper-zinc alloy and to prevent evaporation of zinc.
[0012]
The thickness of the base plating applied to the core material is preferably 0.5 to 30 μm. If the thickness of the base plating is less than 0.5 μm, the effect of improving the wettability with a material made of a copper-zinc alloy cannot be obtained, and even if the thickness exceeds 30 μm, no further improvement in wettability can be expected. . The thickness of the base plating applied to the core material is more preferably 1 to 15 μm.
[0013]
Lead in free-cutting brass hardly dissolves in brass and is dispersed in the form of fine particles within grain boundaries and grains. This dispersed lead provides free-cutting properties, but when such lead is alloyed with silver, not only does the dispersed lead disperse in a granular manner, but the free-cutting property is impaired, and lead is also diffused by the Kirkendall diffusion. The part which existed becomes a void, and the appearance is impaired when processing is performed so that the cross section is exposed. In particular, when silver is alloyed with lead and zinc, its melting point is lowered, so that alloying is further promoted.
[0014]
Therefore, in order to suppress silver alloying as described above, a certain degree of thickness is required for the nickel base plating on the copper-zinc alloy material, and the thickness of the base plating depends on the core material of the iron-based material. It is desirable that it is thicker than the thickness of the underlying plating. According to the study by the present inventors, the nickel base plating on the copper-zinc alloy material is desirably 10 μm or more, more preferably 25 μm or more. However, even if the thickness of the base plating exceeds 50 μm, the function is not improved so much, and 40 μm is almost sufficient. Accordingly, the thickness of the base plating is preferably 10 to 50 μm, and more preferably 25 to 40 μm.
[0015]
The joining temperature (brazing temperature) by silver brazing using a eutectic reaction between silver and copper is generally set to a temperature of 780 ° C. or higher (usually 810 to 830 ° C.), and in order to prevent oxidation of the material The inside of the heating furnace for performing brazing heating is evacuated. However, according to the vapor pressure curve of zinc, the above temperature in vacuum is in the region where zinc evaporates, so it is desirable to take measures in the present invention.
[0016]
According to the study by the present inventors, it has been found that by setting the atmospheric pressure of the heating furnace for performing brazing heating to 13 KPa or more, it is possible to suppress the evaporation of zinc even at the above temperature. Yes. Therefore, the atmospheric pressure of the heating furnace is desirably 13 KPa or more. In this case, however, the atmosphere in the heating furnace is preferably an inert gas such as argon gas or nitrogen gas.
[0017]
By making the atmosphere of the heating furnace an inert gas, it is possible to further increase the pressure of the atmosphere and further suppress the evaporation of zinc. For example, when the atmosphere is once evacuated and argon gas or nitrogen gas is introduced to make it 66 KPa or more, preferably 73 KPa or more, evaporation of zinc can be more effectively suppressed. Note that there is no problem even if the atmospheric pressure of the heating furnace is equal to or higher than atmospheric pressure. Further, when the atmosphere of the heating furnace is not an inert gas, it is desirable that the atmosphere pressure of the heating furnace is 1.3 × 10 −2 KPa or less in order to prevent product oxidation.
[0018]
The copper-zinc alloy in the present invention is brass called brass, which includes all brass such as tin-containing brass, high-strength brass, lead-containing brass (free-cutting brass), western white, aluminum brass, silicon brass, etc. . The brazing material in the present invention is not limited to silver brazing, and various brazing materials such as aluminum alloy brazing, phosphorous copper brazing, and gold brazing can be used.
[0019]
Examples of the core material used in the present invention include carbon steel for machine structure (SC material), alloy steel for machine structure (SMC material), low thermal expansion alloy (invar material, super invar material, etc.), stainless steel (SUS material), etc. An iron-based material can be used.
[0020]
Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a perspective view showing a dissimilar metal composite according to an embodiment. The dissimilar metal composite shown in this figure is obtained by joining a disk-shaped upper member 2 and a lower member 3 made of brass to the front and back surfaces of a disk-shaped core material 1 made of an iron-based material. As shown in FIG. 5, a nickel plating layer 10 is provided on the entire surface of the core material 1, and the thickness of the nickel plating layer 10 is 0.5 to 30 μm.
[0021]
As shown in FIG. 4, a nickel plating layer 11, a copper plating layer 12, and a silver plating layer 13 are sequentially provided on the entire surface of the upper member 2 and the lower member 3. The thickness of the nickel plating layer 11 is 10 to 50 μm. The copper plating layer 12 and the silver plating layer 13 constitute a brazing material, and the thicknesses thereof are 5 to 50 μm and 10 to 100 μm, respectively, and the entire brazing material has a thickness of 25 to 200 μm.
[0022]
The dissimilar material composite having the above structure is manufactured as follows. First, the core material 1, the upper member 2, and the lower member 3 are subjected to nickel plating, and then the upper member 2 and the lower member 3 are subjected to copper plating and silver plating. Next, the core material 1, the upper member 2, and the lower member 3 are superposed and charged into the heating furnace in a state where the whole is pressurized from the vertical direction. As a pressing method, a method of putting a weight or a method of pressing with a tool such as a vice or a press can be employed. The applied pressure is preferably 0.1 to 5 MPa.
[0023]
The atmospheric pressure of the heating furnace is set to 13 KPa or higher, and the atmospheric temperature is set to 790 to 860 ° C. And by hold | maintaining for the predetermined time in that state, the copper plating layer 12 and the silver plating layer 13 fuse | melt, and it will become a silver solder. And the core material 1, the upper member 2, and the lower member 3 are mutually joined by taking out and cooling a dissimilar-metal composite body from a heating furnace.
[0024]
FIG. 2 shows a case in which a brass ring 4 is fitted to the outer periphery of the dissimilar metal composite as described above. The entire surface of the ring 4 is nickel-plated or copper-plated in the same manner as the upper member 2 shown in FIG. And silver plating is given in this order. In such a dissimilar metal composite, the ring 4 and the core material 1, the upper member 2 and the lower member 3 are joined by a silver solder formed by melting copper plating and silver plating. FIG. 3 shows the dissimilar metal composite shown in FIG. 2 in which the core material 1, the upper member 2 and the lower member 3 are ring-shaped.
[0025]
In the dissimilar metal composite as described above, the upper member and the lower member made of brass can be machined into high-precision parts. In addition, since the rigidity and strength of the component are ensured by the iron-based material, and the iron-based material has a smaller coefficient of thermal expansion than that of brass, it is also useful for applications where the temperature change is severe. Thus, in the present invention, a composite material having the advantages of an iron-based material and brass can be produced without causing a change in the components of the brass. In addition, since the manufacturing process does not require the setting or application of brazing material, the manufacturing process is simplified and automation can be easily handled.
[0026]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[Production Example 1]
Upper and lower parts made of brass (material: free-cutting brass, zinc content: 37% by weight) processed into a disk shape on the front and back surfaces of a ferrous material (material: carbon tool steel) processed into a disk shape The members were laminated. The upper member and the lower member were subjected to nickel plating with a thickness of 30 μm, and then copper plating and silver plating with thicknesses shown in Table 1 were sequentially performed, and some were also subjected to zinc plating. The iron-based material was plated with nickel having a thickness of 5 μm.
[0027]
[Table 1]
Figure 0003719439
[0028]
The core material, the upper member, and the lower member were stacked, and a weight was placed on the core material and the pressure was increased to 1 MPa, and the sample was stored in a vacuum furnace. After evacuating the interior of the vacuum furnace, argon gas was introduced into the interior and the atmospheric pressure was set to 79 KPa. Next, the temperature of the vacuum furnace was raised to 810 ° C. and held for 60 minutes, and then the dissimilar metal composite was taken out of the vacuum furnace and naturally cooled.
[0029]
[Production Example 2]
A metal laminate was produced under the same conditions as in Production Example 1 except that the thickness of the nickel base plating on the upper member and the lower member was 20 μm.
[0030]
[Evaluation]
As a result of measuring the zinc content of brass in the metal laminates of Production Examples 1 and 2, both were 37% by weight, and no evaporation of zinc was observed.
[0031]
Moreover, the microscope picture of the junction part of the brass and iron-type material in manufacture example 1 and 2 is shown in FIG. As shown in FIG. 6B, in Production Example 2 in which the thickness of the nickel base plating on the upper member and the lower member is 20 μm, alloying of silver constituting the brazing material and lead in brass occurs. As a result, voids were formed in the traces where lead particles were diffused and removed. On the other hand, as shown in FIG. 6A, in Production Example 1, since the nickel base plating was 30 μm, the absence of lead particles was not recognized, and a sound joint interface was obtained. Although the void state in Production Example 1 is shown in Table 1, it is considered that there is little problem even if there is a void. From the above results, the preferable limit value of the thickness of the nickel base plating was estimated to be 25 μm between 20 μm and 30 μm, and it was confirmed that 25 μm or more was suitable.
[0032]
【The invention's effect】
As described above, according to the present invention, in the dissimilar metal composite in which the iron-based core material and the material composed of the copper-zinc alloy are brazed to each other, the brazing material is entirely contained in the material composed of the copper-zinc alloy. Since plating is applied and the core material and the copper-zinc alloy material are joined to each other and heated, the rigidity and low heat of the iron-based material is maintained while maintaining the machinability of the copper-zinc alloy. A product that takes advantage of the expansion coefficient and the like can be obtained, and effects such as simplification of the manufacturing process can be obtained.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view showing a dissimilar metal composite in an embodiment of the present invention.
FIG. 2 is a partially broken perspective view showing a dissimilar metal composite according to another embodiment of the present invention.
FIG. 3 is a partially broken perspective view showing a dissimilar metal composite according to still another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing an upper (lower) member in the embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a core material in an embodiment of the present invention.
FIGS. 6A and 6B are photomicrographs showing a bonded portion of a dissimilar metal composite according to an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core material 2 Upper member 3 Lower member 4 Ring 11 Nickel plating layer 12 Copper plating layer 13 Silver plating layer

Claims (7)

鉄系の心材と銅−亜鉛合金からなる材料とを互いにろう付接合した異種金属複合体において、上記銅−亜鉛合金からなる材料の全体にろう材のメッキが施され、上記心材と銅−亜鉛合金からなる材料とが互いに接触して加熱されることで接合されていることを特徴とする異種金属複合体。In a dissimilar metal composite in which an iron-based core material and a copper-zinc alloy material are brazed to each other, the entire material of the copper-zinc alloy is plated with the brazing material, and the core material and the copper-zinc A dissimilar metal composite characterized in that the materials made of an alloy are joined to each other by being brought into contact with each other and heated. 前記ろう材は銀ろうであり、前記銅−亜鉛合金からなる材料の表面に、銀ろうの成分をなす金属のメッキを順次施したことを特徴とする請求項1に記載の異種金属複合体。2. The dissimilar metal composite according to claim 1, wherein the brazing material is silver brazing, and the surface of the material made of the copper-zinc alloy is sequentially plated with a metal constituting a silver brazing component. 前記心材および/または前記銅−亜鉛合金からなる材料に、ニッケルの下地メッキが施されていることを特徴とする請求項1または2に記載の異種金属複合体。3. The dissimilar metal composite according to claim 1, wherein a nickel base plating is applied to the material made of the core material and / or the copper-zinc alloy. 前記銅−亜鉛合金からなる材料に施す下地メッキの厚さを10〜50μmとしたことを特徴とする請求項2または3に記載の異種金属複合体。4. The dissimilar metal composite according to claim 2, wherein the thickness of the base plating applied to the copper-zinc alloy material is 10 to 50 μm. 前記心材に施す下地メッキの厚さを0.5〜30μmとしたことを特徴とする請求項2〜4のいずれかに記載の異種金属複合体。The dissimilar metal composite according to any one of claims 2 to 4, wherein a thickness of the base plating applied to the core material is set to 0.5 to 30 µm. 前記加熱を行うための加熱炉の雰囲気圧力を13KPa以上としたことを特徴とする請求項1〜5のいずれかに記載の異種金属複合体。The dissimilar metal composite according to any one of claims 1 to 5, wherein an atmospheric pressure of a heating furnace for performing the heating is set to 13 KPa or more. 前記加熱を行うための加熱炉の雰囲気をアルゴンガスまたは窒素ガスとしたことを特徴とする請求項1〜6のいずれかに記載の異種金属複合体。The dissimilar metal composite according to any one of claims 1 to 6, wherein an atmosphere of a heating furnace for performing the heating is argon gas or nitrogen gas.
JP2003071609A 2003-03-17 2003-03-17 Heterogeneous metal composite Expired - Lifetime JP3719439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071609A JP3719439B2 (en) 2003-03-17 2003-03-17 Heterogeneous metal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071609A JP3719439B2 (en) 2003-03-17 2003-03-17 Heterogeneous metal composite

Publications (2)

Publication Number Publication Date
JP2004276072A JP2004276072A (en) 2004-10-07
JP3719439B2 true JP3719439B2 (en) 2005-11-24

Family

ID=33288010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071609A Expired - Lifetime JP3719439B2 (en) 2003-03-17 2003-03-17 Heterogeneous metal composite

Country Status (1)

Country Link
JP (1) JP3719439B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562569B2 (en) * 2005-03-29 2010-10-13 新日鉄マテリアルズ株式会社 Invar alloy and brass composite structure and method for producing the same
JP5349918B2 (en) * 2008-11-18 2013-11-20 日本発條株式会社 Brazing method and joining member by the method
JP2016006820A (en) * 2014-06-20 2016-01-14 大和電機工業株式会社 Encapsulation member, and manufacturing method of package for electronic component
US10174414B2 (en) * 2017-02-16 2019-01-08 General Electric Company Manufactured article and method
CN114758817A (en) * 2022-03-14 2022-07-15 鼎辉光电通信(江苏)有限公司 High-temperature-resistant low-noise semisteel cable

Also Published As

Publication number Publication date
JP2004276072A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US4562121A (en) Soldering foil for stress-free joining of ceramic bodies to metal
US3854194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure and product using nickel-copper, silver bridging material
JP4350753B2 (en) Heat sink member and manufacturing method thereof
US4049475A (en) SECo5 -Permanent magnet joined to at least one iron mass and method of fabricating such a permanent magnet
JP3719439B2 (en) Heterogeneous metal composite
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP5231727B2 (en) Joining method
JP2000164746A (en) Electronic component package, lid material thereof, and manufacture thereof
KR100787928B1 (en) Method of joining of ti and dissimilar metal using ag diffusion control layer
JP2005032834A (en) Joining method of semiconductor chip and substrate
KR940008937B1 (en) Fabricating method of composite material
JP2008221290A (en) Joined member and joining method
JP2726796B2 (en) Multi-layer sliding member and manufacturing method thereof
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS6033269A (en) Metal ceramic bonding method
JP2506330B2 (en) Method for producing composite material composed of metal and ceramics
JP2015080812A (en) Joint method
JPS58188561A (en) Production of sintered hard alloy tool
JP2002292474A (en) Method for bonding titanium material or titanium alloy material
JPH10330805A (en) Manufacture of cylindrical composite material, and cylindrical composite member to be obtained thereby
GB979811A (en) Improvements in or relating to the bonding of a ceramic part to a metallic part
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JP4446073B2 (en) Joining method of titanium aluminum intermetallic compound and copper alloy
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPH1197618A (en) Bonding of silicon wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Ref document number: 3719439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term