JP3715729B2 - Coal liquefaction method - Google Patents

Coal liquefaction method Download PDF

Info

Publication number
JP3715729B2
JP3715729B2 JP27807696A JP27807696A JP3715729B2 JP 3715729 B2 JP3715729 B2 JP 3715729B2 JP 27807696 A JP27807696 A JP 27807696A JP 27807696 A JP27807696 A JP 27807696A JP 3715729 B2 JP3715729 B2 JP 3715729B2
Authority
JP
Japan
Prior art keywords
coal
temperature
hydrogenation
catalyst
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27807696A
Other languages
Japanese (ja)
Other versions
JPH10121055A (en
Inventor
研二 上杉
和治 田澤
隆雄 兼子
正明 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Mitsubishi Chemical Corp
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Original Assignee
Cosmo Oil Co Ltd
Mitsubishi Chemical Corp
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Mitsubishi Chemical Corp, Idemitsu Kosan Co Ltd, Kobe Steel Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP27807696A priority Critical patent/JP3715729B2/en
Priority to IDP973473A priority patent/ID18586A/en
Publication of JPH10121055A publication Critical patent/JPH10121055A/en
Application granted granted Critical
Publication of JP3715729B2 publication Critical patent/JP3715729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、石炭の液化方法に関し、詳細には、石炭を溶剤及び触媒の存在下で水添する水添工程を含む石炭の液化方法に関する技術分野に属する。
【0002】
【従来の技術】
近年の資源エネルギー事情から石油に替わる液体燃料の開発が強く望まれている。特に、石炭はその埋蔵量が豊富なことから、石炭を効率良く液化して液体燃料を得る技術の確立が重要な課題となっている。
【0003】
このため、従来より石炭の液化方法が種々提案されている。その代表的な石炭の液化方法としては、乾燥及び粉砕された石炭を溶剤と混合してスラリー状混合体とし、これに水素ガスを添加し、予熱器で急速に昇温した後、高温高圧下で水添反応を行う方法があげられる。更に、液化油収率向上の改良方法として、低温で一旦温度を保持する、もしくは低温から徐々に昇温するなどの方法により、石炭の可溶化(低分子化)を予め促進した後、高温で水添反応を行う方法があげられる。
【0004】
【発明が解決しようとする課題】
ところで、褐炭のように比較的若い石炭は、反応性が高く、その熱分解は200 ℃付近での含酸素官能基の分解に始まり、250 ℃から比較的激しくなりはじめ、350 ℃付近からは一酸化炭素や炭化水素ガスの発生とともに活発になり、石炭から熱分解ラジカルが著しく発生し、石炭中のラジカル濃度が急増することが知られている。ここで、石炭中のラジカル濃度は、石炭の熱分解により石炭から生じたラジカル(以下、石炭の熱分解ラジカルという)の石炭中での濃度のことである。
【0005】
前記従来の石炭の液化方法においては、上記の如き石炭の熱分解が比較的激しくなり始める250 ℃から400 ℃の温度範囲において石炭の熱分解ラジカルに対して充分な水素を与えること(水添)が困難であるため、石炭の熱分解ラジカル同士の再結合が起こり、それにより石炭(原料炭)の重縮合化が進行し、究極的には高温でも水素供与による水素化分解(水添)が困難なコーク状の重質物が生成する。
【0006】
その結果、石炭の液化反応性の低下をまぬがれず、又、重質物の生成とともに一方でメタン等のガス成分の収率が増加するため、目的物質である液化油の収率が低くなり、更には、水添のために添加した水素ガスが石炭からのガス生成に消費されて、液化油の生成に有効に使われず、ひいては液化油の製造コストが高くなるという問題点がある。
【0007】
本発明はこの様な事情に着目してなされたものであって、その目的は、前述の如き石炭の熱分解に由来する望ましくない反応を抑制することにより、前記従来の石炭の液化方法の場合に比較し、水素ガスの消費量を低減し得、又、液化油を高い収率で得ることができる石炭の液化方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る石炭の液化方法は、請求項1〜記載の石炭の液化方法としており、それは次のような構成としたものである。即ち、請求項1記載の石炭の液化方法は、石炭を溶剤及び触媒の存在下で水添する水添処理工程を含む石炭の液化方法において、触媒として250℃以下の温度でピロータイトに転換する鉄化合物を用い、250〜400℃の温度で低温水添した後、この低温水添後の石炭、溶剤及び触媒を含む混合体から溶剤の一部を分離して混合体中の石炭濃度を40〜60質量%にし、この後、前記低温水添での温度よりも高い温度で高温水添することにより、水添することを特徴とする石炭の液化方法である(第1発明)。
【0010】
請求項記載の石炭の液化方法は、前記触媒としての鉄化合物が水酸化鉄を主体とする鉄化合物である請求項記載の石炭の液化方法である(第発明)。請求項記載の石炭の液化方法は、前記石炭が褐炭である請求項1又は2記載の石炭の液化方法である(第発明)。
【0011】
【発明の実施の形態】
本発明は石炭の液化方法に係わり、例えば次のようにして実施する。
石炭に溶剤を添加し、更に触媒として250 ℃以下の温度でピロータイトに転換する鉄化合物を添加して、スラリー状混合体を得る。次に、このスラリー状混合体に水素を添加し、そして、250 〜400 ℃の温度T1で低温水添し、その後、該低温水添での温度T1よりも高い温度T2で高温水添する。ここで、高温水添での温度T2は、充分に水添反応が起こる温度とし、通常は400 〜500 ℃とする。これらの水添温度については適宜選定され、例えば、低温水添温度T1を350 ℃、高温水添温度T2を450 ℃とする。
【0012】
このようにすると、前述の如き石炭の熱分解に由来する望ましくない反応が抑制され、その結果、前記従来の石炭の液化方法の場合に比較し、水素ガスの消費量を低減し得、又、液化油を高い収率で得ることができる。
【0013】
即ち、触媒として250 ℃以下の温度でピロータイトに転換する鉄化合物を添加し用いているので、この触媒として添加した鉄化合物は250 ℃以下の温度でピロータイトに転換し、その結果、温度T1(250 〜400 ℃)での低温水添の段階において触媒はピロータイトとして存在している。このように触媒がピロータイトとして存在すると、石炭の熱分解が比較的激しくなり始める250 ℃から400 ℃の温度範囲においても石炭の熱分解ラジカルに対して効果的に充分な水素を供与し得る。故に、温度T1(250 〜400 ℃)での低温水添の段階において、石炭の熱分解ラジカルに対して効果的に充分な水素が供与される。
【0014】
そのため、石炭の熱分解ラジカル同士の再結合が抑制される。その結果、脱水素反応や石炭の重縮合化反応が抑制され、そのため高温でも水素化分解(水添)が困難なコーク状の重質物の生成が抑制される。
【0015】
そして、かかる低温水添の後に、低温水添での温度T1よりも高い温度T2での高温水添が行われるので、この高温水添段階において水素化分解(水添)が円滑に起こり、又、そのために水素ガスが液化油の生成に有効に使われる。
【0016】
従って、前記従来の石炭の液化方法の場合に比較し、水素ガスの消費量が少なく、又、液化油を高い収率で得ることができる。
【0017】
かかる本発明の実施の形態からもわかるように、本発明に係る石炭の液化方法によれば、前述の如き石炭の熱分解に由来する望ましくない反応が抑制され、その結果、前記従来の石炭の液化方法の場合に比較し、水素ガスの消費量を低減し得、又、液化油を高い収率で得ることができる。
【0018】
この詳細を以下説明する。
【0019】
本発明者らは、石炭の熱分解過程と発生する熱分解ラジカルの挙動および水素供与による熱分解ラジカルの安定化などについて詳細に検討した。その結果、石炭の熱分解は、200 ℃付近から始まり、250 ℃から比較的激しくなり始め、特に350 ℃付近から活発になり、石炭の熱分解ラジカル濃度が急増するが、触媒として250 ℃以上の温度でピロータイトとして存在する触媒を用いることにより、250 〜400 ℃の温度範囲においても石炭の熱分解ラジカルに対して効果的に充分な水素を供与し得、それ故に、250 〜400 ℃の温度における石炭の熱分解ラジカル同士の再結合を抑制し得るという新規知見を得た。
【0020】
そして、この抑制により、脱水素反応や石炭の重縮合化反応などの望ましくない逆反応が抑制され、そのため高温でも水素化分解(水添)が困難なコーク状の重質物の生成等が抑制されるなど、反応性に乏しい重縮合物の生成が抑制され、その結果、高温での水添処理において炭化水素ガスの発生量が減少すると共に、水添が円滑に起こり、又、そのために水素ガスが液化油の生成に有効に使われ、ひいては、水素ガスの消費量が少なく、又、有用な液化油を高い収率で得ることができることを見出した。
【0021】
本発明は、かかる知見に基づきなされたものである。即ち、本発明に係る石炭の液化方法(第1発明)は、前記の如く、石炭を溶剤及び触媒の存在下で水添する水添処理工程を含む石炭の液化方法において、触媒として250 ℃以下の温度でピロータイトに転換する鉄化合物を用い、250 〜400 ℃の温度で低温水添した後、該低温水添での温度よりも高い温度で高温水添することにより、水添することとしている。故に、本発明に係る石炭の液化方法によれば、前述の如き石炭の熱分解に由来する望ましくない反応が抑制され、その結果、前記従来の石炭の液化方法の場合に比較し、水素ガスの消費量を低減し得、又、液化油を高い収率で得ることができる。
【0022】
本発明において、低温水添は250 〜400 ℃の温度で行う必要がある、即ち、低温水添の際の温度は250 〜400 ℃にする必要がある。この理由を以下説明する。
【0023】
低温水添の際の温度が250 ℃より低い場合は、石炭の熱分解が非常に緩やかであるため、発生する熱分解ラジカルの濃度も低く、石炭内の水素移動によっても充分な水素供与が可能であり、重縮合物の生成も認められない。即ち、250 ℃より低い温度領域では、熱分解ラジカルの安定化に必要な水素の量は極めて少ないため、低温水添をして充分な水素供与を行う必要がないと共に低温水添をしてもその効果は得られない。一方、400 ℃より高い温度では石炭の熱分解が活発になりすぎて、石炭の熱分解ラジカル濃度が急増しすぎるため、石炭の熱分解ラジカルに対する水素供与が追いつかなくて不充分となり、ひいては、水素ガスの消費量を低減し得ず、又、液化油を高い収率で得ることができない。従って、石炭の熱分解が比較的緩やかで、石炭の熱分解ラジカルの生成速度と石炭の熱分解ラジカルに対する水素供与速度とがつり合う250 〜400 ℃の温度とする必要があり、これにより、石炭の熱分解ラジカルに対して水素供与が充分になされ、石炭の熱分解ラジカル同士の再結合による重質物の生成が抑制されるからである。
【0024】
低温水添の際の処理時間は10〜60分程度が適当である。処理温度が高いほど処理時間は短くてよいが、350 ℃で30分程度の処理が好ましく用いられる。
【0025】
触媒は、本発明において前述の如き重要な役割を果たすものであり、触媒として添加され用いられる鉄化合物は250 ℃以下の温度でピロータイトに転換される必要がある。
【0026】
ここで、鉄化合物のピロータイトへの転換の温度を250 ℃以下としたのは、次の理由による。即ち、石炭の熱分解は250 ℃から比較的激しく起こり始めるが、触媒として用いた鉄化合物のピロータイトへの転換の温度が250 ℃より高い場合には、250 ℃からこの転換温度の間に発生した熱分解ラジカルに対しては充分な水素供与が行われず、重縮合物が生成してしまう。従って、低温水添の温度が高い場合でも、鉄化合物のピロータイトへの転換の温度は250 ℃以下であることが必要である。
【0027】
250 ℃以下の温度でピロータイトに転換する鉄化合物は、次のような方法により調査し、確認することができる。
【0028】
即ち、鉄化合物は一般に硫黄や硫黄化合物により硫化され、硫化鉄化合物に変化する。この硫化鉄化合物はその形態により、ピロータイト(Fe1-XS)、トロイライト(FeS) 、パイライト(FeS2)等があるが、これらは粉末X線回折でのピーク位置が異なるため、判別は容易である。従って、調査・確認対象の鉄化合物を250 ℃以下の温度で硫化して硫化鉄化合物とし、これを粉末X線回折することにより、調査・確認し得る。このとき、硫化させる温度を変化させると、鉄化合物がピロータイトに転換する温度もわかる。
【0029】
本発明者らは、このような調査・確認の方法を用いて、鉄化合物のピロータイトへの硫化挙動や、ピロータイトの触媒作用について鋭意検討した。その結果、ピロータイトの触媒作用とその活性の程度、及び、鉄化合物が硫化鉄化合物に変化する温度や、ピロータイトに転換する温度は、鉄化合物の種類によって異なり、特に水酸化鉄を主体とする鉄化合物が250 ℃以下の低温で硫化され、ピロータイトに変化(転換)し、高い触媒活性を示すことを見出した。かかる点から、前記触媒としての鉄化合物に水酸化鉄を主体とする鉄化合物を用いることが望ましい(第発明)。
【0030】
本発明において触媒は前述の如き重要な役割を果たし、石炭の熱分解が比較的激しく起こり始める250 ℃から石炭の熱分解ラジカルに対して水素を供与して石炭の熱分解ラジカルを安定化し、その再結合を抑制する働きをする。又、250 〜400 ℃の温度での低温水添により、固体石炭の可溶化が進行するため、触媒の分散の向上が図られ、触媒と反応物(石炭)との接触が良好になり、その結果、高温水添が効率良く行われることも、低温水添の働きとして考えられる。
【0031】
石炭の熱分解ラジカルに対する水素供与は、溶剤中に含まれる水素や触媒上で活性化された水素により行われるので、触媒の水素化活性が高い程、溶剤の水素化も良く進行し、ひいては、石炭の熱分解ラジカルに対する充分な水素供与等の本発明の作用効果がより発揮される。
【0032】
触媒の添加量については、一般的に無水無灰炭基準の石炭に対して0.5 〜10.0質量%であるが、触媒の活性が高いほど少量ですみ、経済的に有利である。かかる点から、触媒活性が高い本発明に係る触媒の場合、触媒に含まれる鉄量が無水無灰炭基準の石炭に対して0.5 〜5.0 質量%となるようにすることが好ましい。又、触媒としては溶剤中に触媒が高分散するように平均粒子径:2μm 以下に微粉砕したものが活性が高くて好ましい。
【0033】
本発明において、低温水添の際に、石炭、溶剤及び触媒を含むスラリー状混合体に添加された水素は、混合体中の溶剤中に溶解し、触媒によって活性化されて石炭の熱分解ラジカルを前述の如く安定化するが、その他に、溶剤の一部を水素化して溶剤の水素供与能力を保つ働きをする。かかる水添の際の水素添加は、純水素の添加に限定されるものではなく、水素を含むガスの添加により行えばよく、水素と炭化水素ガス等との混合ガスの添加によって行ってもよい。
【0034】
溶剤は石炭を溶解するばかりでなく、石炭の熱分解ラジカルへ迅速に水素を供与する働きを有する。溶剤としては、その種類は特に制限されないが、通常は石炭液化反応(プロセス)で生成した中重質油、液化残渣、又、この残渣の脱灰物等の混合物を石炭液化プロセス内で循環させて使用する。
【0035】
尚、石炭及び触媒に溶剤を混合することは、従来より行われているが、従来は石炭の脱水や、安定な石炭スラリーを取り扱い易い粘度に調製して液化反応器に供給することを目的としている。これに対し、本発明の場合は、一目的として石炭の熱分解に由来する望ましくない反応の抑制があり、溶剤は前記の如く石炭の熱分解ラジカルへ迅速に水素を供与する作用効果があるので、溶剤の混合の最適条件(溶剤の種類、混合量等)が従来の場合と自ずと異なる。従って、本発明の場合は、かかる本発明の目的や溶剤の作用効果も考慮して溶剤の混合を行うことが望ましい。
【0036】
ところで、前記250 〜400 ℃の温度での低温水添の後、石炭、溶剤及び触媒を含む混合体(スラリー状混合体)から溶剤の一部を分離して混合体中の石炭濃度を40〜60質量%に高めても、この混合体は粘度が未だ充分に低く、取り扱いが容易であり、支障はない。そこで、このように低温水添後の混合体中の石炭濃度を40〜60質量%に高め、しかる後、高温水添をするようにすると、高温水添において石炭と触媒との接触効率が向上し、ひいては液化油収率をより向上し得、又、高温水添での単位時間・単位容積当たりの石炭処理量が増大する(第発明)。この詳細を以下説明する。
【0037】
一般的に石炭液化プロセスにおいて、スラリー状混合体中の石炭濃度が高い方が経済的に有利であるが、石炭濃度を高くするとスラリー状混合体の粘度が高くなるため、その取り扱いが困難となる。そこで、スラリー状混合体中の石炭濃度は、その混合体の取り扱いに支障がない濃度に設定される。従来の石炭液化方法の場合、この石炭濃度は低く、特に、褐炭の場合は、細孔構造が発達しているため、溶剤の一部が褐炭の細孔に吸収され、スラリー状混合体の粘度が高くなることから、スラリー状混合体中の石炭濃度は25〜35質量%という低い濃度に制限されることが多く、かかる低い濃度に設定する必要があった。そのため、従来の石炭液化方法の場合、反応器容積に対して処理できる石炭の量が少なく、装置容積効率が低く、又、石炭と触媒との接触効率が低く、液化油収率が低かった。
【0038】
これに対し、本発明においては、前記250 〜400 ℃の温度での低温水添において石炭が加熱されることにより、石炭の細孔が収縮して石炭の改質がなされ、そのため低温水添後ではスラリー状混合体の粘度は著しく低下する。このため、スラリー状混合体の粘度を保つのに必要であった溶剤の一部は不要となり、この不要な溶剤の全部あるいは一部を分離しても支障がなく、この分離により混合体中の石炭濃度を40〜60質量%に高めることができる。尚、上記不要な溶剤量を超える量の溶剤を分離すると、石炭濃度を60質量%超にすることができるが、そうするとスラリー状混合体は取り扱いに支障を来すほどに粘度が高くなるので、溶剤分離後の石炭濃度は60質量%以下にする必要がある。
【0039】
そこで、このように低温水添後の混合体中の石炭濃度を40〜60質量%に高め、しかる後、高温水添をするようにすると、高温水添において石炭と触媒との接触効率が向上し、そのため、触媒により活性化された水素を効率よく石炭に供与して水添し得、ひいては液化油収率をより向上し得る。又、混合体中の石炭濃度が40〜60質量%と高いので、従来の石炭液化方法の場合よりも、高温水添での単位時間・単位容積当たりの石炭処理量が増大し、そのため、反応器容積に対して処理できる石炭の量が多く、装置容積効率が高くなり、又、反応器容積を小さくしても充分な石炭処理量を確保でき、反応器の小型化が図れるようになる。
【0040】
本発明に係る石炭の液化方法は、より具体的には例えば図1に示す装置及びプロセスフローにより行われる。その詳細を図1を用いて以下説明する。
【0041】
先ず、石炭スラリー調製槽(1) に、乾燥、粉砕された石炭と、気液分離器(4) 及び蒸留塔(8) から回収された循環溶剤と、触媒(250 ℃以下の温度でピロータイトに転換する鉄化合物)と、硫黄等の助触媒とを供給し、これらを混合してスラリー状混合体を得る。このスラリー状混合体を、予熱器又は熱交換器(2) を経て低温水添反応器(3) に輸送する。この輸送の間に、水素源として水素ガス又は水素含有混合ガスが添加され、触媒はピロータイトに硫化され転換される。
【0042】
低温水添反応器(3) では、温度250 〜400 ℃、時間10〜60分程度の条件で低温水添を行わせる。この段階において、石炭の一部が熱分解し、炭酸ガス及び水が発生すると共に、石炭への水素添加(石炭の熱分解ラジカルへの水素供与)が行われ、又、石炭中の重質物の石炭液化溶剤(循環溶剤)への抽出や溶解及び抽出された重質物の軽質化などと共に石炭内の細孔の収縮などが起こる。
【0043】
上記低温水添の完了後、低温水添反応器(3) の上部からガス成分と溶剤の一部を回収し、気液分離器(4) によりガス成分と溶剤とに分離した後、溶剤は石炭スラリー調製槽(1) へ、水素を含むガス成分は高温水添反応器(5) へ供給される。一方、低温水添反応器(3) の下部からは、未反応の石炭、反応生成物、残りの溶剤、及び、触媒を含むスラリー状混合体が抜き出され、高温水添反応器(5) に導入される。尚、この導入の過程で新たに水素を供給することもできる。高温水添反応器(5) としては、連続攪拌槽型あるいは流通式管型または気泡塔型のもの等が用いられる。
【0044】
高温水添反応器(5) では、前記低温水添の場合よりも高い400 〜500 ℃程度の温度で高温水添(即ち液化反応)を行わせる。この段階において、石炭は循環溶剤による抽出、溶解、触媒による水素化、水素化分解反応等を受けて更に軽質化され、所望の目的物に変化する。
【0045】
上記高温水添の完了後、反応混合物は気液分離器(6) に導かれ、気体成分が分離される。残った液体、固体成分は、溶剤脱灰等の固液分離装置(7) により、液体と固体成分とに分離された後、液体成分を蒸留塔(8) に送給し、軽質油、中・重質油が製品として分離される。この中・重質油の一部を石炭液化循環溶剤として回収し、石炭スラリー調製槽(1) に循環供給する。
【0046】
本発明において、石炭としては、褐炭等の低炭化度炭の他、亜瀝青炭や瀝青炭を使用することができるが、特に、褐炭に有利に使用することができる(第発明)。それは、褐炭は前述の如く石炭の熱分解ラジカルが生じ易く、従来法では石炭の熱分解ラジカルに起因する望ましくない反応が起こり易いが、本発明法ではこの反応を抑制し得、その効果が顕著であるからである。かかる点から、褐炭の中でも、JIS M 1002で定義される発熱量:7300Kcal/Kg (無水無鉱物質基準)以下の褐炭に属する石炭を有利に使用することができる。これらの石炭は通常、水分:15%程度以下に乾燥された後、約60メッシュより細かい粒度に粉砕されてから使用され、その場合、本発明法によってより効率良く石炭液化を行うことができる。
【0047】
溶剤分離や油分分離の際の溶剤や油分或いは固形分の分離操作方法としては、特には限定されず、蒸留の他に、濾過等の手段も採用できる。蒸留の場合には、所望の目的物に適した蒸留条件を適宜選択することができる。
【0048】
【実施例】
本発明の実施例を以下説明するが、本発明はその要旨を越えない限り、これら実施例に限定されるものではない。尚、以降の実施例、比較例に記述する石炭転化率、収率の値は、すべて無水無灰炭基準での値である。
【0049】
〔触媒(鉄化合物)のピロータイトへの転換温度に関する調査試験〕
オートクレーブを用い、触媒として鉄化合物、触媒中の鉄含有量に対して原子比で2.0 倍相当の硫黄、及び、液化反応で得た留出油(以下、プロセス溶剤という)を含むスラリー状混合体に水素を加えて150 〜450 ℃の温度で30分間の硫化処理を行い、その後、触媒(鉄化合物)のピロータイトへの転換率を求め、それにより触媒(鉄化合物)がピロータイトに100 %転換する温度を調べた。
【0050】
このとき、触媒(鉄化合物)としては、γ−オキシ水酸化鉄、リモナイト鉄鉱石、パイライト鉄鉱石、又は、転炉ダスト(酸化鉄)をそれぞれ単独で用いた。触媒(鉄化合物)のピロータイトへの転換率は、次のようにして求めた。即ち、テトラヒドロフラン(THF)を用いた溶剤分別法により、硫化処理後のスラリー状混合体から触媒をTHF 不溶分として分離し回収し、次に、この触媒を乾燥した後、粉末X線回折法を用いて、ピロータイトの量を測定し、触媒(鉄化合物)のピロータイトへの転換率を求めた。
【0051】
その結果を表1に示す。触媒(鉄化合物)がピロータイトに100 %転換する温度は、パイライト鉄鉱石の場合で350 ℃、転炉ダストの場合で400 ℃であるが、これに対して、γ−オキシ水酸化鉄や、リモナイト鉄鉱石の場合は低く、200 ℃でピロータイトに100 %転換することがわかる。従って、これらの中、γ−オキシ水酸化鉄、リモナイト鉄鉱石はいずれも、250 ℃以下の温度でピロータイトに転換する鉄化合物であり、本発明に係る触媒に該当することがわかる。
【0052】
【表1】

Figure 0003715729
【0053】
【表2】
Figure 0003715729
【0054】
【表3】
Figure 0003715729
【0055】
〔実施例1〕
用いた原料石炭の種類、触媒(鉄化合物)の種類、低温水添条件、及び、高温水添条件を、表2に示す。
【0056】
先ず、原料石炭として豪州ヤルーン褐炭〔発熱量5930Kcal/Kg(無水無鉱物質基準)、燃料比0.89〕、溶剤としてプロセス溶剤を用い、これら両者を混合して無水無灰炭基準で石炭濃度を28質量%に調製した後、これに対して触媒として平均粒子径0.5 μm のγ−オキシ水酸化鉄を無水無灰炭基準の石炭に対して4.8 質量%になるように加え、更に触媒中の鉄含有量に対して原子比で2.0 倍相当の硫黄を加えてスラリー状混合体を得た。次に、このスラリー状混合体をオートクレーブ(内容積30cc)中に導入した後、水素を導入して水素初圧:15.0MPa にして加圧し、温度350 ℃、時間30分の条件で低温水添を行い、引き続き、450 ℃まで昇温し、温度450 ℃、時間60分の条件で高温水添を行った。
【0057】
上記高温水添の終了後、水添反応生成物を分離し、そして溶剤分別法により区分して、石炭転化率、オイル分収率等を調べた。その結果を表3に示す。表3からわかる如く、石炭転化率は98.5質量%であり、オイル分(n-ヘキサン可溶分)の収率(以下、オイル収率という)は66.5質量%であった。また、ガス成分の収率は16.0質量%、水素消費量は5.5 質量%であった。水素の利用効率(オイル収率/水素消費量、即ち水素消費量当たりのオイル収率)は12.1であった。
【0058】
〔実施例2〕
実施例1と同様の方法(条件、手順)により同様の組成のスラリー状混合体を得、そして、実施例1と同様の方法(条件、装置、手順)により低温水添を行った。この低温水添の終了後、スラリー状混合体中からn-ヘキサン不溶分(石炭、触媒を含む)をn-ヘキサン可溶分と分離して回収し、このn-ヘキサン不溶分に対して、原料石炭の100 質量%(無水無灰炭基準)に相当する量のプロセス溶剤を加えてスラリー状混合体となし、スラリー状混合体中の石炭濃度を50質量%に調節した。しかる後、水素を再び導入して水素初圧:15.0MPa にし、450 ℃まで昇温し、温度450 ℃、時間60分の条件で高温水添を行った。そして、この高温水添の後、実施例1と同様の方法により、石炭転化率等を調べた。その結果を表3に示す。
【0059】
尚、本発明では、低温水添後にスラリー状混合体から溶剤の一部を分離して石炭濃度:40〜60質量%にし、その後、高温水添するのに対し、本実施例2では、装置としてオートクレーブを用いているため、低温水添後にスラリー状混合体から溶剤の一部を分離することは困難であり、そのため、低温水添後にスラリー状混合体から一旦n-ヘキサン可溶分(溶剤)とn-ヘキサン不溶分とを分離して回収し、このn-ヘキサン不溶分にプロセス溶剤を加えて石炭濃度:50質量%のスラリー状混合体となし、その後、水素を再び導入して高温水添している。このように、本実施例2では、スラリー状混合体から溶剤の一部を分離するのではなく、一旦溶剤を分離してから新たにプロセス溶剤を加えている点を含み、この点は本発明の場合と相違する。しかしながら、これは上記の如く装置としてオートクレーブを用いていることに起因し、実験の都合によるものであり、実質的には、スラリー状混合体から溶剤の一部を分離していることに相当する。従って、本実施例2は、実質的には本発明の一実施例に相当する。
【0060】
実施例2において上記の如くして得られた石炭濃度:50質量%のスラリー状混合体は、実機において溶剤の一部を分離して得られる石炭濃度:50質量%のスラリー状混合体と実質的に同じものである。そして、これらは、粘度が未だ充分に低く、スラリー状混合体として取り扱いが容易であり、取り扱いに支障を来すものではないことが確認された。尚、後述の実施例3及び5における低温水添、石炭濃度調整後のスラリー状混合体も、上記実施例2に係るスラリー状混合体の場合と同様であり、粘度が充分に低く、スラリー状混合体として取り扱いに支障を来すものではなかった。
【0061】
実施例2においては前記の如く装置としてオートクレーブを用いていることに起因し、一旦溶剤を分離してから新たにプロセス溶剤を加えている点を含み、また、高温水添に際して水素を再び導入する点を含むが、図1に例示する装置等の如き実機では、低温水添後に連続してスラリー状混合体から溶剤の一部を分離して石炭濃度:40〜60質量%にし得、その後、それを高温水添工程に送ることができ、そして、水素を再び導入することなく、高温水添することができる。
【0062】
〔実施例3〕
触媒としてγ−オキシ水酸化鉄に代えてリモナイト鉄鉱石(水酸化鉄の一種)を用いた。この点を除き実施例2と同様の方法により、スラリー状混合体の準備、低温水添、石炭濃度の調整、高温水添を行った。その後、実施例1と同様の方法により、石炭転化率等を調べた。その結果を表3に示す。
【0063】
〔実施例4〕
原料石炭として、豪州ヤルーン褐炭に代えてインドネシアバンコ炭〔発熱量:6640Kcal/Kg(無水無鉱物質基準)、燃料比0.94〕を用いた。この点を除いて実施例1と同様の方法により、スラリー状混合体の準備、低温水添、高温水添を行った。その後、実施例1と同様の方法により、石炭転化率等を調べた。その結果を表3に示す。
【0064】
〔実施例5〕
原料石炭として、豪州ヤルーン褐炭に代えてインドネシアバンコ炭〔発熱量:6640Kcal/Kg(無水無鉱物質基準)、燃料比0.94〕を用いた。この点を除いて実施例2と同様の方法により、スラリー状混合体の準備、低温水添、石炭濃度の調整、高温水添を行った。その後、実施例1と同様の方法により、石炭転化率等を調べた。その結果を表3に示す。
【0065】
〔比較例1〕
触媒として、γ−オキシ水酸化鉄に代えて平均粒子径0.5 μm に微粉砕した天然パイライト鉄鉱石を用い、その添加量を石炭に対して7.0 質量%(無水無灰炭基準)とした。この点を除き実施例1と同様の方法により、スラリー状混合体の準備、低温水添、高温水添を行った。その後、実施例1と同様の方法により、石炭転化率等を調べた。その結果を表3に示す。
【0066】
〔比較例2〕
低温水添をせず、この点を除き実施例1と同様の方法により水添を行った。即ち、実施例1と同様のスラリー状混合体を準備した後、このスラリー状混合体をオートクレーブ(内容積30cc)中に導入した後、水素を導入して水素初圧:15.0MPa にして加圧し、温度450 ℃、時間60分の条件で高温水添を行った。その後、実施例1と同様の方法により、石炭転化率等を調べた。その結果を表3に示す。
【0067】
以上の実施例及び比較例より、次のことがわかる。
実施例1の場合、比較例1の場合に比較し、石炭転化率、オイル収率、及び、水素利用効率が高い。これは、触媒としてパイライト鉄鉱石(ピロータイトへの転換温度:350℃)を用いるよりも、γ−オキシ水酸化鉄(ピロータイトへの転換温度:250℃以下)を用いた方が、水素ガスの消費量を低減し得、又、液化油を高い収率で得ることができ、液化反応成績が向上することを示している。
【0068】
比較例2の場合に比較し、実施例1の場合、石炭転化率、オイル収率、及び、水素利用効率が高い。これは、低温水添をすることなく高温水添する場合よりも、低温水添した後に高温水添する場合の方が、液化反応成績が向上することを示している。
【0069】
実施例2の場合、実施例1の場合に比較し、石炭転化率、オイル収率、及び、水素利用効率が高い。これは、低温水添後のスラリー状混合体中の石炭濃度を50質量%に高めることにより、液化反応成績が向上することを示している。
【0070】
実施例3の場合、実施例2の場合と比較すると、石炭転化率、オイル収率、及び、水素利用効率において殆ど差がなく、液化反応成績が同等である。これは、触媒としてリモナイト鉄鉱石(水酸化鉄の一種)を用いた場合も、γ−オキシ水酸化鉄を用いた場合と同等の優れた液化反応成績が得られることを示している。
【0071】
実施例4の場合と実施例5の場合とを比較すると、実施例5の場合の方が、石炭転化率、オイル収率、及び、水素利用効率が高い。これは、原料石炭として豪州ヤルーン褐炭を用いた場合だけでなく、インドネシアバンコ炭を用いた場合も、低温水添後のスラリー状混合体中の石炭濃度を50質量%に高めることにより、液化反応成績が向上することを示している。
【0072】
【発明の効果】
本発明に係る石炭の液化方法によれば、従来の石炭の液化方法の場合に比較して、石炭の熱分解に由来する望ましくない反応が抑制され、その結果、水素ガスの消費量を低減し得、又、液化油を高い収率で得ることができるようになる。
【図面の簡単な説明】
【図1】 本発明に係る石炭の液化方法の一例の概要を示す図である。
【符号の説明】
(1)-- 石炭スラリー調製槽、(2)-- 熱交換器、(3)-- 低温水添反応器、
(4)-- 気液分離器、(5)-- 高温水添反応器、(6)-- 気液分離器、
(7)-- 固液分離装置、(8) --蒸留塔。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coal liquefaction method, and particularly relates to a technical field relating to a coal liquefaction method including a hydrogenation step of hydrogenating coal in the presence of a solvent and a catalyst.
[0002]
[Prior art]
In recent years, development of liquid fuels to replace petroleum has been strongly desired due to the resource and energy situation. In particular, since coal has abundant reserves, establishment of a technology for obtaining liquid fuel by efficiently liquefying coal is an important issue.
[0003]
For this reason, various coal liquefaction methods have been proposed. As a typical coal liquefaction method, dry and pulverized coal is mixed with a solvent to form a slurry mixture, hydrogen gas is added thereto, the temperature is rapidly raised with a preheater, The method of performing a hydrogenation reaction is mentioned. Furthermore, as an improved method for improving the yield of liquefied oil, the solubilization (low molecular weight) of coal is promoted in advance by maintaining the temperature once at a low temperature or gradually increasing the temperature from a low temperature. The method of performing a hydrogenation reaction is mention | raise | lifted.
[0004]
[Problems to be solved by the invention]
By the way, relatively young coals such as lignite are highly reactive, and their thermal decomposition begins with the decomposition of oxygen-containing functional groups at around 200 ° C, starts to become relatively intense from 250 ° C, and reaches a low level from around 350 ° C. It is known that it becomes active with the generation of carbon oxide and hydrocarbon gas, pyrolytic radicals are remarkably generated from coal, and the radical concentration in coal increases rapidly. Here, the radical density | concentration in coal is a density | concentration in coal of the radical (henceforth a coal pyrolysis radical) produced from coal by thermal decomposition of coal.
[0005]
In the conventional coal liquefaction method, sufficient hydrogen is given to the pyrolysis radicals of the coal in the temperature range of 250 ° C. to 400 ° C. where the thermal decomposition of the coal becomes relatively intense as described above (hydrogenation). Because of this, it is difficult to recombine the pyrolysis radicals of coal, which causes the polycondensation of coal (coking coal) to proceed, and ultimately hydrogenolysis (hydrogenation) by hydrogen donation even at high temperatures. Difficult coke-like heavy material is formed.
[0006]
As a result, the decrease in the liquefaction reactivity of coal cannot be avoided, and the yield of gas components such as methane increases with the formation of heavy substances, so the yield of liquefied oil as the target substance decreases, and However, the hydrogen gas added for hydrogenation is consumed for gas generation from coal and is not used effectively for the generation of liquefied oil, which in turn increases the production cost of liquefied oil.
[0007]
The present invention has been made paying attention to such a situation, and its purpose is to suppress the undesirable reaction derived from the thermal decomposition of coal as described above, in the case of the conventional coal liquefaction method. Compared to the above, it is an object of the present invention to provide a coal liquefaction method capable of reducing the consumption of hydrogen gas and obtaining liquefied oil in a high yield.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for liquefying coal according to the present invention comprises: 3 The described coal liquefaction method is configured as follows. That is, the coal liquefaction method according to claim 1 is a coal liquefaction method including a hydrogenation treatment step in which coal is hydrogenated in the presence of a solvent and a catalyst, and is converted into a pilotite at a temperature of 250 ° C. or less as a catalyst. After low-temperature hydrogenation at a temperature of 250 to 400 ° C. using an iron compound, A part of the solvent is separated from the mixture containing coal, solvent and catalyst after this low-temperature hydrogenation to make the coal concentration in the mixture 40 to 60% by mass, A coal liquefaction method characterized in that hydrogenation is performed by high-temperature hydrogenation at a temperature higher than that in low-temperature hydrogenation (first invention).
[0010]
Claim 2 The coal liquefaction method according to claim 1, wherein the iron compound as the catalyst is an iron compound mainly composed of iron hydroxide. 1 The coal liquefaction method according to the description (No. 2 invention). Claim 3 The coal liquefaction method according to claim 1, wherein the coal is lignite. Or 2 The coal liquefaction method according to the description (No. 3 invention).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a coal liquefaction method and is carried out, for example, as follows.
A solvent is added to coal, and an iron compound that is converted to pyrotite at a temperature of 250 ° C. or lower is added as a catalyst to obtain a slurry-like mixture. Next, hydrogen is added to the slurry mixture and a temperature T of 250-400 ° C. 1 At low temperature hydrogenation, and then the temperature T in the low temperature hydrogenation 1 Higher temperature T 2 Heat at high temperature. Here, temperature T in high temperature hydrogenation 2 Is a temperature at which a hydrogenation reaction occurs sufficiently, and is usually 400 to 500 ° C. These hydrogenation temperatures are appropriately selected. For example, the low temperature hydrogenation temperature T 1 350 ℃, high temperature hydrogenation temperature T 2 Is 450 ° C.
[0012]
In this way, undesirable reactions resulting from the thermal decomposition of coal as described above are suppressed, and as a result, the consumption of hydrogen gas can be reduced compared to the conventional coal liquefaction method, A liquefied oil can be obtained with a high yield.
[0013]
That is, since an iron compound that is converted to pyrotite at a temperature of 250 ° C. or less is added and used as a catalyst, the iron compound added as a catalyst is converted to pyrotite at a temperature of 250 ° C. or less. 1 In the stage of low-temperature hydrogenation at (250 to 400 ° C.), the catalyst exists as a pilotite. Thus, when the catalyst is present as a pyrotite, sufficient hydrogen can be effectively supplied to the pyrolysis radicals of the coal even in the temperature range of 250 ° C. to 400 ° C. where the pyrolysis of the coal starts to become relatively intense. Therefore, temperature T 1 In the stage of low-temperature hydrogenation at (250-400 ° C.), sufficient hydrogen is effectively donated to the pyrolytic radicals of the coal.
[0014]
Therefore, recombination between the pyrolysis radicals of coal is suppressed. As a result, the dehydrogenation reaction and the coal polycondensation reaction are suppressed, so that the production of coke-like heavy materials that are difficult to hydrocrack (hydrogenation) even at high temperatures is suppressed.
[0015]
And after such low temperature hydrogenation, the temperature T in low temperature hydrogenation 1 Higher temperature T 2 Therefore, hydrogenolysis (hydrogenation) occurs smoothly in this high-temperature hydrogenation stage, and hydrogen gas is effectively used for the production of liquefied oil.
[0016]
Therefore, compared with the conventional coal liquefaction method, the amount of hydrogen gas consumed is small, and liquefied oil can be obtained in a high yield.
[0017]
As can be seen from the embodiment of the present invention, according to the coal liquefaction method of the present invention, the undesirable reaction derived from the thermal decomposition of coal as described above is suppressed. Compared to the case of the liquefaction method, the consumption of hydrogen gas can be reduced, and the liquefied oil can be obtained in a high yield.
[0018]
Details will be described below.
[0019]
The present inventors have examined in detail the thermal decomposition process of coal, the behavior of the generated thermal decomposition radical, the stabilization of the thermal decomposition radical by hydrogen donation, and the like. As a result, pyrolysis of coal begins at around 200 ° C, begins to become relatively intense at 250 ° C, and becomes particularly active around 350 ° C. The concentration of pyrolysis radicals in coal increases rapidly, but as a catalyst, By using a catalyst that exists as a pyrotite at a temperature, it can effectively donate enough hydrogen to the pyrolysis radicals of coal even in the temperature range of 250-400 ° C, and hence a temperature of 250-400 ° C. The new knowledge that recombination of pyrolysis radicals of coal in coal can be suppressed is obtained.
[0020]
This suppression suppresses undesirable reverse reactions such as dehydrogenation and coal polycondensation, thereby suppressing the formation of coke-like heavy materials that are difficult to hydrocrack (hydrogenation) even at high temperatures. As a result, the generation of polycondensates with poor reactivity is suppressed, and as a result, the amount of hydrocarbon gas generated in the hydrogenation process at high temperature is reduced and hydrogenation occurs smoothly. Has been found to be used effectively in the production of liquefied oil, and consequently, the consumption of hydrogen gas is small, and useful liquefied oil can be obtained in high yield.
[0021]
The present invention has been made based on such findings. That is, the coal liquefaction method (first invention) according to the present invention is a coal liquefaction method including a hydrogenation treatment step in which coal is hydrogenated in the presence of a solvent and a catalyst as described above. Using an iron compound that converts to pyrotite at a temperature of 250 ° C. to 400 ° C., followed by low-temperature hydrogenation, followed by high-temperature hydrogenation at a temperature higher than that at the low-temperature hydrogenation And doing. Therefore, according to the coal liquefaction method according to the present invention, undesirable reactions derived from coal pyrolysis as described above are suppressed, and as a result, compared with the conventional coal liquefaction method, hydrogen gas Consumption can be reduced, and liquefied oil can be obtained in high yield.
[0022]
In the present invention, the low-temperature hydrogenation needs to be performed at a temperature of 250 to 400 ° C., that is, the temperature during the low-temperature hydrogenation needs to be 250 to 400 ° C. The reason for this will be described below.
[0023]
If the temperature during the low-temperature hydrogenation is lower than 250 ° C, the pyrolysis of coal is very slow, so the concentration of pyrolysis radicals generated is low, and sufficient hydrogen can be donated by the movement of hydrogen in the coal. No formation of polycondensate is observed. That is, in the temperature range lower than 250 ° C., the amount of hydrogen necessary for stabilizing the pyrolytic radical is extremely small, so that it is not necessary to perform hydrogenation at a low temperature to perform sufficient hydrogen donation, and even at a low temperature hydrogenation. The effect cannot be obtained. On the other hand, at a temperature higher than 400 ° C, pyrolysis of coal becomes too active, and the concentration of pyrolysis radicals in coal increases so rapidly that hydrogen supply to coal pyrolysis radicals cannot keep up, resulting in insufficient hydrogen. Gas consumption cannot be reduced, and liquefied oil cannot be obtained in high yield. Therefore, it is necessary to set the temperature of 250 to 400 ° C. at which the pyrolysis of coal is relatively slow and the rate of generation of pyrolysis radicals of coal and the rate of hydrogen donation to the pyrolysis radicals of coal are balanced. This is because hydrogen is sufficiently supplied to the pyrolysis radicals, and the generation of heavy substances due to recombination of the pyrolysis radicals of coal is suppressed.
[0024]
The treatment time for low-temperature hydrogenation is suitably about 10 to 60 minutes. Although the treatment time may be shorter as the treatment temperature is higher, treatment at 350 ° C. for about 30 minutes is preferably used.
[0025]
The catalyst plays an important role as described above in the present invention, and the iron compound added and used as a catalyst needs to be converted to pyrotite at a temperature of 250 ° C. or lower.
[0026]
Here, the reason why the temperature of the conversion of the iron compound to the pyrotite was set to 250 ° C. or less is as follows. That is, coal pyrolysis begins to occur relatively severely at 250 ° C, but occurs when the conversion temperature of iron compound used as a catalyst to pyrotite is higher than 250 ° C, from 250 ° C to this conversion temperature. Sufficient hydrogen donation is not performed on the thermal decomposition radical, and a polycondensate is formed. Therefore, even when the temperature of the low-temperature hydrogenation is high, the temperature for conversion of the iron compound to pyrotite needs to be 250 ° C. or lower.
[0027]
Iron compounds that convert to pyrotite at temperatures below 250 ° C can be investigated and confirmed by the following method.
[0028]
That is, the iron compound is generally sulfided by sulfur or a sulfur compound, and changes to an iron sulfide compound. This iron sulfide compound has pyrotite (Fe 1-X S), Troylite (FeS), Pyrite (FeS) 2 However, since the peak positions in powder X-ray diffraction are different, discrimination is easy. Therefore, the iron compound to be investigated and confirmed can be sulfided at a temperature of 250 ° C. or less to obtain an iron sulfide compound, which can be investigated and confirmed by powder X-ray diffraction. At this time, if the temperature for sulfiding is changed, the temperature at which the iron compound is converted to pyrotite is also known.
[0029]
The present inventors diligently studied the sulfurization behavior of iron compounds to pyrotite and the catalytic action of pyrotite using such investigation and confirmation methods. As a result, the catalytic action of pyrotite and the degree of its activity, the temperature at which the iron compound changes to an iron sulfide compound, and the temperature at which it converts to a pyrotite are different depending on the type of iron compound, especially iron hydroxide. It was found that the iron compound to be sulfided was sulfided at a low temperature of 250 ° C. or less and changed (converted) to pyrotite, and exhibited high catalytic activity. From this point, it is desirable to use an iron compound mainly composed of iron hydroxide as the iron compound as the catalyst (No. 2 invention).
[0030]
In the present invention, the catalyst plays an important role as described above, and hydrogen is supplied to the pyrolysis radical of coal from 250 ° C. at which the pyrolysis of coal begins to occur relatively vigorously, thereby stabilizing the pyrolysis radical of coal. It works to suppress recombination. Moreover, since the solubilization of solid coal proceeds by low-temperature hydrogenation at a temperature of 250 to 400 ° C., the dispersion of the catalyst is improved, and the contact between the catalyst and the reactant (coal) is improved. As a result, efficient high-temperature hydrogenation is also considered as a function of low-temperature hydrogenation.
[0031]
Hydrogen donation to the pyrolysis radicals of coal is performed by hydrogen contained in the solvent or hydrogen activated on the catalyst, so that the higher the catalyst hydrogenation activity, the better the hydrogenation of the solvent. The effects of the present invention such as sufficient hydrogen donation to the pyrolytic radicals of coal are more exhibited.
[0032]
The addition amount of the catalyst is generally 0.5 to 10.0% by mass with respect to coal based on anhydrous ashless coal, but the higher the activity of the catalyst, the smaller the amount, which is economically advantageous. From this point, in the case of the catalyst according to the present invention having high catalytic activity, it is preferable that the amount of iron contained in the catalyst is 0.5 to 5.0% by mass with respect to coal based on anhydrous ashless coal. The catalyst is preferably finely pulverized to an average particle size of 2 μm or less so that the catalyst is highly dispersed in the solvent because of its high activity.
[0033]
In the present invention, during the low-temperature hydrogenation, hydrogen added to the slurry-like mixture containing coal, a solvent and a catalyst is dissolved in the solvent in the mixture and activated by the catalyst to generate a pyrolysis radical of coal. In addition, it functions to maintain the hydrogen donating ability of the solvent by hydrogenating part of the solvent. The hydrogenation at the time of hydrogenation is not limited to the addition of pure hydrogen, it may be performed by adding a gas containing hydrogen, or may be performed by adding a mixed gas of hydrogen and hydrocarbon gas or the like. .
[0034]
The solvent not only dissolves the coal, but also serves to rapidly donate hydrogen to the pyrolytic radicals of the coal. There are no particular restrictions on the type of solvent, but usually a mixture of medium heavy oil, liquefaction residue, and deashed product of this residue produced in the coal liquefaction reaction (process) is circulated in the coal liquefaction process. To use.
[0035]
In addition, mixing the solvent with the coal and the catalyst has been conventionally performed. Conventionally, for the purpose of supplying coal to the liquefaction reactor by dehydrating the coal and preparing a stable coal slurry with a viscosity that is easy to handle. Yes. On the other hand, in the case of the present invention, there is suppression of an undesirable reaction derived from coal pyrolysis as one purpose, and the solvent has an effect of rapidly donating hydrogen to the coal pyrolysis radical as described above. The optimum conditions for mixing the solvent (such as the type of solvent and the mixing amount) are naturally different from the conventional case. Therefore, in the case of the present invention, it is desirable to mix the solvent in consideration of the object of the present invention and the action and effect of the solvent.
[0036]
By the way, after low-temperature hydrogenation at a temperature of 250 to 400 ° C., a part of the solvent is separated from the mixture (slurry mixture) containing coal, solvent and catalyst, and the coal concentration in the mixture is 40 to 40 Even if it is increased to 60% by mass, the mixture is still sufficiently low in viscosity, easy to handle, and there is no problem. Therefore, if the coal concentration in the mixture after low-temperature hydrogenation is increased to 40 to 60% by mass and then high-temperature hydrogenation is performed, the contact efficiency between coal and catalyst is improved in high-temperature hydrogenation. As a result, the yield of liquefied oil can be further improved, and the amount of coal treated per unit time and volume in high-temperature hydrogenation increases (No. 1). 1 invention). Details will be described below.
[0037]
Generally, in the coal liquefaction process, it is economically advantageous to have a high coal concentration in the slurry mixture, but if the coal concentration is increased, the viscosity of the slurry mixture increases, making it difficult to handle. . Therefore, the coal concentration in the slurry mixture is set to a concentration that does not hinder the handling of the mixture. In the case of the conventional coal liquefaction method, this coal concentration is low. Particularly, in the case of lignite, since the pore structure is developed, a part of the solvent is absorbed by the pores of the lignite and the viscosity of the slurry mixture Therefore, the coal concentration in the slurry-like mixture is often limited to a low concentration of 25 to 35% by mass, and it has been necessary to set it to such a low concentration. Therefore, in the case of the conventional coal liquefaction method, the amount of coal that can be processed with respect to the reactor volume is small, the apparatus volume efficiency is low, the contact efficiency between the coal and the catalyst is low, and the liquefied oil yield is low.
[0038]
In contrast, in the present invention, the coal is heated in the low-temperature hydrogenation at the temperature of 250 to 400 ° C., whereby the pores of the coal are shrunk and the coal is reformed. Then, the viscosity of the slurry-like mixture is remarkably lowered. For this reason, a part of the solvent necessary for maintaining the viscosity of the slurry-like mixture becomes unnecessary, and there is no problem in separating all or a part of this unnecessary solvent. The coal concentration can be increased to 40-60% by mass. In addition, if the amount of the solvent exceeding the amount of the above unnecessary solvent is separated, the coal concentration can be increased to more than 60% by mass, but the viscosity of the slurry-like mixture becomes so high that it hinders handling. The coal concentration after solvent separation must be 60% by mass or less.
[0039]
Therefore, if the coal concentration in the mixture after low-temperature hydrogenation is increased to 40 to 60% by mass and then high-temperature hydrogenation is performed, the contact efficiency between coal and catalyst is improved in high-temperature hydrogenation. For this reason, hydrogen activated by the catalyst can be efficiently supplied to the coal and hydrogenated, and the yield of liquefied oil can be further improved. In addition, since the coal concentration in the mixture is as high as 40 to 60% by mass, the amount of coal treated per unit time / unit volume in high-temperature hydrogenation increases compared with the conventional coal liquefaction method, and therefore, the reaction The amount of coal that can be processed relative to the reactor volume is large, the volumetric efficiency of the apparatus is increased, and even if the reactor volume is reduced, a sufficient amount of coal can be secured, and the reactor can be downsized.
[0040]
More specifically, the coal liquefaction method according to the present invention is performed by, for example, the apparatus and process flow shown in FIG. The details will be described below with reference to FIG.
[0041]
First, in the coal slurry preparation tank (1), the dried and pulverized coal, the circulating solvent recovered from the gas-liquid separator (4) and the distillation tower (8), and the catalyst (pilotite at a temperature of 250 ° C. or less). An iron compound that is converted into a catalyst) and a promoter such as sulfur are supplied and mixed to obtain a slurry-like mixture. This slurry-like mixture is transported to the low-temperature hydrogenation reactor (3) via the preheater or the heat exchanger (2). During this transport, hydrogen gas or a hydrogen-containing mixed gas is added as a hydrogen source, and the catalyst is sulfided and converted to pyrotite.
[0042]
In the low-temperature hydrogenation reactor (3), low-temperature hydrogenation is performed under conditions of a temperature of 250 to 400 ° C. and a time of about 10 to 60 minutes. At this stage, a part of the coal is pyrolyzed to generate carbon dioxide and water, and hydrogen is added to the coal (hydrogen donation to the pyrolysis radical of the coal). Extraction into a coal liquefaction solvent (circulation solvent), dissolution, and lightening of the extracted heavy material cause shrinkage of pores in the coal.
[0043]
After completion of the low-temperature hydrogenation, a part of the gas component and the solvent is recovered from the upper part of the low-temperature hydrogenation reactor (3) and separated into the gas component and the solvent by the gas-liquid separator (4). The gas component containing hydrogen is supplied to the coal slurry preparation tank (1) to the high-temperature hydrogenation reactor (5). On the other hand, from the lower part of the low-temperature hydrogenation reactor (3), a slurry-like mixture containing unreacted coal, reaction products, remaining solvent, and catalyst is extracted, and the high-temperature hydrogenation reactor (5) To be introduced. It is also possible to supply new hydrogen during the introduction process. As the high-temperature hydrogenation reactor (5), a continuous stirring tank type, a flow tube type or a bubble column type is used.
[0044]
In the high-temperature hydrogenation reactor (5), high-temperature hydrogenation (that is, liquefaction reaction) is performed at a temperature of about 400 to 500 ° C., which is higher than in the case of the low-temperature hydrogenation. At this stage, the coal is further lightened by extraction with a circulating solvent, dissolution, hydrogenation with a catalyst, hydrocracking reaction, etc., and changes to a desired target.
[0045]
After completion of the high-temperature hydrogenation, the reaction mixture is led to a gas-liquid separator (6) to separate gas components. The remaining liquid and solid components are separated into liquid and solid components by a solid-liquid separator (7) such as solvent demineralization, and then the liquid components are sent to the distillation tower (8) to produce light oil, medium -Heavy oil is separated as a product. Part of this medium / heavy oil is recovered as a coal liquefaction circulation solvent and circulated and supplied to the coal slurry preparation tank (1).
[0046]
In the present invention, as the coal, sub-bituminous coal and bituminous coal as well as low-carbon coal such as lignite can be used, and in particular, it can be advantageously used for lignite (No. 1). 3 invention). As described above, lignite is likely to generate coal pyrolysis radicals, and in the conventional method, an undesirable reaction is likely to occur due to coal pyrolysis radicals. However, in the method of the present invention, this reaction can be suppressed and the effect is remarkable. Because. From this point, among the lignite, coal belonging to lignite having a calorific value defined by JIS M 1002: 7300 Kcal / Kg (anhydrous and non-mineral substance standard) or less can be advantageously used. These coals are usually used after being dried to a moisture content of about 15% or less and then pulverized to a particle size finer than about 60 mesh. In this case, the coal liquefaction can be more efficiently performed by the method of the present invention.
[0047]
The method for separating the solvent, oil, or solid content during solvent separation or oil separation is not particularly limited, and means such as filtration can be employed in addition to distillation. In the case of distillation, distillation conditions suitable for the desired target can be selected as appropriate.
[0048]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples unless it exceeds the gist. In addition, the values of coal conversion rate and yield described in the following examples and comparative examples are all values based on anhydrous ashless coal.
[0049]
[Investigation test on conversion temperature of catalyst (iron compound) to pyrotite]
A slurry mixture containing an iron compound as a catalyst, sulfur equivalent to 2.0 times the atomic ratio relative to the iron content in the catalyst, and a distillate obtained by liquefaction (hereinafter referred to as process solvent) using an autoclave Hydrogen was added to the catalyst, and sulfurization treatment was performed at a temperature of 150 to 450 ° C for 30 minutes, and then the conversion rate of the catalyst (iron compound) to pyrotite was determined, whereby the catalyst (iron compound) was converted to 100% The temperature to convert was investigated.
[0050]
At this time, as the catalyst (iron compound), γ-iron oxyhydroxide, limonite iron ore, pyrite iron ore, or converter dust (iron oxide) was used alone. The conversion rate of the catalyst (iron compound) to pyrotite was determined as follows. That is, the catalyst is separated and recovered as a THF-insoluble component from the slurry mixture after sulfidation by a solvent fractionation method using tetrahydrofuran (THF). Next, the catalyst is dried and then subjected to a powder X-ray diffraction method. The amount of pyrotite was measured to determine the conversion rate of the catalyst (iron compound) to pyrotite.
[0051]
The results are shown in Table 1. The temperature at which the catalyst (iron compound) is 100% converted to pyrotite is 350 ° C for pyrite iron ore and 400 ° C for converter dust, but in contrast, γ-iron oxyhydroxide, In the case of limonite iron ore, it is low, and it can be seen that at 200 ° C it is 100% converted to pyrotite. Accordingly, among these, γ-iron oxyhydroxide and limonite iron ore are both iron compounds that are converted to pyrotite at a temperature of 250 ° C. or less, and are found to correspond to the catalyst according to the present invention.
[0052]
[Table 1]
Figure 0003715729
[0053]
[Table 2]
Figure 0003715729
[0054]
[Table 3]
Figure 0003715729
[0055]
[Example 1]
Table 2 shows the types of raw coal used, the types of catalysts (iron compounds), low-temperature hydrogenation conditions, and high-temperature hydrogenation conditions.
[0056]
First, Australian Jarun lignite (heating value 5930 Kcal / Kg (anhydrous mineral-free material standard), fuel ratio 0.89) as a raw material coal, a process solvent as a solvent, these two are mixed and the coal concentration is 28 based on the anhydrous ash-free coal standard After being adjusted to mass%, γ-iron oxyhydroxide with an average particle size of 0.5 μm was added as a catalyst to this so that it would be 4.8 mass% with respect to coal based on anhydrous ashless coal. Sulfur mixture was obtained by adding sulfur equivalent to 2.0 times the atomic ratio. Next, after introducing this slurry-like mixture into an autoclave (internal volume 30 cc), hydrogen was introduced and pressurized to a hydrogen initial pressure of 15.0 MPa, and the temperature was reduced at a temperature of 350 ° C. for 30 minutes. Subsequently, the temperature was raised to 450 ° C., and high-temperature hydrogenation was performed at a temperature of 450 ° C. for 60 minutes.
[0057]
After completion of the above high-temperature hydrogenation, the hydrogenation reaction products were separated and classified by the solvent fractionation method, and the coal conversion rate, oil fraction yield, etc. were examined. The results are shown in Table 3. As can be seen from Table 3, the coal conversion rate was 98.5% by mass, and the yield of oil (n-hexane soluble component) (hereinafter referred to as oil yield) was 66.5% by mass. The gas component yield was 16.0% by mass, and the hydrogen consumption was 5.5% by mass. The utilization efficiency of hydrogen (oil yield / hydrogen consumption, ie oil yield per hydrogen consumption) was 12.1.
[0058]
[Example 2]
A slurry-like mixture having the same composition was obtained by the same method (conditions and procedures) as in Example 1, and low-temperature hydrogenation was performed by the same method (conditions, equipment and procedures) as in Example 1. After completion of this low-temperature hydrogenation, the n-hexane insoluble matter (including coal and catalyst) is separated from the slurry mixture and recovered from the n-hexane soluble matter. An amount of process solvent corresponding to 100% by mass of raw coal (anhydrous ashless coal standard) was added to form a slurry mixture, and the coal concentration in the slurry mixture was adjusted to 50% by mass. Thereafter, hydrogen was reintroduced to an initial hydrogen pressure of 15.0 MPa, the temperature was raised to 450 ° C., and high-temperature hydrogenation was performed at a temperature of 450 ° C. for 60 minutes. And after this high-temperature hydrogenation, the coal conversion rate etc. were investigated by the method similar to Example 1. FIG. The results are shown in Table 3.
[0059]
still, The present invention In the second embodiment, a part of the solvent is separated from the slurry-like mixture after low-temperature hydrogenation to obtain a coal concentration of 40 to 60% by mass and then high-temperature hydrogenation. In Example 2, an autoclave is used as the apparatus. Therefore, it is difficult to separate a part of the solvent from the slurry mixture after the low-temperature hydrogenation. Therefore, after the low-temperature hydrogenation, the n-hexane soluble component (solvent) and the n-hexane are once separated from the slurry mixture. Hexane insoluble matter is separated and recovered, and a process solvent is added to this n-hexane insoluble matter to form a slurry mixture with a coal concentration of 50% by mass, and then hydrogen is reintroduced and hydrogenated at high temperature. Yes. As described above, in Example 2, instead of separating a part of the solvent from the slurry-like mixture, the process solvent was added once after the solvent was once separated. The present invention It is different from the case of. However, this is due to the use of an autoclave as an apparatus as described above, and is due to the convenience of experiments, and substantially corresponds to the separation of a part of the solvent from the slurry-like mixture. . Therefore, the second embodiment is substantially The present invention This corresponds to one embodiment.
[0060]
The slurry mixture having a coal concentration of 50% by mass obtained as described above in Example 2 is substantially the same as the slurry mixture having a coal concentration of 50% by mass obtained by separating a part of the solvent in an actual machine. Are the same. And it was confirmed that these are still sufficiently low in viscosity, are easy to handle as a slurry-like mixture, and do not hinder the handling. The slurry mixture after low-temperature hydrogenation and coal concentration adjustment in Examples 3 and 5 to be described later is the same as that in the slurry mixture according to Example 2, and the viscosity is sufficiently low. It did not interfere with handling as a mixture.
[0061]
In Example 2, the autoclave is used as an apparatus as described above, which includes the point that a solvent is once separated and a process solvent is newly added, and hydrogen is reintroduced during high-temperature hydrogenation. 1, in an actual machine such as the apparatus illustrated in FIG. 1, a part of the solvent can be continuously separated from the slurry-like mixture after low-temperature hydrogenation to obtain a coal concentration of 40 to 60% by mass, It can be sent to a hot hydrogenation process and can be hot hydrogenated without reintroducing hydrogen.
[0062]
Example 3
Limonite iron ore (a kind of iron hydroxide) was used in place of γ-iron oxyhydroxide as a catalyst. Except for this point, a slurry-like mixture was prepared, low-temperature hydrogenation, coal concentration adjustment, and high-temperature hydrogenation were performed in the same manner as in Example 2. Thereafter, the coal conversion rate and the like were examined by the same method as in Example 1. The results are shown in Table 3.
[0063]
Example 4
Indonesian banco coal [calorific value: 6640 Kcal / Kg (anhydrous and non-mineral substance standard), fuel ratio 0.94] was used as the raw material coal instead of the Australian yaroon lignite. Except for this point, the slurry-like mixture was prepared, low-temperature hydrogenated, and high-temperature hydrogenated by the same method as in Example 1. Thereafter, the coal conversion rate and the like were examined by the same method as in Example 1. The results are shown in Table 3.
[0064]
Example 5
Indonesian banco coal [calorific value: 6640 Kcal / Kg (anhydrous and non-mineral substance standard), fuel ratio 0.94] was used as the raw material coal instead of the Australian yaroon lignite. Except for this point, preparation of a slurry mixture, low-temperature hydrogenation, adjustment of coal concentration, and high-temperature hydrogenation were performed in the same manner as in Example 2. Thereafter, the coal conversion rate and the like were examined by the same method as in Example 1. The results are shown in Table 3.
[0065]
[Comparative Example 1]
As a catalyst, natural pyrite iron ore finely pulverized to an average particle size of 0.5 μm was used instead of γ-iron oxyhydroxide, and the amount added was 7.0% by mass (based on anhydrous ashless coal). Except for this point, the slurry mixture was prepared, low-temperature hydrogenated, and high-temperature hydrogenated by the same method as in Example 1. Thereafter, the coal conversion rate and the like were examined by the same method as in Example 1. The results are shown in Table 3.
[0066]
[Comparative Example 2]
Except for this point, hydrogenation was performed in the same manner as in Example 1 without performing low-temperature hydrogenation. That is, after preparing a slurry-like mixture similar to that in Example 1, this slurry-like mixture was introduced into an autoclave (internal volume 30 cc), and then hydrogen was introduced and pressurized to an initial hydrogen pressure of 15.0 MPa. Then, high-temperature hydrogenation was performed under conditions of a temperature of 450 ° C. and a time of 60 minutes. Thereafter, the coal conversion rate and the like were examined by the same method as in Example 1. The results are shown in Table 3.
[0067]
From the above examples and comparative examples, the following can be understood.
In the case of Example 1, compared with the case of the comparative example 1, a coal conversion rate, an oil yield, and hydrogen utilization efficiency are high. This is because hydrogen gas is better when using γ-iron oxyhydroxide (conversion temperature to pyrotite: 250 ° C or less) than using pyrite iron ore (pyrotite conversion temperature: 350 ° C) as a catalyst. It is shown that the amount of the liquefied oil can be reduced, and the liquefied oil can be obtained in a high yield, thereby improving the liquefaction reaction results.
[0068]
Compared to the case of Comparative Example 2, in the case of Example 1, the coal conversion rate, oil yield, and hydrogen utilization efficiency are high. This indicates that the liquefaction reaction results are improved in the case of high-temperature hydrogenation after low-temperature hydrogenation than in the case of high-temperature hydrogenation without low-temperature hydrogenation.
[0069]
In the case of Example 2, compared with the case of Example 1, a coal conversion rate, an oil yield, and hydrogen utilization efficiency are high. This has shown that a liquefaction reaction result improves by raising the coal density | concentration in the slurry-like mixture after low-temperature hydrogenation to 50 mass%.
[0070]
In the case of Example 3, compared with the case of Example 2, there is almost no difference in coal conversion rate, oil yield, and hydrogen utilization efficiency, and the liquefaction reaction results are equivalent. This shows that even when limonite iron ore (a kind of iron hydroxide) is used as a catalyst, the same excellent liquefaction reaction results as when γ-iron oxyhydroxide is used can be obtained.
[0071]
Comparing the case of Example 4 and the case of Example 5, the case of Example 5 has higher coal conversion rate, oil yield, and hydrogen utilization efficiency. This is not only the case when using Australian Jarun lignite as raw material coal, but also when using Indonesian Banco coal, by increasing the coal concentration in the slurry mixture after low-temperature hydrogenation to 50% by mass, the liquefaction reaction It shows that the results improve.
[0072]
【The invention's effect】
According to the coal liquefaction method of the present invention, compared with the conventional coal liquefaction method, undesirable reactions derived from coal pyrolysis are suppressed, and as a result, the consumption of hydrogen gas is reduced. And liquefied oil can be obtained in high yield.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an example of a coal liquefaction method according to the present invention.
[Explanation of symbols]
(1)-Coal slurry preparation tank, (2)-Heat exchanger, (3)-Low temperature hydrogenation reactor,
(4)-Gas-liquid separator, (5)-High temperature hydrogenation reactor, (6)-Gas-liquid separator,
(7)-Solid-liquid separator, (8) --Distillation tower.

Claims (3)

石炭を溶剤及び触媒の存在下で水添する水添処理工程を含む石炭の液化方法において、触媒として250℃以下の温度でピロータイトに転換する鉄化合物を用い、250〜400℃の温度で低温水添した後、この低温水添後の石炭、溶剤及び触媒を含む混合体から溶剤の一部を分離して混合体中の石炭濃度を40〜60質量%にし、この後、前記低温水添での温度よりも高い温度で高温水添することにより、水添することを特徴とする石炭の液化方法。In a coal liquefaction method including a hydrotreating process in which coal is hydrogenated in the presence of a solvent and a catalyst, an iron compound that converts to pyrotite at a temperature of 250 ° C. or lower is used as a catalyst, and a low temperature at a temperature of 250 to 400 ° C. After hydrogenation, a part of the solvent is separated from the mixture containing coal, solvent and catalyst after the low-temperature hydrogenation so that the coal concentration in the mixture is 40 to 60% by mass. A coal liquefaction method, wherein hydrogenation is performed by high-temperature hydrogenation at a temperature higher than the temperature in the above. 前記触媒としての鉄化合物が水酸化鉄を主体とする鉄化合物である請求項記載の石炭の液化方法。Method of liquefying a coal according to claim 1, wherein the iron compound as the catalyst is iron compounds mainly iron hydroxide. 前記石炭が褐炭である請求項1又は2記載の石炭の液化方法。The method for liquefying coal according to claim 1 or 2 , wherein the coal is lignite.
JP27807696A 1996-10-21 1996-10-21 Coal liquefaction method Expired - Fee Related JP3715729B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27807696A JP3715729B2 (en) 1996-10-21 1996-10-21 Coal liquefaction method
IDP973473A ID18586A (en) 1996-10-21 1997-10-20 LIGHTENING OF COAL LIQUID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27807696A JP3715729B2 (en) 1996-10-21 1996-10-21 Coal liquefaction method

Publications (2)

Publication Number Publication Date
JPH10121055A JPH10121055A (en) 1998-05-12
JP3715729B2 true JP3715729B2 (en) 2005-11-16

Family

ID=17592317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27807696A Expired - Fee Related JP3715729B2 (en) 1996-10-21 1996-10-21 Coal liquefaction method

Country Status (2)

Country Link
JP (1) JP3715729B2 (en)
ID (1) ID18586A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123934B2 (en) * 2008-06-18 2012-02-28 Chevron U.S.A., Inc. System and method for pretreatment of solid carbonaceous material
US20110120918A1 (en) * 2009-11-24 2011-05-26 Chevron U.S.A. Inc. Hydrogenation of solid carbonaceous materials using mixed catalysts
US20110120917A1 (en) * 2009-11-24 2011-05-26 Chevron U.S.A. Inc. Hydrogenation of solid carbonaceous materials using mixed catalysts
US20110120916A1 (en) * 2009-11-24 2011-05-26 Chevron U.S.A. Inc. Hydrogenation of solid carbonaceous materials using mixed catalysts
US20110120915A1 (en) * 2009-11-24 2011-05-26 Chevron U.S.A. Inc. Hydrogenation of solid carbonaceous materials using mixed catalysts
US20110120914A1 (en) * 2009-11-24 2011-05-26 Chevron U.S.A. Inc. Hydrogenation of solid carbonaceous materials using mixed catalysts

Also Published As

Publication number Publication date
ID18586A (en) 1998-04-23
JPH10121055A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
US4097361A (en) Production of liquid and gaseous fuel products from coal or the like
EP0093501A2 (en) Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
US20080149896A1 (en) Process for converting biomass to produce synthesis gas
US5240592A (en) Method for refining coal utilizing short residence time hydrocracking with selective condensation to produce a slate of value-added co-products
JPS63146989A (en) Hydrogeneration of heavy oil and residual oil
AU636324B2 (en) Improved method of refining coal by short residence time hydrodisproportionation
JPH026853A (en) Method for producing a catalyst for hydrogenation and method for hydrogenating conversion with use of the catalyst
US4897179A (en) Method of producing reduced iron and light oil from ion ore and heavy oil
CN101747922A (en) Method for increasing yield of coal-pyrolysis-based tar in reaction atmosphere of methane-rich gas mixture in fluidized bed
CN107267186B (en) The method that coal mild hydrogenation pyrolysis prepares liquid hydrocarbon
US5110452A (en) Method of refining coal by catalyzed short residence time hydrodisproportionation to form a novel coal-derived fuel system
JP3715729B2 (en) Coal liquefaction method
JP2003327971A (en) Method for hydrocracking petroleum-based heavy oil
CN110408420B (en) Organic matter conversion process
WO2014110085A1 (en) Direct coal liquefaction process
JPH02107335A (en) Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke
CN101552333A (en) Method of preparing carbon anode active material of lithium-ion battery
CN107794073B (en) Coal liquefaction method and system
JPS5825359B2 (en) Coal conversion method
CN109536197B (en) Biomass liquefaction process
CN109536193B (en) Biomass two-stage conversion refining process
AU696287B2 (en) Process of coal liquefaction
US20190330536A1 (en) Conversion process for an organic material
JPH0135871B2 (en)
Hulston et al. Effects of added transition metals and two-stage heating on reactions of sodium-aluminate-treated coals in water with CO, H2 and CO H2 mixtures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees