JP3716432B2 - Heating method of slab for grain-oriented electrical steel sheet - Google Patents

Heating method of slab for grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP3716432B2
JP3716432B2 JP27069093A JP27069093A JP3716432B2 JP 3716432 B2 JP3716432 B2 JP 3716432B2 JP 27069093 A JP27069093 A JP 27069093A JP 27069093 A JP27069093 A JP 27069093A JP 3716432 B2 JP3716432 B2 JP 3716432B2
Authority
JP
Japan
Prior art keywords
slab
heating
temperature
grain
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27069093A
Other languages
Japanese (ja)
Other versions
JPH07126754A (en
Inventor
寿郎 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP27069093A priority Critical patent/JP3716432B2/en
Publication of JPH07126754A publication Critical patent/JPH07126754A/en
Application granted granted Critical
Publication of JP3716432B2 publication Critical patent/JP3716432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、方向性電磁鋼板の製造方法に関し、特に、その製造用スラブを熱間圧延する前の加熱技術に関するものである。
【0002】
【従来の技術】
周知のように、方向性電磁鋼板の優れた磁気特性は、板面に(100)面、圧延方向に<001>軸の2次再結晶粒を、最終焼鈍により選択的に発達させることによって得られる。そのためには、鋼中にインヒビタと呼ばれる微細な析出物、例えばMnS,MnSe,AlN等を析出させることが肝要であり、このインヒビタの分散形態のコントロールは、これら析出物を一旦固溶させた後、熱間圧延を施すことによって行われる。
【0003】
ところで、このような目的で行われる熱間圧延前のスラブ加熱は、インヒビタ成分の再固溶のため、例えばガスバーナ加熱タイプの炉(以下「ガス炉」)による1350℃以下の温度での1次加熱後に、誘導加熱タイプの炉(以下「I炉」という。これは、スラブを厚み方向を底部とし、所謂I形状で炉内に静置、加熱するための呼び名で、炉内ではスラブ幅方向が高さに相当する。)で行われていた。その2次加熱温度は、スラブに粗大析出したインヒビターを再固溶可能とする1400℃〜1480℃であり、この2次加熱後、スラブは熱間圧延を施されていた。
【0004】
上記工程のI炉段階において、図2に示すように、スラブ1長手方向の両端部近傍(それぞれLE,TE端部という)が、炉の構造上放射熱が大きいため、それ以外の中央部側に対して5℃〜30℃低めとなる傾向があった。したがって、従来はスラブ両端部近傍にインヒビタの再固溶不足が生じて、最終製品の方向性電磁鋼板は磁性不良となりやすかった。この問題を解決するための方法として、特開平5−59437号公報は,I炉3内の両端部でスラブとの間に生じる空間4に、誘導発熱板及び断熱材を配置し、補助加熱する技術を開示している。また、特開昭59−193216号公報は、ガスバーナ加熱の1次加熱時に、スラブの長手方向に対して、図3に示すような所謂テーパ加熱技術を教えた。これは、熱間圧延前のスラブ加熱において、圧延方向後端部の温度が前端部よりも200℃の範囲内で高くなるように加熱する技術である。
【0005】
しかしながら、これらの公知方法を実施すると、2次加熱に際し必要以上に温度が高い部分が生じることになった。すなわち、スラブの2次加熱完了時には、図4に示すような表面温度分布となり、図4中「A」で示す範囲の温度が必要以上に上りすぎ、最悪のケースとしてはA部が局部溶解を起すトラブルが発生したり、溶解するまでにはいたらなくてもA部でスラブ組織が粗大化して、逆に高温による最終製品の磁性劣化が起こるという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情を鑑み、方向性電磁鋼板の熱間圧延に際して、インヒビタの固溶不足が起きないよう、ガスバーナ加熱炉でのスラブの加熱方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
前記目的を達成するため、発明者は鋭意検討を行い、1次加熱でスラブ長手方向の温度分布を調整することに着眼した。本発明は、その着眼を具体化するために多くの実験、研究を行った上でなされたものである。すなわち、本発明は、Siを2%以上含む方向性電磁鋼板製造用スラブを、ガスバーナ加熱炉で1350℃以下の温度で1次加熱後、さらに電磁誘導加熱炉で1400℃〜1480℃の温度で加熱してから熱間圧延する方向性電磁鋼板の製造において、
上記ガスバーナ加熱炉内で、スラブの両端より1m以内の範囲を、それ以外の中央部分における長手方向の平均温度より10℃以上高く加熱し、該中央部分の長手方向各位置の温度を前記平均温度の±10℃以内に抑制することを特徴とする方向性電磁鋼板用スラブの加熱方法である。この場合、上記スラブの加熱や温度抑制に用いる温度制御手段は、公知のものを使用すれば良い。
【0008】
【作用】
本発明では、ガスバーナ加熱炉でスラブの両端より1m以内の範囲を、それ以外の中央部分の平均温度よりほぼ10℃以上高目に過加熱し、さらに該中央部分の長手方向各位置の温度を前記平均温度の±10℃以内に抑えるようにしたので、電磁誘導加熱炉の出側でスラブの長手方向温度分布は均一になり、インヒビタの再固溶も十分に均一化される。その結果、最終製品の方向性電磁板の磁性劣化が防止できるようになった。以下、図1、図5〜6に基づき、本発明の内容に関して補足説明する。
【0009】
図1に、本発明を適用して、ガスバーナ加熱炉出口で測定したスラブの温度分布を示す。LE,TE両端1m以内のスラブ温度はそれ以外の部分の長手方向の平均温度より10℃以上高目になっている。その理由は、その後に実施するI炉での2次加熱時に、その領域での温度低下がなく、スラブの全長にわたってインヒビタがほぼ完全に再固溶され、端部の磁性劣化を、鉄損値で≦0.005w/kg(これ以上鉄損が劣化すると約半数以上のものが1グレートダウンする限界値)に抑制可能となるからである。その様子を図5に示す。なお、図5の縦軸は、スラブ長手方向の中央部分の鉄損値に対するLE端部の鉄損値上昇分を、横軸はスラブ端部の過加熱程度を表わしている。すなわち、図5のグラフは、スラブ端部の過加熱度が10℃以上あると鉄損上昇が少ないことをあきらかにしている。
【0010】
次に、両端部より各1mの範囲外に相当する中央部分の各位置の加熱温度を中央部分の平均温度の±10℃以内とするのは、図6に示すように、目標加熱温度から+10℃以上外れた過加熱部では、熱間圧延工程の粗圧延時に、結晶粒界割れに起因した表面欠陥の発生率が増加し、逆に−10℃低温で加熱すると、スラブ段階で粗大析出したインヒビター析出物の再固溶が不十分になり、その部分の磁性が劣化するからである。なお、図6の測定結果は、実線のグラフが目標加熱温度と鉄損の関係を、点線のグラフが目標加熱温度と重度表面欠陥発生率の関係を示す。
【0011】
【実施例】
C:0.05%、Si:3.5%、Mn:0.081%、Se:0.025%、Sb:0.03%、N:25ppm含有した方向性電磁鋼板製造用スラブを、ガスバーナ加熱炉において、図7に示すような長手方向の温度分布になるように、1次加熱した。加熱は、スラブの両端部は加熱炉の灼熱帯において抽出10分前よりサイドバーナーにて両端部を集中加熱し、図7に示すような温度分布となるようにした。このスラブを、所謂中央部分の平均温度が1220℃となる時点で1次加熱を完了し、2次加熱用のI炉に装入して1440℃まで加熱した。その後、直ちにスラブを抜き出し、熱間圧延を実施した後、ピック→ノルマ処理→1回目冷間圧延→中間焼鈍→2回目冷間圧延→表面洗浄→焼鈍→分離塗布→最終焼鈍→フラットニング(表面コーティング)という通常の電磁鋼板製造工程を経て、板厚が0.23mmの方向性電磁鋼板を製造した。図8に、その製品の長手方向の鉄損値変化を示すが、製品として好適な絶対値で、且つ均一な分布が得られた。
【0012】
なお、図8での結果は、局部溶解を抑えるため、スラブ両端部の集中加熱は平均値より10℃以上50℃未満だけ高めの温度で行われたものである。
【0013】
【発明の効果】
以上述べたように、本発明では、方向性電磁鋼板の製造において製品歩留に影響するスラブの磁性劣化を防止するため、熱間圧延前のスラブ加熱に工夫を凝らした。その結果、長手方向で磁性劣化のない製品が得られ、歩留向上に大きな期待が持てるようになった。
【図面の簡単な説明】
【図1】本発明を適用した1次加熱完了時でのスラブ長手方向の温度分布図である。
【図2】従来法によるI炉での2次加熱完了時のスラブ長手方向の表面温度分布図である。
【図3】テーパ加熱法により1次加熱したスラブを、I炉で2次加熱完了した際のスラブ長手方向温度分布図である。
【図4】I炉で加熱完了時した際のスラブ長手方向の温度分布図である。
【図5】スラブ端部の過加熱レベルとスラブ中央部分鉄損値に対する端部鉄損値の上昇分との関係を表わす図である。
【図6】スラブ中央部分(端部各々1m部を除く部分)の加熱レベル偏差と品質レベルの関係を表わす図である。
【図7】本発明の適用による1次加熱完了時におけるスラブ長手方向の温度分布図である。
【図8】本発明の適用で製造した方向性電磁鋼帯の長手方向での鉄損変化図である。
【符号の説明】
1 スラブ(方向性電磁鋼板製造用)
2 誘導コイル
3 電磁誘導炉(I炉)
4 スラブ両端部とI炉の炉端壁との間の空間
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet, and more particularly to a heating technique before hot-rolling the manufacturing slab.
[0002]
[Prior art]
As is well known, the excellent magnetic properties of grain-oriented electrical steel sheets are obtained by selectively developing secondary recrystallized grains having a (100) plane on the plate surface and a <001> axis in the rolling direction by final annealing. It is done. For that purpose, it is important to precipitate fine precipitates called inhibitors, such as MnS, MnSe, AlN, etc. in the steel, and the control of the dispersion form of the inhibitors is performed after these precipitates are once dissolved. , By performing hot rolling.
[0003]
By the way, the slab heating before hot rolling performed for such a purpose is the primary at a temperature of 1350 ° C. or less in a gas burner heating type furnace (hereinafter referred to as “gas furnace”), for example, due to re-solution of the inhibitor component. After heating, an induction heating type furnace (hereinafter referred to as “I furnace”) is a name for standing and heating the slab in the furnace in the so-called I shape with the thickness direction as the bottom. Is equivalent to height.). The secondary heating temperature is 1400 ° C. to 1480 ° C. that enables the inhibitor precipitated coarsely on the slab to be re-dissolved. After the secondary heating, the slab was hot-rolled.
[0004]
In the I furnace stage of the above process, as shown in FIG. 2, the vicinity of both ends in the longitudinal direction of the slab 1 (each referred to as LE and TE ends) has a large radiant heat due to the structure of the furnace. On the other hand, there was a tendency to be 5-30 ° C. lower. Therefore, in the past, the inhibitor was insufficiently re-dissolved in the vicinity of both ends of the slab, and the grain-oriented electrical steel sheet of the final product was likely to have a magnetic failure. As a method for solving this problem, Japanese Patent Application Laid-Open No. 5-59437 discloses that auxiliary heating is performed by arranging an induction heating plate and a heat insulating material in a space 4 formed between the two ends of the I furnace 3 and the slab. The technology is disclosed. JP-A-59-193216 taught a so-called taper heating technique as shown in FIG. 3 with respect to the longitudinal direction of the slab during the primary heating of the gas burner. This is a technique for heating the slab before hot rolling so that the temperature at the rear end in the rolling direction is higher than the front end within a range of 200 ° C.
[0005]
However, when these known methods are carried out, a part where the temperature is higher than necessary is generated during the secondary heating. That is, when the secondary heating of the slab is completed, the surface temperature distribution as shown in FIG. 4 is obtained, the temperature in the range indicated by “A” in FIG. 4 rises more than necessary, and in the worst case, the A part is locally dissolved. There is a problem that the trouble that occurs or the slab structure is coarsened in the part A even if it does not reach melting, and conversely, the magnetic degradation of the final product due to high temperature occurs.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a method for heating a slab in a gas burner heating furnace so that an inhibitor is not sufficiently dissolved during hot rolling of a grain-oriented electrical steel sheet.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor diligently studied and focused on adjusting the temperature distribution in the longitudinal direction of the slab by primary heating. The present invention has been made after many experiments and researches in order to embody the focus. That is, in the present invention, a slab for producing grain-oriented electrical steel sheets containing 2% or more of Si is primarily heated at a temperature of 1350 ° C. or less in a gas burner heating furnace, and further at a temperature of 1400 ° C. to 1480 ° C. in an electromagnetic induction heating furnace. In the production of grain-oriented electrical steel sheet that is hot-rolled after heating,
In the gas burner furnace, a range within 1m from both ends of the slab, higher heating 10 ° C. or higher than the longitudinal average temperature in the central portion of the otherwise the average temperature in the longitudinal direction the temperature of each position of the central portion This is a method for heating a slab for grain-oriented electrical steel sheets, characterized by being controlled within ± 10 ° C. In this case, a well-known thing should just be used for the temperature control means used for the heating of the said slab, or temperature control.
[0008]
[Action]
In the present invention, a gas burner heating furnace is used to overheat a range within 1 m from both ends of the slab at a temperature approximately 10 ° C. higher than the average temperature of the other central portion, and the temperature at each position in the longitudinal direction of the central portion. Since the temperature is kept within ± 10 ° C. of the average temperature, the temperature distribution in the longitudinal direction of the slab becomes uniform on the exit side of the electromagnetic induction heating furnace, and the re-solution of the inhibitor is sufficiently uniformized. As a result, the magnetic deterioration of the directional electromagnetic plate of the final product can be prevented. Hereinafter, a supplementary explanation will be given regarding the contents of the present invention based on FIG. 1 and FIGS.
[0009]
FIG. 1 shows the temperature distribution of a slab measured at the gas burner heating furnace exit by applying the present invention. The slab temperature within 1 m of both ends of LE and TE is higher by 10 ° C. than the average temperature in the longitudinal direction of the other portions. The reason for this is that during the subsequent secondary heating in the I furnace, there is no temperature drop in that region, the inhibitor is almost completely re-dissolved over the entire length of the slab, and the magnetic loss at the end is reduced to the iron loss value. This is because it can be suppressed to ≦ 0.005 w / kg (the limit value at which about half or more of the iron loss deteriorates by 1 when the iron loss is further deteriorated). This is shown in FIG. In addition, the vertical axis | shaft of FIG. 5 represents the iron loss value rise of the LE edge part with respect to the iron loss value of the center part of a slab longitudinal direction, and the horizontal axis represents the overheating degree of a slab edge part. That is, the graph of FIG. 5 reveals that the iron loss increase is small when the degree of overheating at the end of the slab is 10 ° C. or more.
[0010]
Next, as shown in FIG. 6, the heating temperature at each position of the central portion corresponding to outside the range of 1 m from both ends is within ± 10 ° C. of the average temperature of the central portion , as shown in FIG. In the overheated part deviated by ℃ or more, the occurrence rate of surface defects due to grain boundary cracking increased during rough rolling in the hot rolling process. Conversely, when heated at a low temperature of -10 ℃, coarse precipitation occurred in the slab stage. This is because the reprecipitation of the inhibitor precipitate becomes insufficient and the magnetism of the portion is deteriorated. In the measurement results of FIG. 6, the solid line graph shows the relationship between the target heating temperature and the iron loss, and the dotted line graph shows the relationship between the target heating temperature and the incidence of severe surface defects.
[0011]
【Example】
A slab for producing grain-oriented electrical steel sheets containing C: 0.05%, Si: 3.5%, Mn: 0.081%, Se: 0.025%, Sb: 0.03%, N: 25 ppm is used as a gas burner. In the heating furnace, primary heating was performed so as to obtain a temperature distribution in the longitudinal direction as shown in FIG. In the heating, both end portions of the slab were concentratedly heated by a side burner 10 minutes before extraction in the tropical zone of the heating furnace so as to have a temperature distribution as shown in FIG. When the average temperature of the so-called central part reached 1220 ° C., the slab was completed in the primary heating, charged in the I furnace for secondary heating, and heated to 1440 ° C. Then, immediately after extracting the slab and carrying out hot rolling, pick → normalization → first cold rolling → intermediate annealing → second cold rolling → surface cleaning → annealing → separation coating → final annealing → flattening (surface Through a normal electromagnetic steel sheet manufacturing process called coating, a grain-oriented electrical steel sheet having a thickness of 0.23 mm was manufactured. FIG. 8 shows the change in the iron loss value in the longitudinal direction of the product. An absolute value suitable for the product and a uniform distribution were obtained.
[0012]
In addition, the result in FIG. 8 shows that concentrated heating at both ends of the slab was performed at a temperature higher than the average value by 10 ° C. or more and less than 50 ° C. in order to suppress local melting.
[0013]
【The invention's effect】
As described above, in the present invention, in order to prevent the magnetic deterioration of the slab which affects the product yield in the production of the grain-oriented electrical steel sheet, the slab heating before hot rolling has been devised. As a result, a product having no magnetic deterioration in the longitudinal direction was obtained, and great expectation was obtained for yield improvement.
[Brief description of the drawings]
FIG. 1 is a temperature distribution diagram in the longitudinal direction of a slab when primary heating to which the present invention is applied is completed.
FIG. 2 is a surface temperature distribution diagram in the longitudinal direction of a slab when secondary heating is completed in an I furnace according to a conventional method.
FIG. 3 is a temperature distribution diagram in the longitudinal direction of the slab when the secondary heating is completed in the I furnace for the primary heating by the taper heating method.
FIG. 4 is a temperature distribution diagram in the longitudinal direction of the slab when heating is completed in the I furnace.
FIG. 5 is a diagram showing the relationship between the overheating level at the end of the slab and the increase in the end iron loss value relative to the slab center partial iron loss value.
FIG. 6 is a diagram illustrating a relationship between a heating level deviation and a quality level of a slab center part (a part excluding 1 m part at each end).
FIG. 7 is a temperature distribution diagram in the longitudinal direction of the slab when primary heating is completed according to the application of the present invention.
FIG. 8 is a change diagram of iron loss in the longitudinal direction of a directional electromagnetic steel strip manufactured by application of the present invention.
[Explanation of symbols]
1 Slab (for producing grain-oriented electrical steel sheets)
2 Induction coil 3 Electromagnetic induction furnace (I furnace)
4 Space between both ends of slab and furnace end wall of I furnace

Claims (1)

Siを2%以上含む方向性電磁鋼板製造用スラブを、ガスバーナ加熱炉で1350℃以下の温度で1次加熱後、さらに電磁誘導加熱炉で1400℃〜1480℃の温度で加熱してから熱間圧延する方向性電磁鋼板の製造において、
上記ガスバーナ加熱炉内で、スラブの両端より1m以内の範囲を、それ以外の中央部分における長手方向の平均温度より10℃以上高く加熱し、該中央部分の長手方向各位置の温度を前記平均温度の±10℃以内に抑制することを特徴とする方向性電磁鋼板用スラブの加熱方法。
A slab for producing grain-oriented electrical steel sheets containing 2% or more of Si is first heated in a gas burner heating furnace at a temperature of 1350 ° C. or lower, and further heated in an electromagnetic induction heating furnace at a temperature of 1400 ° C. to 1480 ° C. In the production of the grain-oriented electrical steel sheet to be rolled,
In the gas burner furnace, a range within 1m from both ends of the slab, higher heating 10 ° C. or higher than the longitudinal average temperature in the central portion of the otherwise the average temperature in the longitudinal direction the temperature of each position of the central portion A method for heating a slab for grain-oriented electrical steel sheets, characterized by being controlled within ± 10 ° C.
JP27069093A 1993-10-28 1993-10-28 Heating method of slab for grain-oriented electrical steel sheet Expired - Fee Related JP3716432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27069093A JP3716432B2 (en) 1993-10-28 1993-10-28 Heating method of slab for grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27069093A JP3716432B2 (en) 1993-10-28 1993-10-28 Heating method of slab for grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH07126754A JPH07126754A (en) 1995-05-16
JP3716432B2 true JP3716432B2 (en) 2005-11-16

Family

ID=17489601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27069093A Expired - Fee Related JP3716432B2 (en) 1993-10-28 1993-10-28 Heating method of slab for grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3716432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239012B2 (en) 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip

Also Published As

Publication number Publication date
JPH07126754A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
KR920006581B1 (en) Method of making non-oriented silicon steel sheets having excellent magnetic properties
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP3716432B2 (en) Heating method of slab for grain-oriented electrical steel sheet
JP3531996B2 (en) Method of manufacturing unidirectional electromagnetic steel strip
KR20000065221A (en) Unidirectional Electronic Steel Sheet and Manufacturing Method
JPH0433852B2 (en)
JP2536974B2 (en) Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties
JPH06256858A (en) Cooling method for hot rolled steel sheet
JP2009012033A (en) Method for manufacturing hot-rolled steel strip for grain oriented silicon steel sheet, and method for manufacturing grain oriented silicon steel sheet
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPS585969B2 (en) Manufacturing method of low core loss unidirectional silicon steel sheet
JP2580403B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JPH0580527B2 (en)
JP2533987B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP3301622B2 (en) Method for producing grain-oriented silicon steel sheet having uniform and excellent magnetic properties in the sheet width direction
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3369408B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP4321248B2 (en) Continuous hot rolling equipment line
JP2004285442A (en) Finish-annealing method for grain oriented electrical steel sheet
JPH075977B2 (en) Heating method of continuous cast slab for unidirectional electrical steel sheet in hot rolling
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JP2003277830A (en) Method for manufacturing grain-oriented magnetic steel sheet having magnetic property uniform in sheet-width direction
JPH0826409B2 (en) Manufacturing method of cold rolled steel sheet with excellent press formability by continuous annealing
JPH09111349A (en) Production of high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees