JP3718351B2 - Stator core manufacturing method - Google Patents

Stator core manufacturing method Download PDF

Info

Publication number
JP3718351B2
JP3718351B2 JP24508098A JP24508098A JP3718351B2 JP 3718351 B2 JP3718351 B2 JP 3718351B2 JP 24508098 A JP24508098 A JP 24508098A JP 24508098 A JP24508098 A JP 24508098A JP 3718351 B2 JP3718351 B2 JP 3718351B2
Authority
JP
Japan
Prior art keywords
punching
pair
punches
punched
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24508098A
Other languages
Japanese (ja)
Other versions
JP2000078801A (en
Inventor
敏一 佐藤
豊信 山田
勉 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24508098A priority Critical patent/JP3718351B2/en
Publication of JP2000078801A publication Critical patent/JP2000078801A/en
Application granted granted Critical
Publication of JP3718351B2 publication Critical patent/JP3718351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、帯状コアを環状化してステータコアを形成するステータコアの製造方法に関する。
【0002】
【発明が解決しようとする課題】
回転電機においては、複数の単位コアを繋ぎ桟により連結した形態の帯状コアを用い、帯状コアを環状化してステータコアを形成することが行われている。この場合、各単位コアの周方向両端部に櫛歯部を形成し、各櫛歯部を周方向に隣接する櫛歯部に噛合させることに伴い、ステータコアの磁気特性を改善することが考えられている。この帯状コアを製造するにあたっては、2つの帯材から形状が異なる積層板を別個に打抜き、2種類の積層板を積層することが考えられる。しかしながら、2つの帯材から積層板を打抜く専用のプレス機が必要になるので、装置が大形化される。
【0003】
本発明は上記事情に鑑みてなされたものであり、その目的は、小形な装置で帯状コアを形成できるステータコアの製造方法を提供することにある。
【0004】
【課題を解決するための手段】
請求項1記載のステータコアの製造方法は、三角形の空間状をなす複数の第1の打抜部を有する第1の積層板および第1の打抜部と同一の三角形の空間状で傾斜角度が相違する複数の第2の打抜部を有する第2の積層板を順送りして打抜く工程と、前記第1の積層板および前記第2の積層板を軸方向に重ね前記第1の打抜部および前記第2の打抜部を軸方向に並べることに基いて複数の櫛歯部を有する帯状コアを形成する工程と、前記帯状コアを環状化することに基づいて前記櫛歯部を周方向に隣接する櫛歯部に噛合させる工程とを備え、前記第1の打抜部を形成するための第1のポンチを使用して前記第1の打抜部を打抜いた後に前記第2の打抜部を形成するための第2のポンチを使用して前記第1の打抜部に隣接する部分を打抜くことに基いて前記第1の打抜部および前記第2の打抜部を合せた扇形の空間状の打抜部を形成するところに特徴を有している。
【0005】
上記手段によれば、輪郭形状が異なる第1の積層板および第2の積層板を順送りして打抜いているので、第1の積層板を形成するプレス機および第2の積層板を形成するプレス機を個別に用いる必要がなくなり、装置が小形化される。しかも、第1のポンチによって打抜いた部分を第2のポンチによって打抜くことに基づいて両ポンチとは異形状の打抜部を形成しているので、ポンチの数が少なくて済む。
【0006】
請求項2記載のステータコアの製造方法は、前記第1の積層板および前記第2の積層板相互間を切断ポンチを使用して前記打抜部から分離することに基いて前記第1の積層板の一方の分離面および前記第2の積層板の一方の分離面に前記切断ポンチによる切断面を部分的に形成し、前記第1の積層板および前記第2の積層板相互間を前記切断ポンチを使用して前記打抜部の反対側で分離することに基いて前記第1の積層板の他方の分離面および前記第2の積層板の他方の分離面を全て前記切断ポンチによる切断面から構成し、前記帯状コアを形成する工程で両端の櫛歯部に前記第1の積層板の部分的な切断面および前記第2の積層板の部分的な切断面からなる非櫛歯状の部分を形成し、前記帯状コアを環状化する工程で両端の非櫛歯状の部分相互間に軸方向へ延びる切欠状のレーザー溶接部を形成し、前記レーザー溶接部にレーザー溶接を施すことに基いて前記帯状コアを環状に保持するところに特徴を有している。
上記手段によれば、レーザー溶接部にレーザー溶接を施したので、溶接代が増えてステータコアの溶接強度が高まる。
【0010】
【発明の実施の形態】
以下、本発明の第1実施例を図1ないし図15に基づいて説明する。まず、図13の(a)において、ヘリカル鉄心1は単位コア1A〜1Fと単位コア1A〜1F相互間を連結する複数の繋ぎ桟2とから構成されたものであり(但し、単位コア1Aと1Fとの間は分断されている)、単位コア1A〜1Fは円弧状の単位ヨーク3と略T字状の磁極ティース4とから構成されている。尚、ヘリカル鉄心1は帯状コアに相当するものである。
【0011】
各磁極ティース4には、図14の(b)に示すように、合成樹脂製のボビン5が装着される。これら各ボビン5は、角筒状の胴部5aと胴部5aの一端部に位置する枠状の鍔部5bと、胴部5aの他端部に位置する枠状の鍔部5cとを有するものであり、各ボビン5の鍔部5bの軸方向端面には、周方向中央部に位置してピン端子6aが取付けられ、周方向隅部に位置してピン端子6bが取付けられている。
【0012】
各ボビン5の胴部5aには、図14の(a)に示すように、コイル7が巻装されている。これら各コイル7は、巻回始端部を中央部のピン端子6aに巻付けた後、矢印で示すように、巻回方向を外周側から内周側および内周側から外周側へ層毎に反転させながら略階段状に巻回されたものであり、各コイル7の巻回終端部はピン端子6bに巻付けられている。
【0013】
図14の(b)の符号1〜nはマグネットワイヤの巻回順序を示すものであり、マグネットワイヤの奇数層(=k層)の巻回数および偶数層(=k+1層)の巻回数は下記(1)式および(2)式に基づいて設定されている。
奇数層の巻回数=N−α(k−1)/2 ……(1)
偶数層の巻回数=N−α(k−1)/2−1 ……(2)
但し、kは正の奇数、Nは1層目の巻回数(図2ではN=10)、αは2以上の自然数(図2ではα=2)である。
【0014】
ヘリカル鉄心1は、図13の(b)に示すように、第1の積層板8および第2の積層板9を軸方向へ1枚おきに積層して機械的に連結する(例えばかしめ付け,溶接等)ことから形成されたものであり、第1の積層板8および第2の積層板9は、図12の(a)に示すように、帯状鋼板10の長手方向に沿って交互に打抜かれ、且つ、短手方向に沿って2列に打抜かれている。
【0015】
第1の積層板8には5個の第1の打抜部11が等ピッチで形成され、第2の積層板9には5個の第2の打抜部12が等ピッチで形成されている。これら各打抜部11および12は同一の三角形状をなすものであり、各打抜部11は、図12の(b)に示すように、磁極ティース4に平行な中心線CLに対して一方向へθ°傾斜し、各打抜部12は、図12の(c)に示すように、中心線CLに対して打抜部11とは別方向へθ°傾斜している。
【0016】
第1の積層板8の矢印A方向端部および第2の積層板9の反矢印A方向端部には、図12の(a)に示すように、切断面13が形成されており、各切断面13は、図12の(d)に示すように、磁極ティース4に平行な直線状をなしている。また、第1の積層板8の反矢印A方向端部には、図12の(a)に示すように、切断面14が形成されており、各切断面14は、図12の(e)に示すように、中心線CLに対して一方向へθ°傾斜する直線状をなしている。
【0017】
第2の積層板9の矢印A方向端部には、図12の(a)に示すように、切断面15が形成されており、各切断面15は、図12の(e)に示すように、中心線CLに対して切断面14とは別方向へθ°傾斜する直線状をなしている。また、各切断面14および15には切断面13が形成されている。これら各切断面13は、上述の切断面13と同様、磁極ティース4に平行な直線状をなしている。
【0018】
単位コア1A〜1Fの両端部には、図13の(a)に示すように、櫛歯部16が形成されており、ヘリカル鉄心1を各繋ぎ桟2を中心に円環状に折曲げると、図13の(b)に示すように、各櫛歯部16が周方向に隣接する櫛歯部16に軸方向から噛合し、周方向に重なる。
【0019】
図15は、ヘリカル鉄心1を円環状に折曲げたステータコア18を示すものであり、ステータコア18には外周側へ開口する切欠状のレーザー溶接部18aが形成されている。このレーザー溶接部18aには軸方向に沿ってレーザー溶接が施されており、ヘリカル鉄心1は、レーザー溶接部18aに施されたレーザー溶接によって円環状に保持されている。
【0020】
次に帯状鋼板10から第1の積層板8および第2の積層板9を打抜く順送り型のクランクプレス装置20について説明する。まず、図10の(a)において、上型ホルダ21はクランク機構(図示せず)を介してプレスモータ22(図11参照)に連結されたものであり、プレスモータ22が作動すると、上型ホルダ21が上死点および下死点間で繰返し移動する。
【0021】
上型ホルダ21の下方にはテーブル23が配設されている。このテーブル23の上面には帯状鋼板10がセットされており、搬送機構23a(図11参照)が作動すると、帯状鋼板10がテーブル23の上面に沿って矢印A方向へ搬送される。尚、搬送機構23aは搬送モータ23b(図11参照)を駆動源とするものである。
【0022】
上型ホルダ21の下面には、図10の(a)に示すように、バッキングプレート24が装着されている。このバッキングプレート24の下面にはポンチプレート25が装着されており、ポンチプレート25には、図1の(b)に示すように、反矢印A方向から順に一対の第1の打抜ポンチ26A,一対の第2の打抜ポンチ26B,一対の切断ポンチ26Cが装着されている。尚、第1の打抜ポンチ26Aおよび第2の打抜ポンチ26Bは第1のポンチおよび第2のポンチに相当するものである。
【0023】
各ポンチ26A〜26Cは、図10の(a)に示すように、ポンチプレート25の貫通孔25a内に上下動可能に挿入されたものであり、各打抜ポンチ26Aは、図1の(b)に示すように、第1の積層板8の打抜部11と同一傾斜角度の三角形状をなしている。また、各打抜ポンチ26Bは第2の積層板9の打抜部12と同一傾斜角度の三角形状をなし、各切断ポンチ26Cは矢印A方向に幅狭な長方形状をなしている。
【0024】
ポンチプレート25には、図10の(a)に示すように、空間部25bが形成されており、空間部25b内には、図1の(a)に示すように、各ポンチ26A〜26Cに対応してカム27A〜27Cが収納されている。これら各カム27A〜27Cは、図10の(a)に示すように、薄肉部27aおよび厚肉部27bを有するものであり、各カム27A〜27Cには、図10の(b)に示すように、薄肉部27aおよび厚肉部27bを跨ぐ貫通孔27cが形成されている。
【0025】
上型ホルダ21には、図10の(a)に示すように、各カム27A〜27Cの貫通孔27cに対応して貫通状のねじ孔21aが形成されており、各ねじ孔21a内にはピン28の上端部が上下動可能に挿入されている。また、バッキングプレート24には、各ピン28に対応して貫通孔24aが形成されており、各カム27A〜27Cの貫通孔27c内には、貫通孔24aを通してピン28の下端部が挿入されている。
【0026】
上型ホルダ21の各ねじ孔21a内には止めねじ29が螺合されており、各止めねじ29とピン28との間には圧縮コイルスプリング30が介在されている。これら各スプリング30はピン28を下方へ付勢するものであり、各ポンチ26A〜26Cの頭部はピン28の下端部によって下方へ押えられている。
【0027】
各組のカム27A〜27Cは、図11に示すように、エアーシリンダ31a〜31cのロッドに連結されている。これらシリンダ31a〜31cは各組のカム27A〜27Cを図1の(a)の矢印A方向および反矢印A方向へスライドさせるものであり、各カム27A〜27Cがスライドし、図10の(a)に実線で示すように、各ポンチ26A〜26Cの頭部にカム27A〜27Cの薄肉部27aが対向すると、両者の間に隙間が形成され、図10の(a)に二点鎖線で示すように、各ポンチ26A〜26Cの頭部にカム27A〜27Cの厚肉部27bが対向すると、両者が略接触する。
【0028】
各ポンチ26A〜26Cの頭部とカム27A〜27Cの薄肉部27aとが対向した状態でポンチプレート25が下降した場合には、各ポンチ26A〜26Cが帯状鋼板10に接触した時点でスプリング30が収縮し、各ポンチ26A〜26Cが上昇する。このため、各ポンチ26A〜26Cによるプレス動作が実行されない(ポンチ26A〜26Cの無効状態)。
【0029】
各ポンチ26A〜26Cの頭部とカム27A〜27Cの厚肉部27bとが対向した状態でポンチプレート25が下降した場合には、各ポンチ26A〜26Cが帯状鋼板10に接触しても上昇できず、ポンチプレート25と一体的に下死点まで下降する。このため、各ポンチ26A〜26Cによる帯状鋼板10のプレス動作が実行される(ポンチ26A〜26Cの有効状態)。
【0030】
ポンチプレート25には、図1の(b)に示すように、反矢印A方向から順に一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34が固定されており、ポンチプレート25が下降すると、一対の打抜ポンチ32〜34がポンチプレート25と一体的に下死点まで下降し、一対の打抜ポンチ32〜34による帯状鋼板10のプレス動作が実行される。
【0031】
プレスモータ22および搬送モータ23bは、図11に示すように、モータ駆動回路22aおよび23cを介して制御装置35に電気的に接続されている。この制御装置35はマイクロコンピュータを主体に構成されたものであり、制御装置35は、モータ駆動回路23cを通して搬送モータ23bを駆動制御することに基づいて帯状鋼板10を断続的に搬送し、モータ駆動回路22aを通してプレスモータ22を駆動制御することに基づいて上型ホルダ21を上死点および下死点間で連続的に移動させる。
【0032】
シリンダ31a〜31cの配管経路にはソレノイドバルブ36a〜36cが介在されている。これらバルブ36a〜36cはバルブ駆動回路37a〜37cを介して制御装置35に接続されており、制御装置35は、バルブ駆動回路37a〜37cを通してバルブ36a〜36cを駆動制御することに基づいてカム27A〜27Cをスライドさせ、ポンチ26A〜26Cの状態を切換える。
【0033】
マイクロスイッチ38は、ポンチプレート25が下死点に到達することに基づいてオンされるものであり、制御装置35は、スイッチ38からのオン信号に基づいてポンチカウンタ「Np」をカウントアップし、カウンタ「Np」の値に基づいてバルブ36a〜36cの制御タイミングを得る。
【0034】
次にプレス装置20の動作内容について説明する。尚、下記動作は、制御装置35がROMに記憶された制御プログラムに基づいてプレスモータ22,搬送モータ23b,バルブ36a〜36cを駆動制御することに基づいて実行されるものである。
【0035】
制御装置35は、図1の(a)に示すように、バルブ36aを駆動制御することに基づいて各カム27Aの厚肉部27bを打抜ポンチ26Aに対向させ、各打抜ポンチ26Aを有効化する。これと共に、バルブ36bおよび36cを駆動制御することに基づいて各カム27Bの薄肉部27aおよび各カム27Cの薄肉部27aを打抜ポンチ26Bおよび切断ポンチ26Cに対向させ、各打抜ポンチ26Bおよび各切断ポンチ26Cを無効化する。尚、図1の(b)は、有効状態にあるポンチ26Aおよび32〜34を実線で示し、無効状態にあるポンチ26Bおよび26Cを二点鎖線で示している。
【0036】
制御装置35は、上述の動作を終えると、ポンチプレート25を連続的に上下動させながら、帯状鋼板10を設定ピッチで矢印A方向へ4回搬送する。すると、図1の(c)〜(f)に示すように、一対の打抜ポンチ26Aによる帯状鋼板10の打抜き動作が4回実行され、帯状鋼板10に一対の打抜部11が4組形成される。
【0037】
このとき、図1の(e)〜(f)に示すように、一対の打抜ポンチ32による帯状鋼板10の打抜き動作が2回実行され、帯状鋼板10に一対の菱形孔10aが2組形成される。これと共に、図1の(f)に示すように、一対の打抜ポンチ33および一対の打抜ポンチ34による帯状鋼板10の打抜き動作が1回ずつ実行され、帯状鋼板10に一対の切欠部10bおよび一対の孔10cが1組ずつ形成される。尚、符号10dはパイロット孔を示している。
【0038】
制御装置35は、上述の動作を終えると、バルブ36cの状態を切換える。そして、図2の(a)に示すように、各カム27Cの厚肉部27bを切断ポンチ26Cに対向させ、各切断ポンチ26Cを有効化した後、帯状鋼板10を設定ピッチだけ搬送する。すると、図2の(c)に示すように、一対の切断ポンチ26Cによって帯状鋼板10が直線状に切断され、一対の切断面13が形成される。このとき、一対の打抜ポンチ26A,一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34によって新たな一対の打抜部11,一対の菱形孔10a,一対の切欠部10b,一対の孔10cが一組ずつ形成される。
【0039】
制御装置35は、上述の動作を終えると、バルブ36cの状態を切換える。そして、図3の(a)に示すように、各カム27Cの薄肉部27aを切断ポンチ26Cに対向させ、各切断ポンチ26Cを無効化する。この後、帯状鋼板10を設定ピッチで2回搬送し、図3の(c)および(d)に示すように、帯状鋼板10に新たな一対の打抜部11,一対の菱形孔10a,一対の切欠部10b,一対の孔10cを2組ずつ形成する。
【0040】
制御装置35は、上述の動作を終えると、バルブ36aおよび36bの状態を切換える。そして、図4の(a)に示すように、各カム27Aの薄肉部27aを打抜ポンチ26Aに対向させ、各打抜ポンチ26Aを無効化する。これと共に、各カム27Bの厚肉部27bを打抜ポンチ26Bに対向させ、各打抜ポンチ26Bを有効化する。
【0041】
制御装置35は、打抜ポンチ26Aおよび26Bの状態を切換えると、帯状鋼板10を矢印A方向へ設定ピッチだけ搬送する。すると、図4の(c)に示すように、図3の(d)で一対の打抜ポンチ26Aによって打抜かれた部分が一対の打抜ポンチ26Bによって打抜かれ、第1の打抜部11および第2の打抜部12とは形状が異なる第3の打抜部19が形成される。
【0042】
制御装置35は、上述の動作を終えると、図4の(d)および(e)に示すように、帯状鋼板10を設定ピッチで2回搬送し、一対の打抜ポンチ26Bによって帯状鋼板10に一対の第2の打抜部12を2組形成する。このとき、一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34によって帯状鋼板10が打抜かれ、新たな一対の菱形孔10a,一対の切欠部10b,一対の孔10cが2組ずつ形成される。
【0043】
制御装置35は、上述の動作を終えると、バルブ36cの状態を切換える。そして、図5の(a)に示すように、各カム27Cの厚肉部27bを切断ポンチ26Cに対向させ、各切断ポンチ26Cを有効化した後、帯状鋼板10を設定ピッチで搬送する。すると、図5の(c)に示すように、一対の切断ポンチ26Cによって帯状鋼板10が第3の打抜部19から切断され、5個の打抜部11,直線状の切断面13,傾斜面状の切断面14を有する第1の積層板8が形成される。このとき、一対の打抜ポンチ26B,一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34によって帯状鋼板10に新たな一対の打抜部12,一対の菱形孔10a,一対の切欠部10b,一対の孔10cが1組ずつ形成される。
【0044】
制御装置35は、上述の動作を終えると、バルブ36cの状態を切換える。そして、図6の(a)に示すように、各カム27Cの薄肉部27aを切断ポンチ26Cに対向させ、各切断ポンチ26Cを無効化した後、帯状鋼板10を設定ピッチで2回搬送する。すると、図6の(c)および(d)に示すように、帯状鋼板10に新たな一対の打抜部12,一対の菱形孔10a,一対の切欠部10b,一対の孔10cが2組ずつ形成される。
【0045】
制御装置35は、上述の動作を終えると、バルブ36aおよび36bの状態を切換える。そして、図7の(a)に示すように、各カム27Aの厚肉部27bを打抜ポンチ26Aに対向させ、各打抜ポンチ26Aを有効化する。これと共に、各カム27Bの薄肉部27aを打抜ポンチ26Bに対向させ、各打抜ポンチ26Bを無効化する。
【0046】
制御装置35は、打抜ポンチ26Aおよび26Bの状態を切換えると、帯状鋼板10を設定ピッチで3回搬送する。すると、図7の(c)〜(e)に示すように、帯状鋼板10に新たな一対の打抜部11,一対の菱形孔10a,一対の切欠部10b,一対の孔10cが3組ずつ形成される。
【0047】
制御装置35は、上述の動作を終えると、バルブ36cの状態を切換える。そして、図8の(a)に示すように、各カム27Cの厚肉部27bを切断ポンチ26Cに対向させ、各切断ポンチ26Cを有効化した後、帯状鋼板10を設定ピッチで搬送する。すると、図8の(c)および(d)に示すように、各切断ポンチ26Cによって帯状鋼板10が切断され、5個の打抜部12,直線状の切断面13,傾斜面状の切断面15を有する第2の積層板9が形成される。
【0048】
図9の(d)はスイッチ38からのオン信号を示すものであり、制御装置35は、スイッチ38からオン信号が1回出力される毎にカウンタ「Np」の値を1ずつカウントアップする。図9の(a)〜(c)は制御装置35からバルブ36a〜36cに与えられる駆動信号の状態を示すものであり、制御装置35は、カウンタ「Np」の値に基づいてバルブ36a〜36cを駆動し、上述のタイミングでポンチ26A〜26Cの状態を切換える。
【0049】
上記実施例によれば、輪郭形状が異なる第1の積層板8および第2の積層板9を順送りして打抜いた。このため、第1の積層板8を形成するプレス機および第2の積層板9を形成するプレス機を個別に用いる必要がなくなるので、装置が小形化される。しかも、第1の打抜ポンチ26Aによって打抜いた部分を第2の打抜ポンチ26Bによって打抜くことに基づいて両ポンチ26Aおよび26Bとは異形状の打抜部19を形成したので、ポンチの数が少なくて済む。このため、ポンチプレート25の矢印A方向の長さ寸法が小さくなるので、装置が一層小形化される。
【0050】
また、断面長方形状の切断ポンチ26Cを用いて第1の積層板8および第2の積層板9を切断したので、第1に、先が尖った鋭利な切断ポンチを用いて両者を切断する場合に比べ、両者の切断端部に「ばり」が生じ難くなる。このため、ヘリカル鉄心1を環状化する際に「ばり」同志が接触する虞れが少なくなるので、ステータコア18の真円度が高まる。
【0051】
第2に、単位コア1Aの矢印A方向端部の櫛歯部16および単位コア1Fの反矢印A方向端部の櫛歯部16(いずれも図13のa参照)を噛合させると、図15に示すように、両櫛歯部16に切欠状のレーザー溶接部18aが形成される。このため、レーザー溶接部18aに軸方向に沿ってレーザー溶接を施せば、溶接代が増えてステータコア18の溶接強度が高まる。しかも、溶接部がステータコア18の外周面から突出することが防止される。
【0052】
次に本発明の第2実施例を図16ないし図30に基づいて説明する。尚、上記第1実施例と同一の部材については同一の符号を付して説明を省略し、以下、異なる部材についてのみ説明を行う。ポンチプレート25には、図16の(b)に示すように、一対の打抜ポンチ26Aの反矢印A方向側に位置して一対の打抜ポンチ26Dが装着され、一対の打抜ポンチ26Bの矢印A方向側に位置して一対の打抜ポンチ26Eが装着されている。
【0053】
各打抜ポンチ26Dおよび26Eは、図16の(a)に示すように、ポンチプレート25に上下動可能に挿入されたものであり、各打抜ポンチ26Dは横断面が矢印A方向に幅狭な長方形状に設定され、各打抜ポンチ26Eは横断面が第3の打抜部19と同一な三角形状に設定されている。
【0054】
ポンチプレート25には、各ポンチ26Dおよび26Eに対応してカム27Dおよび27Eが矢印A方向,反矢印A方向へスライド可能に収納されている。これら各カム27Dおよび27Eはカム27A〜27Dと同一形状をなすものであり、各組のカム27Dおよび27Eは、図17に示すように、エアーシリンダ31dおよび31eのロッドに連結され、ロッドと共にスライドする。
【0055】
シリンダ31dおよび31eの配管経路にはソレノイドバルブ36dおよび36eが介在されている。これらバルブ36dおよび36eはバルブ駆動回路37dおよび37eを介して制御装置35に電気的に接続されており、制御装置35は、バルブ駆動回路37dおよび37eを通してバルブ36dおよび36eの状態を切換えることに基づいてカム27Dおよび27Eをスライドさせ、ポンチ26Dおよび26Eを無効状態,有効状態に切換える。
【0056】
次にプレス装置20の動作について説明する。制御装置35は、図16の(a)および(b)に示すように、一対の打抜ポンチ26Aを有効化し、一対のポンチ26B〜26Eを無効化した後、図16の(c)〜(f)に示すように、帯状鋼板10を設定ピッチで4回搬送する。すると、一対の打抜ポンチ26Aによって帯状鋼板10に一対の打抜部11が4組形成され、一対の打抜ポンチ32によって1対の菱形孔10aが2組形成され、一対の打抜ポンチ33および34によって一対の切欠部10bおよび一対の孔10cが1組ずつ形成される。
【0057】
制御装置35は、上述の動作を終えると、図18の(a)および(b)に示すように、一対の切断ポンチ26Cを有効化する。そして、帯状鋼板10を設定ピッチで搬送し、一対の切断ポンチ26Cによって切断する。このとき、一対の打抜ポンチ26A,一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34によって帯状鋼板10に新たな一対の打抜部11,一対の菱形孔10a,一対の切欠部10b,一対の孔10cが1組ずつ形成される。
【0058】
制御装置35は、上述の動作を終えると、図19の(a)および(b)に示すように、一対の切断ポンチ26Cを無効化し、図19の(c)〜(d)に示すように、帯状鋼板10を設定ピッチで5回搬送する。この後、一対の切断ポンチ26Cを有効化し、帯状鋼板10を設定ピッチで搬送する。そして、図19の(e)に示すように、帯状鋼板10を一対の切断ポンチ26Cによって切断し、5個の打抜部11,直線状の切断面13,傾斜面状の切断面14を有する第1の積層板8を形成する。
【0059】
制御装置35は、図20の(a)および(b)に示すように、一対の打抜ポンチ26Bを有効化し、一対の打抜ポンチ26A,一対の切断ポンチ26C,一対の打抜ポンチ26D,一対の打抜ポンチ26Eを無効化した後、帯状鋼板10を設定ピッチで3回搬送する。すると、図20の(c)〜(e)に示すように、帯状鋼板10に一対の打抜ポンチ26Bによって一対の打抜部12が3組形成され、一対の打抜ポンチ32によって一対の菱形孔10aが2組形成される。これと共に、一対の打抜ポンチ33および一対の打抜ポンチ34によって一対の切欠部10bおよび一対の孔10cが1組ずつ形成される。
【0060】
制御装置35は、上述の動作を終えると、図21の(a)および(b)に示すように、一対の切断ポンチ26Cを有効化する。そして、帯状鋼板10を設定ピッチで搬送し、一対の切断ポンチ26Cによって切断する。このとき、一対の打抜ポンチ26B,一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34によって帯状鋼板10に新たな一対の打抜部12,1対の菱形孔10a,一対の切欠部10b,一対の孔10cが1組ずつ形成される。
【0061】
制御装置35は、上述の動作を終えると、図22の(a)および(b)に示すように、一対の切断ポンチ26Cを無効化し、図22の(c)〜(d)に示すように、帯状鋼板10を設定ピッチで5回搬送する。この後、一対の切断ポンチ26Cを有効化し、帯状鋼板10を設定ピッチで搬送する。そして、図22の(e)に示すように、帯状鋼板10を一対の切断ポンチ26Cによって切断し、5個の打抜部12,直線状の切断面13,傾斜面状の切断面15を有する第2の積層板9を形成する。
【0062】
制御装置35は、図23の(a)および(b)に示すように、一対の打抜ポンチ26Eを有効化し、一対の打抜ポンチ26A,一対の打抜ポンチ26B,一対の切断ポンチ26C,一対の打抜ポンチ26Dを無効化した後、図23の(c)〜(d)に示すように、帯状鋼板10を設定ピッチで2回搬送する。すると、帯状鋼板10に一対の打抜ポンチ26Eおよび32によって一対の打抜部19および菱形孔10aが2組ずつ形成され、一対の打抜ポンチ33および34によって一対の切欠部10bおよび一対の孔10cが1組ずつ形成される。
【0063】
制御装置35は、上述の動作を終えると、図24の(a)および(b)に示すように、一対の切断ポンチ26Cを有効化する。そして、帯状鋼板10を設定ピッチで搬送し、一対の切断ポンチ26Cによって切断する。このとき、一対の打抜ポンチ26E,一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34によって帯状鋼板10に新たな一対の打抜部19,1対の菱形孔10a,一対の切欠部10b,一対の孔10cが1組ずつ形成される。
【0064】
制御装置35は、上述の動作を終えると、図25の(a)および(b)に示すように、一対の切断ポンチ26Cを無効化し、図25の(c)〜(d)に示すように、帯状鋼板10を設定ピッチで5回搬送する。この後、一対の切断ポンチ26Cを有効化し、帯状鋼板10を設定ピッチで搬送する。そして、図25の(e)に示すように、帯状鋼板10を一対の切断ポンチ26Cによって切断し、5個の打抜部19,直線状の切断面13,傾斜面状の切断面14および15を有する積層板39を形成する。
【0065】
制御装置35は、図26の(a)および(b)に示すように、一対の打抜ポンチ26Dを有効化し、一対の打抜ポンチ26A,一対の打抜ポンチ26B,一対の切断ポンチ26C,一対の打抜ポンチ26Eを無効化した後、帯状鋼板10を設定ピッチで5回搬送する。すると、図26の(c)〜(g)に示すように、一対の打抜ポンチ26Dによって帯状鋼板10に一対の打抜部40が5組形成され、一対の打抜ポンチ32によって一対の菱形孔10aが2組形成され、一対の打抜ポンチ33および34によって一対の切欠部10bおよび一対の孔10cが1組ずつ形成される。尚、図26の(h)は打抜部40を拡大して示している。
【0066】
制御装置35は、上述の動作を終えると、図27の(a)および(b)に示すように、一対の切断ポンチ26Cを有効化する。そして、帯状鋼板10を設定ピッチで搬送し、一対の切断ポンチ26Cによって切断する。このとき、一対の打抜ポンチ26D,一対の打抜ポンチ32,一対の打抜ポンチ33,一対の打抜ポンチ34によって帯状鋼板10に新たな一対の打抜部40,1対の菱形孔10a,一対の切欠部10b,一対の孔10cが1組ずつ形成される。
【0067】
制御装置35は、上述の動作を終えると、図28の(a)および(b)に示すように、一対の切断ポンチ26Cを無効化し、図28の(c)〜(d)に示すように、帯状鋼板10を設定ピッチで5回搬送する。この後、一対の切断ポンチ26Cを有効化し、帯状鋼板10を設定ピッチで搬送する。そして、図28の(e)に示すように、帯状鋼板10を一対の切断ポンチ26Cによって切断し、5個の打抜部40,直線状の切断面13を有する積層板41を形成する。
【0068】
上述の手順で第1の積層板8および第2の積層板9を打抜いたら、第1の積層板8および第2の積層板9を交互に積層し、図13のヘリカル鉄心1を形成する。次に、ヘリカル鉄心1を繋ぎ桟2から折曲げることに基づいて各櫛歯部16を周方向に隣接する櫛歯部16に噛合させた後、ヘリカル鉄心1をレーザー溶接部18aでレーザー溶接し、ステータコア18を形成する。
【0069】
上記実施例によれば、第1の打抜ポンチ26Aを有効化して第1の積層板8を打抜き、第2の打抜ポンチ26Bを有効化して第2の積層板9を打抜いた。このため、第1の積層板8を形成するプレス機および第2の積層板9を形成するプレス機を個別に用いる必要がなくなるので、装置が小形化される。
【0070】
尚、上記第2実施例においては、積層板8と積層板9とを交互に重ねたが、これに限定されるものではなく、例えば積層板39と積層板41とを交互に重ねても良い。この場合、積層板39が第1の積層板に相当し、積層板41が第2の積層板に相当する。また、第1の積層板39を打抜く打抜ポンチ26Eが第1のポンチに相当し、第2の積層板41を打抜く打抜ポンチ26Dが第2のポンチに相当する。
【0071】
また、上記第2実施例においては、ポンチプレート25に4種類の打抜ポンチ26A,26B,26D,26Eを装着したが、これに限定されるものではなく、例えば打抜ポンチ26Aおよび26Bを装着したり、打抜ポンチ26Cおよび26Dを装着しても良い。
【0072】
また、上記第1および第2実施例においては、各切断ポンチ26Cを断面長方形状に形成したが、これに限定されるものではなく、例えば、磁極ティース4に平行な中心線CLに対して傾斜する断面略二等辺三角形状に形成しても良い。図29は、断面略二等辺三角形状の切断ポンチ26Cを用いて第1の積層板8および第2の積層板9を切断した後、第1の積層板8および第2の積層板9を交互に積層したヘリカル鉄心1を示すものである(本発明の第3実施例を示すものである)。
【0073】
図30は、図29のヘリカル鉄心1を環状化してなるステータコア18を示すものであり、単位コア1Aの一方の櫛歯部16および単位コア1Fの一方の櫛歯部16間は、内周側から外周側へ向かうに従って周方向のラップ量が増大するように噛合し、残りの櫛歯部16間とはラップ量の増大方向が反転している。
【0074】
上記構成の場合、単位コア1Aの一方の櫛歯部16および単位コア1Fの一方の櫛歯部16間の外周部にレーザー溶接が施されている。このため、レーザー溶接範囲が拡がるので、ヘリカル鉄心1の溶接強度が高まる。しかも、ヘリカル鉄心1を環状化する際に繋ぎ桟2が延びた場合でも、単位コア1Aの一方の櫛歯部16および単位コア1Fの一方の櫛歯部16間のラップ量を調節することに基づいてヘリカル鉄心1を真円に丸めることができる。
【0075】
また、上記第1ないし第3実施例においては、第1の積層板8と第2の積層板9とを1枚ずつ交互に重ねたが、これに限定されるものではなく、例えば、本発明の第4実施例を示す図31のように、複数枚(例えば2枚)ずつ交互に重ねても良い。
【0076】
次に本発明の第5実施例を図32に基づいて説明する。第2実施例のプレス装置20を用いて第2の積層板9を2列に形成した後、図32に二点鎖線で示すように、上列の積層板9の向きを180°変更する。そして、上列の積層板9を第1の積層板8と同一の輪郭形状にして下列の積層板9に重ね、図13に示すヘリカル鉄心1を形成する。次に、ヘリカル鉄心1を円環状に丸めることに基づいて各櫛歯部16を周方向に隣接する櫛歯部16に噛合させた後、レーザー溶接部18aにレーザー溶接を施し、ヘリカル鉄心1の両端部を結合する。
【0077】
上記実施例によれば、積層板9の向きを反転して積層板9に重ねることに基づいてヘリカル鉄心1を形成した。このため、2種類のプレス機を用いて2種類の積層板を打抜くことなく櫛歯部16を有するヘリカル鉄心1が形成されるので、装置が小形化される。
【0078】
また、上記第5実施例においては、上列の積層板9の向きを反転して下列の積層板9に重ねたが、これに限定されるものではなく、例えば下列の積層板9の向きを反転して上列の積層板9に重ねても良い。
また、上記第5実施例においては、第2の積層板9の向きを反転して第2の積層板9に重ねたが、これに限定されるものではなく、例えば上列あるいは下列の第1の積層板8の向きを反転して下列あるいは上列の第1の積層板8に重ねても良い。
また、上記第5実施例においては、積層板9を2列に打抜いたが、これに限定されるものではなく、例えば4列以上の偶数列に打抜いても良い。
【0079】
また、上記第5実施例においては、積層板9の向きを180°変更したが、これに限定されるものではなく、例えば下列の積層板9を裏返し、図32に二点鎖線で示すように、第1の積層板8と同一の輪郭形状にした後に下列の積層板9に重ねても良い。この場合でも、2種類のプレス機を用いて2種類の積層板を打抜くことなく櫛歯部16を有するヘリカル鉄心1が形成されるので、装置が小形化される(本発明の第6実施例)。
【0080】
また、上記第6実施例においては、下列の積層板9を裏返して下列の積層板9に重ねたが、これに限定されるものではなく、例えば、上列の積層板9を裏返して上列の積層板9に重ねても良い。
また、上記第6実施例においては、積層板9を2列に打抜いたが、これに限定されるものではなく、例えば1列に打抜いても良い。
また、上記第6実施例においては、第2の積層板9を裏返して第2の積層板9に重ねたが、これに限定されるものではなく、例えば第1の積層板8を裏返して第1の積層板8に重ねても良い。
【0081】
また、上記第5および第6実施例においては、積層板9の向きを反転して積層板9に重ねたり、積層板9を裏返して積層板9に重ねることに基づいて図13のヘリカル鉄心1を形成したが、これに限定されるものではなく、例えば、複数の積層板9の向きを反転して複数の積層板9に重ねたり、複数の積層板9を裏返して複数の積層板9に重ねることに基づいて図31のヘリカル鉄心1を形成しても良い。
【0082】
【発明の効果】
以上の説明から明らかなように、本発明のステータコアの製造方法は次の効果を奏する。
請求項1記載の手段によれば、輪郭形状が異なる第1の積層板および第2の積層板を順送りして打抜いた。このため、第1の積層板を形成するプレス機および第2の積層板を形成するプレス機を個別に用いる必要がなくなるので、装置が小形化される。しかも、第1のポンチによって打抜いた部分を第2のポンチによって打抜くことに基づいて両ポンチとは異形状の打抜部を形成したので、ポンチの数が少なくて済む。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す図(aはプレス装置を概略的に示す図,bはポンチのレイアウトを示す平面図,c〜fは帯状鋼板が打抜かれる様子を示す図)
【図2】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)は帯状鋼板が切断される様子を示す図
【図3】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(d)は帯状鋼板が打抜かれる様子を示す図
【図4】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(e)は帯状鋼板が打抜かれる様子を示す図
【図5】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)は帯状鋼板が切断される様子を示す図
【図6】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(d)は帯状鋼板が打抜かれる様子を示す図
【図7】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(e)は帯状鋼板が打抜かれる様子を示す図
【図8】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)は帯状鋼板が切断される様子を示す図、(d)はX部を拡大して示す図
【図9】(a)〜(c)はソレノイドバルブ駆動信号の状態を示す図、(d)はマイクロスイッチからの出力信号を示す図
【図10】(a)はプレス装置の要部を拡大して示す断面図、(b)はX−X線に沿ってカムを示す図
【図11】プレス装置の構成を概略的に示すブロック図
【図12】(a)は第1の積層板および第2の積層板を示す平面図、(b)はX1 部を拡大して示す図、(c)はX2 部を拡大して示す図、(d)はX3 部を拡大して示す図、(e)はX4 部を拡大して示す図
【図13】(a)はヘリカル鉄心を示す平面図、(b)はX−X線に沿う断面図
【図14】(a)はボビンにコイルが巻装される様子を示す平面図、(b)はボビンをコイルの巻装状態で示す断面図
【図15】ヘリカル鉄心を環状化した状態で示す平面図
【図16】本発明の第2実施例を示す図(aはプレス装置を概略的に示す図、bはポンチのレイアウトを示す平面図、c〜fは帯状鋼板が打抜かれる様子を示す図)
【図17】プレス装置の構成を概略的に示すブロック図
【図18】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)は帯状鋼板が切断される様子を示す図
【図19】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(d)は帯状鋼板が打抜かれる様子を示す図、(e)は帯状鋼板が切断される様子を示す図
【図20】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(e)は帯状鋼板が打抜かれる様子を示す図
【図21】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)は帯状鋼板が切断される様子を示す図
【図22】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(d)は帯状鋼板が打抜かれる様子を示す図、(e)は帯状鋼板が切断される様子を示す図
【図23】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(d)は帯状鋼板が打抜かれる様子を示す図
【図24】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)は帯状鋼板が切断される様子を示す図
【図25】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(d)は帯状鋼板が打抜かれる様子を示す図、(e)は帯状鋼板が切断される様子を示す図
【図26】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(g)は帯状鋼板が打抜かれる様子を示す図、(h)は打抜部を拡大して示す図
【図27】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)は帯状鋼板が切断される様子を示す図
【図28】(a)はプレス装置を概略的に示す図、(b)はポンチのレイアウトを示す平面図、(c)〜(d)は帯状鋼板が打抜かれる様子を示す図、(e)は帯状鋼板が切断される様子を示す図
【図29】本発明の第3実施例を示す図(ヘリカル鉄心を示す平面図)
【図30】ヘリカル鉄心を環状化した状態で示す平面図
【図31】本発明の第4実施例を示す図(積層板の積層状態を示す図13のb相当図)
【図32】本発明の第5実施例を示す図(積層板の打抜き状態を示す平面図)
【符号の説明】
1はヘリカル鉄心(帯状コア)、8は第1の積層板、9は第2の積層板、11は第1の打抜部、12は第2の打抜部、16は櫛歯部、18はステータコア、19は打抜部、26Aは第1の打抜ポンチ(第1のポンチ)、26Bは第2の打抜ポンチ(第2のポンチ)、26Dは打抜ポンチ(第2のポンチ)、26Eは打抜ポンチ(第1のポンチ)、39は第1の積層板、41は第2の積層板を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a stator core in which a belt-shaped core is formed into an annular shape to form a stator core.
[0002]
[Problems to be solved by the invention]
In a rotating electrical machine, a belt-shaped core in a form in which a plurality of unit cores are connected and connected by a crosspiece, and the belt-shaped core is formed into an annular shape to form a stator core. In this case, it is conceivable to improve the magnetic characteristics of the stator core by forming comb teeth at both ends of each unit core in the circumferential direction and engaging each comb tooth with the adjacent comb teeth in the circumferential direction. ing. In manufacturing this strip-shaped core, it is conceivable to separately punch out laminates having different shapes from the two strips and to laminate two types of laminates. However, since a dedicated press machine for punching a laminated plate from two strips is required, the apparatus is increased in size.
[0003]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a stator core capable of forming a strip-shaped core with a small apparatus.
[0004]
[Means for Solving the Problems]
  The method for manufacturing a stator core according to claim 1 comprises:A first laminated plate having a plurality of first punched portions forming a triangular space and a plurality of second punched portions having the same triangular space as the first punched portions and having different inclination angles. HaveA step of sequentially feeding and punching the second laminate, and the first laminate and the second laminateAxiallyLayeredBased on arranging the first punched portion and the second punched portion in the axial directionA step of forming a band-shaped core having a plurality of comb-tooth portions, and a step of meshing the comb-tooth portions with a comb-tooth portion adjacent in the circumferential direction based on the annular shape of the band-shaped core,Using a second punch for forming the second punched portion after punching the first punched portion using the first punch for forming the first punched portion Then, based on the punching of the portion adjacent to the first punching portion, a fan-shaped spatial shape combining the first punching portion and the second punching portion.It is characterized in that the punched portion is formed.
[0005]
According to the above means, since the first laminated plate and the second laminated plate having different contour shapes are sequentially fed and punched, the press machine for forming the first laminated plate and the second laminated plate are formed. There is no need to use separate presses, and the apparatus is downsized. In addition, since the punched portion having a shape different from that of both punches is formed on the basis of punching the portion punched by the first punch with the second punch, the number of punches can be reduced.
[0006]
  The method for manufacturing a stator core according to claim 2 comprises:One separation surface of the first laminate and the second laminate based on separating the first laminate and the second laminate from the punched portion using a cutting punch A cut surface by the cutting punch is partially formed on one separation surface of the plate, and the first laminated plate and the second laminated plate are opposite to the punched portion using the cutting punch. In the step of forming the strip-shaped core by forming the other separation surface of the first laminated plate and the other separation surface of the second laminated plate from the cut surface by the cutting punch based on A non-comb-like portion composed of a partial cut surface of the first laminated plate and a partial cut surface of the second laminated plate is formed at the comb-tooth portions at both ends, and the belt-like core is circularized Laser welding in the form of notches extending in the axial direction between the non-comb-like portions at both ends in the process Part is formed, the strip core is held in the annular based on applying laser welding to the laser welding unitHowever, it has the characteristics.
  According to the above means, since laser welding is performed on the laser welded portion, the welding allowance is increased and the welding strength of the stator core is increased.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. First, in FIG. 13A, the helical core 1 is composed of unit cores 1A to 1F and a plurality of connecting bars 2 that connect the unit cores 1A to 1F (provided that the unit core 1A and The unit cores 1A to 1F are composed of an arc-shaped unit yoke 3 and a substantially T-shaped magnetic pole tooth 4. The helical iron core 1 corresponds to a strip-shaped core.
[0011]
As shown in FIG. 14B, a synthetic resin bobbin 5 is attached to each magnetic pole tooth 4. Each of these bobbins 5 has a rectangular tubular body 5a, a frame-like flange 5b located at one end of the trunk 5a, and a frame-like flange 5c located at the other end of the trunk 5a. The pin terminal 6a is attached to the axial end face of the flange portion 5b of each bobbin 5 so as to be located at the center portion in the circumferential direction and to the corner portion in the circumferential direction.
[0012]
As shown in FIG. 14A, a coil 7 is wound around the body 5 a of each bobbin 5. Each of these coils 7 has its winding start end wound around the central pin terminal 6a, and then, as indicated by the arrows, the winding direction is changed from the outer peripheral side to the inner peripheral side and from the inner peripheral side to the outer peripheral side for each layer. It is wound in a substantially staircase shape while being reversed, and the winding terminal portion of each coil 7 is wound around the pin terminal 6b.
[0013]
Reference numerals 1 to n in (b) of FIG. 14 indicate the winding order of the magnet wire, and the number of turns of the odd layer (= k layer) and the number of turns of the even layer (= k + 1 layer) of the magnet wire are as follows. It is set based on the equations (1) and (2).
Number of turns of odd layer = N−α (k−1) / 2 (1)
Number of turns of even layer = N−α (k−1) / 2-1 (2)
However, k is a positive odd number, N is the number of turns of the first layer (N = 10 in FIG. 2), and α is a natural number of 2 or more (α = 2 in FIG. 2).
[0014]
As shown in FIG. 13B, the helical iron core 1 is mechanically connected by laminating every other first laminated plate 8 and second laminated plate 9 in the axial direction (for example, by caulking, The first laminated plate 8 and the second laminated plate 9 are alternately struck along the longitudinal direction of the strip steel plate 10 as shown in FIG. 12 (a). It is cut out and punched in two rows along the short direction.
[0015]
Five first punched portions 11 are formed at an equal pitch on the first laminated plate 8, and five second punched portions 12 are formed at an equal pitch on the second laminated plate 9. Yes. Each of the punched portions 11 and 12 has the same triangular shape, and each punched portion 11 has one line with respect to a center line CL parallel to the magnetic pole teeth 4 as shown in FIG. The punching portions 12 are inclined by θ ° in the direction different from the punching portions 11 with respect to the center line CL, as shown in FIG.
[0016]
As shown in (a) of FIG. 12, a cut surface 13 is formed at the end of the first laminate 8 in the direction of arrow A and the end of the second laminate 9 in the direction of the arrow A. The cut surface 13 forms a straight line parallel to the magnetic pole teeth 4 as shown in FIG. Moreover, as shown to (a) of FIG. 12, the cut surface 14 is formed in the counter arrow A direction edge part of the 1st laminated board 8, and each cut surface 14 is shown in (e) of FIG. As shown in FIG. 4, the straight line is inclined by θ ° in one direction with respect to the center line CL.
[0017]
As shown in FIG. 12A, a cut surface 15 is formed at the end of the second laminated plate 9 in the direction of arrow A, and each cut surface 15 is formed as shown in FIG. Furthermore, it forms a straight line that is inclined by θ ° in a direction different from the cut surface 14 with respect to the center line CL. A cut surface 13 is formed on each of the cut surfaces 14 and 15. Each of the cut surfaces 13 has a linear shape parallel to the magnetic pole teeth 4, similar to the cut surface 13 described above.
[0018]
As shown in FIG. 13A, comb teeth 16 are formed at both ends of the unit cores 1 </ b> A to 1 </ b> F, and when the helical iron core 1 is bent in an annular shape around each connecting beam 2, As shown in FIG. 13B, each comb tooth portion 16 meshes with the comb tooth portion 16 adjacent in the circumferential direction from the axial direction and overlaps in the circumferential direction.
[0019]
FIG. 15 shows a stator core 18 in which the helical iron core 1 is bent into an annular shape, and the stator core 18 is formed with a notched laser welded portion 18a that opens to the outer peripheral side. The laser welded portion 18a is laser welded along the axial direction, and the helical iron core 1 is held in an annular shape by laser welding applied to the laser welded portion 18a.
[0020]
Next, a progressive feed crank press device 20 for punching the first laminated plate 8 and the second laminated plate 9 from the belt-shaped steel plate 10 will be described. First, in FIG. 10A, the upper mold holder 21 is connected to a press motor 22 (see FIG. 11) via a crank mechanism (not shown), and when the press motor 22 operates, The holder 21 repeatedly moves between the top dead center and the bottom dead center.
[0021]
A table 23 is disposed below the upper mold holder 21. The strip steel plate 10 is set on the upper surface of the table 23, and when the transport mechanism 23 a (see FIG. 11) operates, the strip steel plate 10 is transported along the upper surface of the table 23 in the direction of arrow A. The transport mechanism 23a is driven by a transport motor 23b (see FIG. 11).
[0022]
A backing plate 24 is attached to the lower surface of the upper holder 21 as shown in FIG. A punch plate 25 is attached to the lower surface of the backing plate 24. As shown in FIG. 1B, the punch plate 25 has a pair of first punching punches 26A, A pair of second punching punches 26B and a pair of cutting punches 26C are mounted. The first punching punch 26A and the second punching punch 26B correspond to the first punch and the second punch.
[0023]
As shown in FIG. 10A, each punch 26A to 26C is inserted into the through hole 25a of the punch plate 25 so as to be movable up and down. Each punch 26A is formed as shown in FIG. As shown in FIG. 2, the first laminated plate 8 has a triangular shape with the same inclination angle as the punched portion 11. Each punch 26B has a triangular shape with the same inclination angle as the punched portion 12 of the second laminated plate 9, and each cutting punch 26C has a narrow rectangular shape in the arrow A direction.
[0024]
As shown in FIG. 10A, a space 25b is formed in the punch plate 25. In the space 25b, as shown in FIG. 1A, the punches 26A to 26C are provided. Correspondingly, cams 27A to 27C are accommodated. Each of the cams 27A to 27C has a thin portion 27a and a thick portion 27b as shown in FIG. 10A, and each of the cams 27A to 27C has a shape as shown in FIG. In addition, a through hole 27c is formed so as to straddle the thin portion 27a and the thick portion 27b.
[0025]
As shown in FIG. 10A, the upper mold holder 21 is formed with through screw holes 21a corresponding to the through holes 27c of the cams 27A to 27C. The upper end portion of the pin 28 is inserted so as to be movable up and down. The backing plate 24 has through holes 24a corresponding to the pins 28. The lower ends of the pins 28 are inserted into the through holes 27c of the cams 27A to 27C through the through holes 24a. Yes.
[0026]
A set screw 29 is screwed into each screw hole 21 a of the upper holder 21, and a compression coil spring 30 is interposed between each set screw 29 and the pin 28. Each of these springs 30 biases the pin 28 downward, and the heads of the punches 26 </ b> A to 26 </ b> C are pressed downward by the lower end of the pin 28.
[0027]
As shown in FIG. 11, each set of cams 27 </ b> A to 27 </ b> C is connected to rods of air cylinders 31 a to 31 c. These cylinders 31a to 31c slide cams 27A to 27C in the directions of arrow A and counter arrow A in FIG. 1 (a). ), When the thin portions 27a of the cams 27A to 27C face the heads of the punches 26A to 26C, a gap is formed between them, and the two-dot chain line in FIG. In this way, when the thick portions 27b of the cams 27A to 27C are opposed to the heads of the punches 26A to 26C, both are substantially in contact with each other.
[0028]
When the punch plate 25 is lowered in a state where the heads of the punches 26A to 26C and the thin portions 27a of the cams 27A to 27C face each other, the springs 30 are moved when the punches 26A to 26C come into contact with the strip steel plate 10. The punches 26A to 26C are raised. For this reason, the press operation by the punches 26A to 26C is not executed (invalid state of the punches 26A to 26C).
[0029]
When the punch plate 25 is lowered in a state where the heads of the punches 26A to 26C and the thick portions 27b of the cams 27A to 27C face each other, the punches 26A to 26C can rise even if they contact the strip steel plate 10. First, the punch plate 25 is moved down to the bottom dead center integrally. For this reason, the pressing operation of the strip steel plate 10 by the punches 26A to 26C is executed (effective state of the punches 26A to 26C).
[0030]
As shown in FIG. 1B, a pair of punching punches 32, a pair of punching punches 33, and a pair of punching punches 34 are fixed to the punch plate 25 in the order from the opposite arrow A direction. When the plate 25 is lowered, the pair of punching punches 32 to 34 are lowered integrally with the punch plate 25 to the bottom dead center, and the strip plate steel plate 10 is pressed by the pair of punching punches 32 to 34.
[0031]
As shown in FIG. 11, the press motor 22 and the conveyance motor 23b are electrically connected to the control device 35 via motor drive circuits 22a and 23c. The control device 35 is configured mainly with a microcomputer, and the control device 35 intermittently conveys the strip steel plate 10 based on driving control of the conveyance motor 23b through the motor drive circuit 23c, thereby driving the motor. The upper mold holder 21 is continuously moved between the top dead center and the bottom dead center based on the drive control of the press motor 22 through the circuit 22a.
[0032]
Solenoid valves 36a to 36c are interposed in the piping paths of the cylinders 31a to 31c. These valves 36a to 36c are connected to a control device 35 via valve drive circuits 37a to 37c, and the control device 35 controls the drive of the valves 36a to 36c through the valve drive circuits 37a to 37c. -27C is slid to change the state of the punches 26A-26C.
[0033]
The micro switch 38 is turned on when the punch plate 25 reaches bottom dead center, and the control device 35 counts up the punch counter “Np” based on the ON signal from the switch 38, The control timing of the valves 36a to 36c is obtained based on the value of the counter “Np”.
[0034]
Next, the operation content of the press apparatus 20 will be described. In addition, the following operation | movement is performed based on drive control of the press motor 22, the conveyance motor 23b, and the valves 36a-36c based on the control program memorize | stored in ROM.
[0035]
As shown in FIG. 1A, the control device 35 controls the drive of the valve 36a so that the thick portion 27b of each cam 27A is opposed to the punching punch 26A and makes each punching punch 26A effective. Turn into. At the same time, the thin portions 27a of the cams 27B and the thin portions 27a of the cams 27C are opposed to the punching punch 26B and the cutting punch 26C based on the drive control of the valves 36b and 36c. The cutting punch 26C is invalidated. In FIG. 1B, the punches 26A and 32-34 in the valid state are indicated by solid lines, and the punches 26B and 26C in the invalid state are indicated by two-dot chain lines.
[0036]
After finishing the above-mentioned operation, the control device 35 conveys the belt-shaped steel plate 10 four times in the direction of arrow A at a set pitch while continuously moving the punch plate 25 up and down. Then, as shown in FIGS. 1C to 1F, the punching operation of the strip steel plate 10 by the pair of punching punches 26A is executed four times, and four pairs of punching portions 11 are formed on the strip steel plate 10. Is done.
[0037]
At this time, as shown in (e) to (f) of FIG. 1, the punching operation of the strip steel plate 10 by the pair of punching punches 32 is executed twice, and two pairs of rhombic holes 10 a are formed in the strip steel plate 10. Is done. At the same time, as shown in FIG. 1 (f), the punching operation of the strip steel plate 10 by the pair of punching punches 33 and the pair of punching punches 34 is performed once, and the strip steel plate 10 is paired with the pair of notches 10 b. One pair of holes 10c is formed. Reference numeral 10d denotes a pilot hole.
[0038]
When the above-described operation is finished, the control device 35 switches the state of the valve 36c. And as shown to (a) of FIG. 2, after making the thick part 27b of each cam 27C oppose the cutting punch 26C and enabling each cutting punch 26C, the strip | belt-shaped steel plate 10 is conveyed only a set pitch. Then, as shown in FIG. 2C, the strip steel plate 10 is cut into a straight line by the pair of cutting punches 26C, and a pair of cut surfaces 13 is formed. At this time, a pair of punching punches 26A, a pair of punching punches 32, a pair of punching punches 33, and a pair of punching punches 34, a new pair of punching portions 11, a pair of diamond-shaped holes 10a, and a pair of notch portions. 10b and a pair of holes 10c are formed.
[0039]
When the above-described operation is finished, the control device 35 switches the state of the valve 36c. And as shown to (a) of FIG. 3, the thin part 27a of each cam 27C is made to oppose the cutting punch 26C, and each cutting punch 26C is invalidated. Thereafter, the belt-shaped steel plate 10 is conveyed twice at a set pitch, and as shown in FIGS. 3C and 3D, a new pair of punched portions 11, a pair of diamond-shaped holes 10a, a pair of strip-shaped steel plates 10 are provided. Two sets of notches 10b and a pair of holes 10c are formed.
[0040]
The control device 35 switches the state of the valves 36a and 36b after completing the above-described operation. And as shown to (a) of FIG. 4, the thin part 27a of each cam 27A is made to oppose the punching punch 26A, and each punching punch 26A is invalidated. At the same time, the thick portion 27b of each cam 27B is opposed to the punching punch 26B, and each punching punch 26B is validated.
[0041]
When the state of the punching punches 26A and 26B is switched, the control device 35 conveys the belt-shaped steel sheet 10 in the arrow A direction by a set pitch. Then, as shown in FIG. 4 (c), the portion punched by the pair of punching punches 26A in FIG. 3 (d) is punched by the pair of punching punches 26B, and the first punching portion 11 and A third punching portion 19 having a shape different from that of the second punching portion 12 is formed.
[0042]
When the above-described operation is finished, the control device 35 conveys the strip steel plate 10 twice at a set pitch as shown in FIGS. 4D and 4E, and the pair of punching punches 26B causes the strip steel plate 10 to be transported. Two pairs of second punching portions 12 are formed. At this time, the strip steel plate 10 is punched by the pair of punching punches 32, the pair of punching punches 33, and the pair of punching punches 34, and a new pair of rhombus holes 10a, a pair of notch portions 10b, and a pair of holes 10c are formed. Two sets are formed.
[0043]
When the above-described operation is finished, the control device 35 switches the state of the valve 36c. And as shown to (a) of FIG. 5, after making the thick part 27b of each cam 27C oppose the cutting punch 26C and enabling each cutting punch 26C, the strip | belt-shaped steel plate 10 is conveyed with a set pitch. Then, as shown in FIG. 5 (c), the strip steel plate 10 is cut from the third punched portion 19 by the pair of cutting punches 26C, and the five punched portions 11, the linear cut surface 13, and the inclination are cut. A first laminated plate 8 having a planar cut surface 14 is formed. At this time, a pair of punching punches 26B, a pair of punching punches 32, a pair of punching punches 33, a pair of punching punches 34, a new pair of punching portions 12, a pair of diamond-shaped holes 10a, A pair of notches 10b and a pair of holes 10c are formed.
[0044]
When the above-described operation is finished, the control device 35 switches the state of the valve 36c. And as shown to (a) of FIG. 6, after making the thin part 27a of each cam 27C oppose the cutting punch 26C and invalidating each cutting punch 26C, the strip | belt-shaped steel plate 10 is conveyed twice with a set pitch. Then, as shown in FIGS. 6C and 6D, two pairs of new punched portions 12, a pair of diamond-shaped holes 10 a, a pair of notched portions 10 b, and a pair of holes 10 c are formed on the belt-shaped steel plate 10. It is formed.
[0045]
The control device 35 switches the state of the valves 36a and 36b after completing the above-described operation. And as shown to (a) of FIG. 7, the thick part 27b of each cam 27A is made to oppose the punching punch 26A, and each punching punch 26A is validated. At the same time, the thin portion 27a of each cam 27B is opposed to the punching punch 26B, and each punching punch 26B is invalidated.
[0046]
When the state of the punching punches 26A and 26B is switched, the control device 35 conveys the strip steel plate 10 three times at a set pitch. Then, as shown in (c) to (e) of FIG. 7, three pairs of a new pair of punched portions 11, a pair of diamond-shaped holes 10 a, a pair of notched portions 10 b, and a pair of holes 10 c are formed on the belt-shaped steel plate 10. It is formed.
[0047]
When the above-described operation is finished, the control device 35 switches the state of the valve 36c. And as shown to (a) of FIG. 8, after making the thick part 27b of each cam 27C oppose the cutting punch 26C and enabling each cutting punch 26C, the strip | belt-shaped steel plate 10 is conveyed with a set pitch. Then, as shown in FIGS. 8C and 8D, the strip steel plate 10 is cut by the cutting punches 26C, and the five punched portions 12, the linear cut surface 13, and the inclined cut surface are cut. A second laminate 9 having 15 is formed.
[0048]
FIG. 9D shows an ON signal from the switch 38, and the control device 35 increments the value of the counter “Np” by 1 each time the ON signal is output from the switch 38. 9A to 9C show states of drive signals given from the control device 35 to the valves 36a to 36c. The control device 35 determines the valves 36a to 36c based on the value of the counter “Np”. Is driven, and the states of the punches 26A to 26C are switched at the timing described above.
[0049]
According to the said Example, the 1st laminated board 8 and the 2nd laminated board 9 from which an outline shape differs were sent forward and punched. For this reason, it is not necessary to separately use the press machine for forming the first laminated plate 8 and the press machine for forming the second laminated plate 9, so that the apparatus is miniaturized. Moreover, the punched portion 19 having a shape different from that of the punches 26A and 26B is formed on the basis of punching the portion punched by the first punching punch 26A with the second punching punch 26B. The number is small. For this reason, since the length dimension of the punch plate 25 in the arrow A direction is reduced, the apparatus is further miniaturized.
[0050]
Further, since the first laminated plate 8 and the second laminated plate 9 are cut using the cutting punch 26C having a rectangular cross section, first, when both are cut using a sharp cutting punch with a sharp point In comparison with this, “burrs” are less likely to occur at the cut ends of both. For this reason, when the helical iron core 1 is annularized, there is less possibility of “burrs” coming into contact with each other, and the roundness of the stator core 18 is increased.
[0051]
Second, when the comb teeth 16 at the end of the unit core 1A in the direction of arrow A and the comb teeth 16 at the end of the unit core 1F in the direction of the arrow A (see FIG. 13a) are engaged, FIG. As shown in FIG. 2, the notch-shaped laser welded portion 18a is formed in both the comb teeth portions 16. For this reason, if laser welding is performed on the laser welded portion 18a along the axial direction, the welding allowance increases and the weld strength of the stator core 18 increases. In addition, the welded portion is prevented from protruding from the outer peripheral surface of the stator core 18.
[0052]
Next, a second embodiment of the present invention will be described with reference to FIGS. Note that the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted, and only different members will be described below. As shown in FIG. 16 (b), a pair of punching punches 26D is mounted on the punch plate 25 on the side opposite to the direction of the arrow A of the pair of punching punches 26A. A pair of punching punches 26E are mounted on the side of the arrow A direction.
[0053]
Each punching punch 26D and 26E is inserted into the punch plate 25 so as to be movable up and down as shown in FIG. 16A, and each punching punch 26D has a narrow cross section in the direction of arrow A. Each punching punch 26E is set to have the same triangular shape as that of the third punching portion 19.
[0054]
Cams 27D and 27E corresponding to the punches 26D and 26E are accommodated in the punch plate 25 so as to be slidable in the arrow A direction and the counter-arrow A direction. These cams 27D and 27E have the same shape as the cams 27A to 27D. As shown in FIG. 17, the cams 27D and 27E of each set are connected to the rods of the air cylinders 31d and 31e and slide together with the rods. To do.
[0055]
Solenoid valves 36d and 36e are interposed in the piping paths of the cylinders 31d and 31e. These valves 36d and 36e are electrically connected to the control device 35 via valve drive circuits 37d and 37e, and the control device 35 is based on switching the states of the valves 36d and 36e through the valve drive circuits 37d and 37e. Then, the cams 27D and 27E are slid to switch the punches 26D and 26E between the invalid state and the valid state.
[0056]
Next, operation | movement of the press apparatus 20 is demonstrated. As shown in FIGS. 16A and 16B, the control device 35 validates the pair of punching punches 26 </ b> A and invalidates the pair of punches 26 </ b> B to 26 </ b> E. As shown in f), the strip steel plate 10 is conveyed four times at a set pitch. Then, four pairs of punched portions 11 are formed on the belt-shaped steel plate 10 by the pair of punching punches 26 </ b> A, and two pairs of diamond-shaped holes 10 a are formed by the pair of punching punches 32. And 34 form a pair of notches 10b and a pair of holes 10c.
[0057]
When the above-described operation is finished, the control device 35 validates the pair of cutting punches 26C as shown in FIGS. 18 (a) and 18 (b). And the strip | belt-shaped steel plate 10 is conveyed with a setting pitch, and is cut | disconnected by a pair of cutting punch 26C. At this time, a pair of punching punches 26A, a pair of punching punches 32, a pair of punching punches 33, and a pair of punching punches 34, a new pair of punching portions 11, a pair of rhombic holes 10a, A pair of notches 10b and a pair of holes 10c are formed.
[0058]
When the above-described operation is finished, the control device 35 invalidates the pair of cutting punches 26C as shown in FIGS. 19A and 19B, and as shown in FIGS. 19C to 19D. The belt-shaped steel plate 10 is conveyed 5 times at a set pitch. Thereafter, the pair of cutting punches 26C are validated, and the strip steel plate 10 is conveyed at a set pitch. Then, as shown in FIG. 19 (e), the strip steel plate 10 is cut by a pair of cutting punches 26 </ b> C, and has five punched portions 11, a straight cut surface 13, and an inclined cut surface 14. A first laminated plate 8 is formed.
[0059]
As shown in FIGS. 20A and 20B, the control device 35 validates the pair of punching punches 26B, the pair of punching punches 26A, the pair of cutting punches 26C, the pair of punching punches 26D, After invalidating the pair of punching punches 26E, the strip steel plate 10 is conveyed three times at a set pitch. Then, as shown in FIGS. 20C to 20E, three pairs of punched portions 12 are formed on the belt-shaped steel plate 10 by the pair of punching punches 26 </ b> B, and the pair of punching punches 32 forms a pair of rhombuses. Two sets of holes 10a are formed. At the same time, the pair of punching punches 33 and the pair of punching punches 34 form a pair of notches 10b and a pair of holes 10c.
[0060]
When the above-described operation is finished, the control device 35 validates the pair of cutting punches 26C as shown in FIGS. 21 (a) and 21 (b). And the strip | belt-shaped steel plate 10 is conveyed with a setting pitch, and is cut | disconnected by a pair of cutting punch 26C. At this time, a pair of punching portions 12B, a pair of punching punches 32, a pair of punching punches 33, and a pair of punching punches 34, a pair of new punched portions 12 and a pair of diamond-shaped holes 10a are formed in the strip steel plate 10. A pair of notches 10b and a pair of holes 10c are formed.
[0061]
When the above-described operation is finished, the control device 35 invalidates the pair of cutting punches 26C as shown in FIGS. 22 (a) and 22 (b), and as shown in FIGS. 22 (c) to 22 (d). The belt-shaped steel plate 10 is conveyed 5 times at a set pitch. Thereafter, the pair of cutting punches 26C are validated, and the strip steel plate 10 is conveyed at a set pitch. Then, as shown in FIG. 22 (e), the strip steel plate 10 is cut by a pair of cutting punches 26C, and has five punched portions 12, a straight cut surface 13, and an inclined cut surface 15. A second laminated plate 9 is formed.
[0062]
As shown in FIGS. 23A and 23B, the control device 35 validates the pair of punching punches 26E, the pair of punching punches 26A, the pair of punching punches 26B, the pair of cutting punches 26C, After invalidating the pair of punching punches 26D, as shown in (c) to (d) of FIG. 23, the strip steel plate 10 is conveyed twice at a set pitch. Then, two pairs of punched portions 19 and two diamond-shaped holes 10a are formed in the belt-shaped steel plate 10 by a pair of punched punches 26E and 32, and a pair of notched portions 10b and a pair of holes are formed by a pair of punched punches 33 and 34. One set of 10c is formed.
[0063]
When the above-described operation is finished, the control device 35 enables the pair of cutting punches 26C as shown in FIGS. 24 (a) and 24 (b). And the strip | belt-shaped steel plate 10 is conveyed with a setting pitch, and is cut | disconnected by a pair of cutting punch 26C. At this time, a pair of punching portions 26E, a pair of punching punches 32, a pair of punching punches 33, and a pair of punching punches 34, a pair of new punched portions 19 and a pair of diamond-shaped holes 10a are formed in the strip steel plate 10. A pair of notches 10b and a pair of holes 10c are formed.
[0064]
When the above-described operation is finished, the control device 35 invalidates the pair of cutting punches 26C as shown in FIGS. 25 (a) and 25 (b), and as shown in FIGS. 25 (c) to 25 (d). The belt-shaped steel plate 10 is conveyed 5 times at a set pitch. Thereafter, the pair of cutting punches 26C are validated, and the strip steel plate 10 is conveyed at a set pitch. Then, as shown in FIG. 25 (e), the strip steel plate 10 is cut by a pair of cutting punches 26C, and the five punched portions 19, the straight cut surface 13, the inclined cut surfaces 14 and 15 are cut. A laminated plate 39 having the structure is formed.
[0065]
As shown in FIGS. 26A and 26B, the control device 35 validates the pair of punching punches 26D, the pair of punching punches 26A, the pair of punching punches 26B, the pair of cutting punches 26C, After invalidating the pair of punching punches 26E, the strip steel plate 10 is conveyed five times at a set pitch. Then, as shown in FIGS. 26C to 26G, five pairs of punched portions 40 are formed on the strip steel plate 10 by the pair of punching punches 26D, and the pair of punching punches 32 forms a pair of rhombuses. Two sets of holes 10a are formed, and a pair of notches 10b and a pair of holes 10c are formed by a pair of punching punches 33 and 34. FIG. 26 (h) shows the punched portion 40 in an enlarged manner.
[0066]
When the above-described operation is finished, the control device 35 validates the pair of cutting punches 26C as shown in FIGS. 27 (a) and (b). And the strip | belt-shaped steel plate 10 is conveyed with a setting pitch, and is cut | disconnected by a pair of cutting punch 26C. At this time, a pair of punching portions 26D, a pair of punching punches 32, a pair of punching punches 33, and a pair of punching punches 34, a pair of new punched portions 40 and a pair of diamond-shaped holes 10a are formed in the strip steel plate 10. A pair of notches 10b and a pair of holes 10c are formed.
[0067]
When the above-described operation is finished, the control device 35 invalidates the pair of cutting punches 26C as shown in FIGS. 28A and 28B, and as shown in FIGS. 28C to 28D. The belt-shaped steel plate 10 is conveyed 5 times at a set pitch. Thereafter, the pair of cutting punches 26C are validated, and the strip steel plate 10 is conveyed at a set pitch. Then, as shown in FIG. 28 (e), the strip steel plate 10 is cut by a pair of cutting punches 26 </ b> C to form a laminated plate 41 having five punched portions 40 and a linear cut surface 13.
[0068]
When the first laminated plate 8 and the second laminated plate 9 are punched in the above-described procedure, the first laminated plate 8 and the second laminated plate 9 are alternately laminated to form the helical core 1 of FIG. . Next, after the helical iron core 1 is connected and bent from the crosspiece 2, each comb tooth portion 16 is engaged with the comb tooth portions 16 adjacent in the circumferential direction, and then the helical iron core 1 is laser welded by the laser welding portion 18 a. The stator core 18 is formed.
[0069]
According to the above embodiment, the first punching punch 26A is activated to punch the first laminated plate 8, and the second punching punch 26B is activated to punch the second laminated plate 9. For this reason, it is not necessary to separately use the press machine for forming the first laminated plate 8 and the press machine for forming the second laminated plate 9, so that the apparatus is miniaturized.
[0070]
In addition, in the said 2nd Example, although the laminated board 8 and the laminated board 9 were piled up alternately, it is not limited to this, For example, you may pile up the laminated board 39 and the laminated board 41 alternately. . In this case, the laminated plate 39 corresponds to the first laminated plate, and the laminated plate 41 corresponds to the second laminated plate. The punching punch 26E for punching the first laminated plate 39 corresponds to the first punch, and the punching punch 26D for punching the second laminated plate 41 corresponds to the second punch.
[0071]
In the second embodiment, four types of punching punches 26A, 26B, 26D, and 26E are mounted on the punch plate 25, but the present invention is not limited to this. For example, punching punches 26A and 26B are mounted. Alternatively, the punching punches 26C and 26D may be mounted.
[0072]
In the first and second embodiments, each cutting punch 26C is formed in a rectangular cross section. However, the present invention is not limited to this. For example, the cutting punch 26C is inclined with respect to the center line CL parallel to the magnetic pole teeth 4. The cross section may be formed in a substantially isosceles triangular shape. FIG. 29 shows the first laminated plate 8 and the second laminated plate 9 alternately after cutting the first laminated plate 8 and the second laminated plate 9 using the cutting punch 26C having a substantially isosceles cross section. The helical core 1 laminated | stacked on (1) is shown (3rd Example of this invention is shown).
[0073]
FIG. 30 shows a stator core 18 formed by circularizing the helical iron core 1 of FIG. 29. The space between one comb tooth 16 of the unit core 1A and one comb tooth 16 of the unit core 1F is the inner peripheral side. The mesh is meshed so that the amount of lap in the circumferential direction increases toward the outer peripheral side, and the increasing direction of the amount of wrap is reversed between the remaining comb teeth 16.
[0074]
In the case of the above configuration, laser welding is performed on the outer peripheral portion between one comb tooth portion 16 of the unit core 1A and one comb tooth portion 16 of the unit core 1F. For this reason, since the laser welding range is expanded, the welding strength of the helical iron core 1 is increased. Moreover, even when the connecting bar 2 extends when the helical iron core 1 is circularized, the amount of lap between the one comb tooth portion 16 of the unit core 1A and the one comb tooth portion 16 of the unit core 1F is adjusted. Based on this, the helical iron core 1 can be rounded to a perfect circle.
[0075]
In the first to third embodiments, the first laminated plate 8 and the second laminated plate 9 are alternately stacked one by one. However, the present invention is not limited to this. For example, the present invention As shown in FIG. 31 showing the fourth embodiment, a plurality of (for example, two) sheets may be alternately stacked.
[0076]
Next, a fifth embodiment of the present invention will be described with reference to FIG. After the second laminated plates 9 are formed in two rows using the pressing device 20 of the second embodiment, the direction of the upper laminated plates 9 is changed by 180 ° as shown by a two-dot chain line in FIG. Then, the upper rows of laminated plates 9 are overlapped with the lower row of laminated plates 9 in the same outline shape as the first laminated plate 8 to form the helical iron core 1 shown in FIG. Next, after the helical core 1 is rounded into an annular shape, the respective comb teeth 16 are engaged with the adjacent comb teeth 16 in the circumferential direction, and then laser welding is performed on the laser welded portion 18a. Join both ends.
[0077]
According to the said Example, the helical iron core 1 was formed based on reversing direction of the laminated board 9 and overlapping on the laminated board 9. FIG. For this reason, since the helical iron core 1 having the comb teeth portion 16 is formed without punching out two kinds of laminated plates using two kinds of press machines, the apparatus is miniaturized.
[0078]
Further, in the fifth embodiment, the orientation of the upper row of laminated plates 9 is reversed and stacked on the lower row of laminated plates 9, but the present invention is not limited to this. For example, the orientation of the lower row of laminated plates 9 is changed. It may be inverted and overlapped on the upper laminated plate 9.
In the fifth embodiment, the direction of the second laminated plate 9 is reversed and stacked on the second laminated plate 9, but the present invention is not limited to this. For example, the first row in the upper row or the lower row is used. The direction of the laminated plate 8 may be reversed and stacked on the first laminated plate 8 in the lower row or the upper row.
Moreover, in the said 5th Example, although the laminated board 9 was punched in 2 rows, it is not limited to this, For example, you may punch in the even number row | line | column of 4 or more rows.
[0079]
Moreover, in the said 5th Example, although the direction of the laminated board 9 was changed 180 degree | times, it is not limited to this, For example, the lower laminated board 9 is turned over and as shown by a dashed-two dotted line in FIG. Alternatively, after forming the same contour shape as that of the first laminated plate 8, it may be overlaid on the lower laminated plate 9. Even in this case, the helical iron core 1 having the comb teeth portion 16 is formed without punching out two kinds of laminated plates using two kinds of press machines, so that the apparatus is miniaturized (Sixth embodiment of the present invention). Example).
[0080]
In the sixth embodiment, the lower row of laminated plates 9 are turned upside down and stacked on the lower row of laminated plates 9, but the present invention is not limited to this. For example, the upper row of laminated plates 9 is turned upside down. It may be stacked on the laminated plate 9.
Moreover, in the said 6th Example, although the laminated board 9 was punched in 2 rows, it is not limited to this, For example, you may punch in 1 row.
Moreover, in the said 6th Example, although the 2nd laminated board 9 was turned over and it piled up on the 2nd laminated board 9, it is not limited to this, For example, the 1st laminated board 8 is turned over and the 1st laminated board 9 is turned over. One laminated plate 8 may be stacked.
[0081]
Moreover, in the said 5th and 6th Example, the direction of the laminated board 9 was reversed and it piled up on the laminated board 9, or the helical iron core 1 of FIG. However, the present invention is not limited to this. For example, the direction of the plurality of laminated plates 9 is reversed and stacked on the plurality of laminated plates 9, or the plurality of laminated plates 9 are turned over to form the plurality of laminated plates 9. The helical iron core 1 of FIG. 31 may be formed based on the overlapping.
[0082]
【The invention's effect】
As apparent from the above description, the stator core manufacturing method of the present invention has the following effects.
According to the means described in claim 1, the first laminated plate and the second laminated plate having different contour shapes are sequentially fed and punched. For this reason, it is not necessary to use the press machine which forms the 1st laminated board, and the press machine which forms the 2nd laminated board separately, Therefore An apparatus is miniaturized. In addition, since the punched portion having a shape different from that of both punches is formed on the basis of punching the portion punched by the first punch with the second punch, the number of punches can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention (a is a diagram schematically showing a press device, b is a plan view showing a layout of punches, and c to f are diagrams showing how strip steel plates are punched. )
2A is a diagram schematically showing a press apparatus, FIG. 2B is a plan view showing a layout of punches, and FIG. 2C is a diagram showing a state in which a strip steel plate is cut.
FIGS. 3A and 3B are diagrams schematically showing a pressing device, FIG. 3B is a plan view showing a layout of punches, and FIGS. 3C to 3D are views showing a state in which a strip steel plate is punched out.
4A is a view schematically showing a press apparatus, FIG. 4B is a plan view showing a layout of punches, and FIGS. 4C to 4E are views showing a state in which a strip steel plate is punched.
FIGS. 5A and 5B are diagrams schematically showing a pressing device, FIG. 5B is a plan view showing a layout of punches, and FIG. 5C is a diagram showing a state in which a strip steel plate is cut;
6A is a view schematically showing a press apparatus, FIG. 6B is a plan view showing a layout of punches, and FIGS. 6C to 6D are views showing a state in which a strip steel plate is punched.
7A is a view schematically showing a press apparatus, FIG. 7B is a plan view showing a layout of punches, and FIGS. 7C to 7E are views showing a state in which a strip steel plate is punched.
8A is a diagram schematically showing a pressing apparatus, FIG. 8B is a plan view showing a layout of punches, FIG. 8C is a diagram showing a state in which a strip steel plate is cut, and FIG. Fig.
FIGS. 9A to 9C are diagrams illustrating states of solenoid valve drive signals, and FIG. 9D is a diagram illustrating an output signal from a micro switch.
10A is a cross-sectional view showing an enlarged main part of the press device, and FIG. 10B is a view showing a cam along the line XX.
FIG. 11 is a block diagram schematically showing the configuration of a press apparatus.
12A is a plan view showing the first laminated plate and the second laminated plate, FIG. 12B is an enlarged view of the X1 portion, and FIG. 12C is an enlarged view of the X2 portion; (D) is an enlarged view of the X3 portion, and (e) is an enlarged view of the X4 portion.
13A is a plan view showing a helical iron core, and FIG. 13B is a cross-sectional view taken along line XX.
14A is a plan view showing a state where a coil is wound around a bobbin, and FIG. 14B is a cross-sectional view showing the bobbin when the coil is wound.
FIG. 15 is a plan view showing a helical iron core in an annular state.
FIG. 16 is a diagram showing a second embodiment of the present invention (a is a diagram schematically showing a pressing device, b is a plan view showing a layout of punches, and c to f are views showing a state in which a strip steel plate is punched. )
FIG. 17 is a block diagram schematically showing the configuration of the press apparatus.
18A is a diagram schematically showing a press apparatus, FIG. 18B is a plan view showing a layout of punches, and FIG. 18C is a diagram showing a state in which a strip steel plate is cut.
19A is a view schematically showing a press device, FIG. 19B is a plan view showing the layout of punches, and FIGS. 19C to 19D are views showing a state in which a strip steel plate is punched. ) Is a diagram showing how the strip steel plate is cut
20A is a view schematically showing a press apparatus, FIG. 20B is a plan view showing the layout of punches, and FIGS. 20C to 20E are views showing a state in which a strip steel plate is punched.
FIG. 21A is a diagram schematically showing a press device, FIG. 21B is a plan view showing a layout of punches, and FIG. 21C is a diagram showing a state in which a strip steel plate is cut.
22A is a view schematically showing a pressing apparatus, FIG. 22B is a plan view showing a layout of punches, and FIGS. 22C to 22D are views showing a state in which a strip steel plate is punched. ) Is a diagram showing how the strip steel plate is cut
23A is a view schematically showing a press apparatus, FIG. 23B is a plan view showing a layout of punches, and FIGS. 23C to 23D are views showing a state in which a strip steel plate is punched.
FIG. 24A is a diagram schematically showing a press device, FIG. 24B is a plan view showing a layout of punches, and FIG. 24C is a diagram showing a state in which a strip steel plate is cut.
FIGS. 25A and 25B are diagrams schematically showing a pressing apparatus, FIG. 25B is a plan view showing a layout of punches, and FIGS. 25C and 25D are views showing a state in which a strip steel plate is punched; ) Is a diagram showing how the strip steel plate is cut
26A is a diagram schematically showing a press device, FIG. 26B is a plan view showing a layout of punches, and FIGS. 26C to 20G are diagrams showing a state in which a strip steel plate is punched. ) Is an enlarged view of the punched part
FIG. 27A is a diagram schematically showing a press device, FIG. 27B is a plan view showing a layout of punches, and FIG. 27C is a diagram showing a state in which a strip steel plate is cut.
FIGS. 28A and 28B are diagrams schematically showing a pressing device, FIG. 28B is a plan view showing a layout of punches, and FIGS. 28C and 28D are views showing a state in which a strip steel plate is punched, FIGS. ) Is a diagram showing how the strip steel plate is cut
FIG. 29 is a diagram showing a third embodiment of the present invention (plan view showing a helical iron core).
FIG. 30 is a plan view showing a helical iron core in an annular state.
FIG. 31 is a view showing a fourth embodiment of the present invention (a view corresponding to FIG. 13b showing a laminated state of the laminated plates).
FIG. 32 is a view showing a fifth embodiment of the present invention (plan view showing a punched state of a laminated board).
[Explanation of symbols]
1 is a helical core (band-shaped core), 8 is a first laminated plate, 9 is a second laminated plate, 11 is a first punched portion, 12 is a second punched portion, 16 is a comb tooth portion, 18 Is a stator core, 19 is a punching portion, 26A is a first punching punch (first punch), 26B is a second punching punch (second punch), and 26D is a punching punch (second punch). , 26E are punching punches (first punches), 39 is a first laminated plate, and 41 is a second laminated plate.

Claims (2)

三角形の空間状をなす複数の第1の打抜部を有する第1の積層板および第1の打抜部と同一の三角形の空間状で傾斜角度が相違する複数の第2の打抜部を有する第2の積層板を順送りして打抜く工程と、
前記第1の積層板および前記第2の積層板を軸方向に重ね、前記第1の打抜部および前記第2の打抜部を軸方向に並べることに基いて複数の櫛歯部を有する帯状コアを形成する工程と、
前記帯状コアを環状化することに基づいて、前記櫛歯部を周方向に隣接する櫛歯部に噛合させる工程とを備え、
前記第1の打抜部を形成するための第1のポンチを使用して前記第1の打抜部を打抜いた後に前記第2の打抜部を形成するための第2のポンチを使用して前記第1の打抜部に隣接する部分を打抜くことに基いて、前記第1の打抜部および前記第2の打抜部を合せた扇形の空間状の打抜部を形成することを特徴とするステータコアの製造方法。
A first laminated plate having a plurality of first punched portions forming a triangular space and a plurality of second punched portions having the same triangular space as the first punched portions and having different inclination angles. A step of progressively punching and punching the second laminate having
The first laminated plate and the second laminated plate are stacked in the axial direction, and have a plurality of comb teeth portions based on arranging the first punched portion and the second punched portion in the axial direction. Forming a band-shaped core;
A step of engaging the comb-tooth portion with a comb-tooth portion adjacent in the circumferential direction based on annularizing the belt-shaped core,
Using a second punch for forming the second punched portion after punching the first punched portion using the first punch for forming the first punched portion Then, based on punching a portion adjacent to the first punching portion, a fan-shaped space punching portion is formed by combining the first punching portion and the second punching portion. A stator core manufacturing method characterized by the above.
前記第1の積層板および前記第2の積層板相互間を切断ポンチを使用して前記打抜部から分離することに基いて、前記第1の積層板の一方の分離面および前記第2の積層板の一方の分離面に前記切断ポンチによる切断面を部分的に形成し、
前記第1の積層板および前記第2の積層板相互間を前記切断ポンチを使用して前記打抜部の反対側で分離することに基いて、前記第1の積層板の他方の分離面および前記第2の積層板の他方の分離面を全て前記切断ポンチによる切断面から構成し、
前記帯状コアを形成する工程で両端の櫛歯部に前記第1の積層板の部分的な切断面および前記第2の積層板の部分的な切断面からなる非櫛歯状の部分を形成し、
前記帯状コアを環状化する工程で両端の非櫛歯状の部分相互間に軸方向へ延びる切欠状のレーザー溶接部を形成し、
前記レーザー溶接部にレーザー溶接を施すことに基いて前記帯状コアを環状に保持する
ことを特徴とする請求項1記載のステータコアの製造方法。
Based on separating the first laminated plate and the second laminated plate from the punched portion using a cutting punch, one separation surface of the first laminated plate and the second laminated plate Partially forming a cut surface by the cutting punch on one separation surface of the laminate,
Based on separating the first laminate and the second laminate on the opposite side of the punched portion using the cutting punch, the other separation surface of the first laminate and The other separation surface of the second laminated plate is composed of a cut surface by the cutting punch,
In the step of forming the strip-shaped core, a non-comb-like portion composed of a partial cut surface of the first laminated plate and a partial cut surface of the second laminated plate is formed on the comb tooth portions at both ends. ,
Forming a notched laser welded portion extending in the axial direction between the non-comb-like portions at both ends in the step of annularizing the belt-shaped core;
The belt-like core is held in an annular shape based on performing laser welding on the laser welding portion.
The stator core manufacturing method according to claim 1 .
JP24508098A 1998-08-31 1998-08-31 Stator core manufacturing method Expired - Lifetime JP3718351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24508098A JP3718351B2 (en) 1998-08-31 1998-08-31 Stator core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24508098A JP3718351B2 (en) 1998-08-31 1998-08-31 Stator core manufacturing method

Publications (2)

Publication Number Publication Date
JP2000078801A JP2000078801A (en) 2000-03-14
JP3718351B2 true JP3718351B2 (en) 2005-11-24

Family

ID=17128311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24508098A Expired - Lifetime JP3718351B2 (en) 1998-08-31 1998-08-31 Stator core manufacturing method

Country Status (1)

Country Link
JP (1) JP3718351B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042612B2 (en) 2003-04-11 2008-02-06 株式会社デンソー Rotor for rotating electrical machine and method for manufacturing the same
JP4983695B2 (en) * 2008-03-31 2012-07-25 株式会社富士通ゼネラル Stator core manufacturing method
KR101321339B1 (en) 2011-12-16 2013-10-22 갑을메탈 주식회사 Mold for core
JP6447365B2 (en) * 2015-05-29 2019-01-09 日産自動車株式会社 Iron core manufacturing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681320B2 (en) * 1991-08-12 1997-11-26 株式会社三井ハイテック Laminated core mold equipment
JP3722539B2 (en) * 1996-02-09 2005-11-30 黒田精工株式会社 Manufacturing method of annular laminated iron core and progressive mold apparatus
JPH1085862A (en) * 1996-09-18 1998-04-07 Matsushita Electric Ind Co Ltd Die for press
JP3782533B2 (en) * 1997-01-08 2006-06-07 日本電産シバウラ株式会社 Motor stator and motor frame

Also Published As

Publication number Publication date
JP2000078801A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
KR100359704B1 (en) Iron core assembly
US8667666B2 (en) Method for producing stator or rotor with interlaced wire groups forming an intertwined wave winding
JP2003017326A (en) Lamination type inductor
JP3718351B2 (en) Stator core manufacturing method
JP2000078779A (en) Stator for rotary electric machine and its manufacture
JP3636446B2 (en) Motor core lamination method and laminated structure thereof
JP3722539B2 (en) Manufacturing method of annular laminated iron core and progressive mold apparatus
CN108667237A (en) The manufacturing method of stator core
JP2008109785A (en) Method of manufacturing armature, and regularly sending mold
JP4045038B2 (en) Stator for rotating electrical machine and method for manufacturing stator
JP4574255B2 (en) Manufacturing method of split laminated core and progressive mold for manufacturing
CN102857066A (en) Laminated iron core of linear motor and manufacturing method thereof
CN100444708C (en) Method of soldering the constituent layers of a multilayer printed circuit and the machine used for same
JP2005513820A6 (en) Method of soldering layers constituting multilayer printed circuit and apparatus for applying the method
US2666254A (en) Method of manufacturing electrical windings
JP2003052138A (en) Method of manufacturing laminated yoke core
JPH0223048A (en) Manufacture of iron core for electrical machine
EP3467851A1 (en) Transformer core with reduced building factor
US2235425A (en) Electromagnetic core
JP4031893B2 (en) Rotating electric machine stator core
JPH08213239A (en) Laminated chip transformer and manufacture thereof
JPH03147307A (en) Punching for iron core
JP3673337B2 (en) Manufacturing method of stator for electric motor
JP3844919B2 (en) Stator core manufacturing method and manufacturing apparatus
JP2013105774A (en) Weld transformer and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

EXPY Cancellation because of completion of term