JP3715673B2 - Method for producing vitamin D synthetic intermediate - Google Patents

Method for producing vitamin D synthetic intermediate Download PDF

Info

Publication number
JP3715673B2
JP3715673B2 JP05091195A JP5091195A JP3715673B2 JP 3715673 B2 JP3715673 B2 JP 3715673B2 JP 05091195 A JP05091195 A JP 05091195A JP 5091195 A JP5091195 A JP 5091195A JP 3715673 B2 JP3715673 B2 JP 3715673B2
Authority
JP
Japan
Prior art keywords
group
general formula
formula
compound
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05091195A
Other languages
Japanese (ja)
Other versions
JPH08245467A (en
Inventor
範 畑山
麦夫 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP05091195A priority Critical patent/JP3715673B2/en
Publication of JPH08245467A publication Critical patent/JPH08245467A/en
Application granted granted Critical
Publication of JP3715673B2 publication Critical patent/JP3715673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、ビタミンDおよびビタミンD合成中間体を立体選択的に合成する製造方法に関する。さらに詳しくは、本発明は、天然型ビタミンDの20位の立体配位と逆の立体配位を有する化合物を合成するための中間体を立体選択的に合成するための製造方法に関する。
【0002】
【従来の技術】
最近、ビタミンD誘導体の立体異性体が、抗腫瘍活性や免疫抑制活性を有することが明らかになり、大きな注目を浴びている。例えば式(XII)
【化12】

Figure 0003715673
で表されるKH1060は現在免疫抑制剤として開発中である。
【0003】
上記のKH1060の20位の立体配位は天然型ビタミンDの配位とは逆であり、この非天然型立体配位を有するビタミンDおよびビタミンD合成中間体の合成方法としては、例えば特表平4ー503669号公報に記載されているような、20位のカルボニル基をLiAlH4やNaBH4等で還元した後、アルキル化する方法などが開発されている。しかし、この方法には、得られる化合物の立体選択性が低く、また、アルキル化の反応性が悪いために側鎖に誘導できる置換基の種類が限られるという欠点があった。
【0004】
【発明が解決しようとする課題】
上記のように、現在までの所、20位の立体配位が天然型ビタミンDのものとと逆であるビタミンDおよびビタミンD合成中間体を立体選択的に得ることができる合成法として満足できるものは未だに開発されるに至っていない。そこで、ビタミンDおよびビタミンD合成中間体の新規な合成法を提供すべく本発明が開発された。
すなわち本発明の目的は、一般式(I)に示されるカルボニル基を還元的にアルキル化する新しい合成法を提供することである。さらに詳しくは、本発明の目的は、天然型のビタミンDおよびビタミンD合成中間体の20位の立体配位とは逆である立体配位を有するビタミンDおよびビタミンD合成中間体を立体選択的に合成することである。
【0005】
【課題を解決するための手段】
本発明者は鋭意研究の結果、ビタミンDの20位に相当する位置のケトンを還元的にアルキル化する反応が立体選択的に進行することを見い出し、本発明を完成した。
【0006】
すなわち本発明は、一般式(I)
【化13】
Figure 0003715673
(式中、R1、R2、R3は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示すか、またはR1、R2は一般式(I)中のビシクロ(4,3,0)ノナン環とともに置換基を有していてもよいステロイド環を形成するか、またはR2、R3は一緒になって二重結合を形成し、一般式(I)中のビシクロ(4,3,0)ノナン環とともに、置換基を有していてもよく保護されていてもよいビタミンD骨格を形成することを示す。)で表される化合物に、一般式(II)
【化14】
Figure 0003715673
(式中、R4は置換基を有していてもよい炭素数2〜15のアルキル基、置換基を有していてもよい炭素数2〜15のアルケニル基または置換基を有していてもよい炭素数2〜15のアルキニル基を示し、R5、R6、R7は、同一または異なって、低級アルキル基またはアリール基を示す。)で表される化合物を作用させることにより、一般式(III)
【化15】
Figure 0003715673
(式中、R1、R2、R3は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示すか、またはR1、R2は一般式(I)中のビシクロ(4,3,0)ノナン環とともに置換基を有していてもよいステロイド環を形成するか、またはR2、R3は一緒になって二重結合を形成し、一般式(I)中のビシクロ(4,3,0)ノナン環とともに、置換基を有していてもよく保護されていてもよいビタミンD骨格を形成することを示す。R4は置換基を有していてもよい炭素数2〜15のアルキル基、置換基を有していてもよい炭素数2〜15のアルケニル基または置換基を有していてもよい炭素数2〜15のアルキニル基を示す。)で表される化合物を製造する方法に関する。
【0007】
本発明の好ましい態様によれば、上記の反応は還元条件下で行われ、さらに好ましい態様によれば、上記の反応は酸とヒドロシランの存在下で行われる。
また、本発明のもう一つの好ましい態様によれば、上記の一般式(II)の式中のR4は、保護基を有していてもよい水酸基で置換された炭素数2〜15のアルキル基である。
【0008】
本発明における水酸基の保護基の例としては、アシル基、置換シリル基、置換アルキル基などが挙げられ、好ましくはアシル基、置換シリル基である。アシル基の例としてはアセチル基、ベンゾイル基、置換アセチル基、置換ベンゾイル基等の他、カーボネート型やカーバメート型のものも含み、特に好ましいものとしてアセチル基が挙げられる。置換シリル基の例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基などが挙げられ、特に好ましいものとしてt−ブチルジメチルシリル基が挙げられる。
【0009】
一般式(I)中のR1、R2、R3の定義において、ビシクロ(4,3,0)ノナン環とR1、R2が一緒になって形成する置換基を有していてもよいステロイド環における置換基とは、反応に不活性なものであればよく、特に好ましいものとして、保護基を有していてもよい水酸基が挙げられる。ステロイド環は、不飽和結合を有していてもよく、また、ジエンの保護基として導入される、4−フェニル−1,2,4−トリアゾリン−3,5−ジオン、マレイン酸ジエチルなどのジエノファイルの付加体であってもよい。
【0010】
一般式(I)中のR1、R2、R3の定義において、ビシクロ(4,3,0)ノナン環とR2,R3が一緒になって形成する置換基を有していてもよく保護されていてもよいビタミンD骨格における置換基とは、反応に不活性なものであればよく、特に好ましいものとして、保護基を有していてもよい水酸基が挙げられる。また、ビタミンD骨格はSO2を付加させることなどにより保護されていてもよい。
【0011】
本発明において、一般式(I)で表される化合物の好ましい例としては、例えば、一般式(IV)
【化16】
Figure 0003715673
(式中、R8はアシル基または置換シリル基を示す。)で表される化合物、または、一般式(V)
【化17】
Figure 0003715673
(式中、R9、R10は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)で表される化合物、または、一般式(VI)
【化18】
Figure 0003715673
(式中、R11、R12は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)で表される化合物、または、一般式(VII)
【化19】
Figure 0003715673
(式中、R13、R14は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)で表される化合物、または、一般式(VIII)
【化20】
Figure 0003715673
(式中、R15、R16は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)で表される化合物、または、一般式(IX)
【化21】
Figure 0003715673
(式中、R17、R18は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)で表される化合物、または、一般式(X)
【化22】
Figure 0003715673
(式中、R19、R20は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)で表される化合物、または、一般式(XI)
【化23】
Figure 0003715673
(式中、R21、R22は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)で表される化合物が挙げられ、特に、一般式(IV)または一般式(VIII)で表される化合物が好ましい。
【0012】
一般式(I)中のR4の定義において、置換基を有していてもよい炭素数2〜15のアルキル基、置換基を有していてもよい炭素数2〜15のアルケニル基および置換基を有していてもよい炭素数2〜15のアルキニル基におけるアルキル基、アルケニル基およびアルキニル基は、直鎖でも分岐鎖状でも環状のものでもよい。アルキル基の例としては例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基のほか、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デカニル基などが挙げられる。好ましくは、3−メチルブチル基、3−エチルペンチル基、4−メチルペンチル基、3−(n−プロピル)ヘキシル基、4−エチルヘキシル基、5−メチルヘキシル基、6−メチルヘプチル基、5−エチルヘプチル基、4−(n−プロピル)ヘプチル基、2,3ージメチルブチル基、3,4−ジメチルペンチル基などが挙げられる。
4に置換し得る置換基としては、反応に不活性なものであれば特に制限はないが、保護されていてもよい水酸基などが好ましい。
【0013】
一般式(I)中のR5、R6、R7の定義において、低級アルキル基とは炭素数1〜6の直鎖または分枝鎖状のアルキル基を示す。低級アルキル基の例としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基などが挙げられるが、好ましくは、メチル基である。
一般式(I)中のR5、R6、R7の定義において、アリール基とはアルキル基などの置換基で置換されていてもよい1価の芳香族炭化水素基を示し、例えばフェニル基などが挙げられる。
【0014】
本発明の反応は還元条件下で行われることが好ましいが、還元条件としては、たとえば酸とヒドロシランの存在下、酸とボランの存在下などが挙げられ、特に酸とヒドロシランの存在下で行われることが好ましい。
ここで用いられる酸としては例えば、トリメチルシリルトリフラート、3フッ化ホウ素エーテル錯体、トリフルオロ酢酸などが挙げられ、特にトリメチルシリルトリフラートが好ましい。
ここで用いられるヒドロシランとしては、トリアルキルシラン、ジアルキルシラン、モノアルキルシラン、トリス(トリアルキルシリル)シランなどが挙げられ、好ましい例としてはトリエチルシランが挙げられる。
【0015】
本発明の反応において用いられる溶媒は、使用される化合物、試薬などに応じて適宜選択されるが、例えば、ハロゲン系溶媒、炭化水素系溶媒、エーテル系溶媒などが通常用いられ、好ましい例としては、塩化メチレン、トルエンが挙げられ、さらに好ましくは、塩化メチレンが挙げられる。
【0016】
反応温度は、使用される化合物、試薬などに応じて適宜選択されるが、一般的には約−100℃から約40℃の範囲内、好ましくは約−78℃から約25℃の範囲内である。
反応時間は、使用される化合物、試薬などにより異なり、反応の進行状況を薄層クロマトグラフィーなどで追跡することにより適宜決定されるが、一般的には30分間から12時間、好ましくは1時間から7時間程度である。
【0017】
本発明の方法により得られた一般式(III)で表される化合物は、通常の方法により20位の立体配位が非天然型であるビタミンD誘導体へと変換することができる。
【0018】
【実施例】
以下の実施例により本発明をさらに詳細に説明するが、本発明は実施例によって制限されるものではない。
実施例1:化合物1から化合物2の合成
【化24】
Figure 0003715673
【化25】
Figure 0003715673
【0019】
化学式1で表されるジオール化合物1(1.0g,4.72mmol)のピリジン(7ml)溶液にジフェニルジスルフィド(2.0g,9.16mmol)とトリ−n−ブチルホスフィン(2.3ml,9.16mmol)を加え、アルゴン気流中で50℃に加熱する。4日後、ピリジンを減圧下留去し、残渣をカラムクロマトグラフィー(シリカゲル100g、エーテル:ヘキサン=1:10の混合溶媒で溶出)で精製し、化学式2で表されるスルフィド化合物2(1.38g,96%)を無色飴状物として得る。
【0020】
[α]D 24+75.3(C 1.30,CHCl3);
IR(neat):3443,1583,1479,1439 cm-1
1H NMR(CDCl3)δ;0.93(3H,s),1.10(3H,d,J=6.5Hz),1.17−2.02(14H,m),2.66(1H,ddd,J=1.3,8.6,12.2Hz),3.14(1H,dd,J=2.1,12.2Hz),4.08(1H,brs),7.10−7.35(5H,m);
MS(m/z):304(M+);
Exact mass calcd for C1928OS(M+):304.1861;found:304.1867.
【0021】
実施例2:化合物2から化合物3の合成
【化26】
Figure 0003715673
スルフィド化合物2(3.36g,11.04mmol)のメタノール(30ml)溶液に30%過酸化水素水(2.58ml,22.07mmol)を加え、室温下4日間撹拌する。反応液を酢酸エチルで希釈し、飽和食塩水で洗浄する。有機層を無水硫酸マグネシウムで乾燥し、減圧下で濃縮すると、スルホキシド(3.77g)が黄色飴状物として得られる。
上記で得られた粗スルホキシド(3.77g)をトルエン(60ml)に溶解し、炭酸カルシウム(5.46g,54.60mmol)を加え、アルゴン気流中加熱還流する。5日後、反応液を濾過後、減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル150g、 酢酸エチル:ヘキサン=1:10の混合溶媒で溶出)で精製し、化学式3で表されるオレフィン化合物3(1.80g,84%)を無色飴状物として得る。
【0022】
[α]D 23+34.3(C 0.86,CHCl3);
IR(neat):3416,1640,1449,1373,1163cm-1
1H NMR(CDCl3)δ;0.83(3H,s),1.75(3H,s),1.19−2.02(13H,m),4.10(1H,brs),4.70(1H,brs),4.88(1H,brs);
MS(m/z):194(M+),125(100%);
Exact mass calcd for C1322O(M+):194.1671;found:194.1665.
【0023】
実施例3:化合物3から化合物4の合成
【化27】
Figure 0003715673
オレフィン化合物3(1.30g,6.69mmol)の塩化メチレン(50ml)溶液にトリエチルアミン(2.8ml,20.07mmol)、ジメチルアミノピリジン(81mg,0.67mmol)および無水酢酸(1.26ml,13.38mmol)を順次加え、室温下3時間撹拌する。反応液に氷冷下メタノール(1ml)を加え、10分間撹拌後、塩化メチレンで希釈し、水洗する。有機層を無水硫酸マグネシウムで乾燥して減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル 30g、ヘキサンで溶出)で精製し、化学式4で表されるアセテート化合物4(1.45g,92%)を無色飴状物として得る。
【0024】
[α]D 22+21.5(C 0.98,CHCl3);
IR(neat):1738,1246 cm-1
1H NMR(CDCl3)δ;0.79(3H,s),1.15−2.04(12H,m),1.76(3H,s),2.05(3H,s),4.71(1H,brs),4.88(1H,brs),5.18(1H,brs);
MS(m/z):236(M+),133(100%);
Exact mass calcd for C15242(M+):236.1776;found:236.1769.
【0025】
実施例4:化合物4から化合物5の合成
【化28】
Figure 0003715673
アセテート化合物4(1.45g,6.14mmol)を塩化メチレン(80ml)とメタノール(16ml)の混合溶液に溶解し、−78℃でオゾンを導入する。薄層クロマトグラフィーで原料が消失したら、ジメチルスルフィド(2ml)を加え、反応温度を室温まで上げ、さらに30分撹拌する。反応液を減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル25g、 酢酸エチル:ヘキサン=1:5の混合溶媒で溶出)で精製し、化学式5で表されるケトン化合物5(1.24g,85%)を無色飴状物として得る。
【0026】
[α]D 22+100.4(C 1.15,CHCl3);
IR(neat):1738,1705,1244 cm-1
1H NMR(CDCl3)δ;0.81(3H,s),1.38−2.48(12H,m),2.02(3H,s),2.10(3H,s),5.16(1H,brs);
MS(m/z):239(M++1),179(100%);
Exact mass calcd for C14233(M++1):239.1647;found:239.1658.
【0027】
実施例5:化合物5に化合物6を作用させることによる化合物7の合成
【化29】
Figure 0003715673
【化30】
Figure 0003715673
ケトン化合物5(510mg,2.14mmol)と化学式6で表されるシリルエーテル化合物6(420mg,2.68mmol)の塩化メチレン(85ml)溶液に、アルゴン気流中−78℃で撹拌下、トリメチルシリルトリフラート(以下TMSOTfと示す)(0.41ml,2.12mmol)を加える。30分後、トリエチルシラン(0.4ml,2.52mmol)を加え、徐々に反応温度を室温にする。5.5時間後、反応液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出する。抽出液を水洗し、乾燥し、減圧下で濃縮した後、残渣をカラムクロマトグラフィー(シリカゲル40g、塩化メチレンで溶出)で精製し、化学式7で表されるエーテル化合物7(538mg,83%)を無色飴状物として得る。
【0028】
[α]D 22−3.9(C 1.47,CHCl3);
IR(neat):1736,1244 cm-1
1H NMR(CDCl3)δ;0.89(3H,s),1.05(3H,d,J=5.9Hz),1.08−1.90(13H,m),2.03(3H,s),2.00−2.20(3H,m),3.19(1H,dt,J=9.0,6.8Hz),3.17−3.30(2H,m),3.55(1H,dt,J=9.0,6.6Hz),4,95(1H,brd,J=10.2Hz),5.01(1H,brd,J=17.0Hz),5.82(1H,ddt,J=17.0,10.2,6.8Hz);
MS(m/z):293(M+−Me),69(100%);
Exact mass calcd for C19323(M+):308.2352;found:308.2370.
【0029】
実施例6:化合物7から化合物8の合成
【化31】
Figure 0003715673
エーテル化合物7(50mg,0.162mmol)のアセトン(3ml)溶液に、1.6%四酸化オスミウム−テトラヒドロフラン溶液(0.25ml,0.016mmol)と2.67Mジョーンズ試薬(0.57ml,1.521mmol)を加え、室温で24時間撹拌する。反応液に亜硫酸水素ナトリウム(96mg)と2−プロパノール(0.21ml)を加え、30分撹拌する。反応液に水を加えて、酢酸エチルで抽出し、酢酸エチル層を水洗し、無水硫酸マグネシウムで乾燥後、減圧下濃縮する。
得られたカルボン酸をエーテルに溶解し、ジアゾメタン・エーテル溶液を加えエステル化する。反応液を減圧下濃縮後、残渣をカラムクロマトグラフィー(シリカゲル10g、塩化メチレンで溶出)で精製し、化学式8で表されるメチルエステル化合物8(44mg,80%)を無色飴状物として得る。
【0030】
[α]D 24−5.1(C 1.42,CHCl3);
IR(neat):1736,1244 cm-1
1H NMR(CDCl3)δ;0.89(3H,s),1.05(3H,d,J=5.9Hz),1.00−2.20(14H,m),2.04(3H,s),2.41(2H,t,J=6.8Hz),3.25(2H,m),3.57(1H,dt,J=9.0,6.3Hz),3.68(3H,s),5.16(1H,brs);
MS(m/z):341(M++1),163(100%);
Exact mass calcd for C19335(M++1):341.2328;found:341.2373.
【0031】
実施例7:化合物8から化合物9の合成
【化32】
Figure 0003715673
メチルエステル化合物8(87mg,0.256mmol)のテトラヒドロフラン(5ml)溶液に、アルゴン気流中0℃で0.9Mエチルマグネシウムブロマイド−テトラヒドロフラン溶液(2.85ml,2.56mmol)を加え、3時間撹拌する。反応液に飽和塩化アンモニウム水溶液を加え、エーテルで抽出する。エーテル層を水洗し、無水硫酸マグネシウムで乾燥後、減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル10g、酢酸エチル:ヘキサン=1:3の混合溶媒で溶出)で精製し、化学式9で表されるジオール化合物9(60mg,75%)を無色飴状物として得る。
【0032】
[α]D 22−51.4(C 1.12,CHCl3);
IR(neat):3416 cm-1
1H NMR(CDCl3)δ;0.86(6H,t,J=7.5Hz),0.96(3H,s),1.07(3H,d,J=5.9Hz),1.00−2.00(21H,m),2.24(1H,brd,J=14.0Hz),3.25(2H,m),3.53(1H,m),4.10(1H,brs);
MS(m/z):327(M++1),163(100%);
Exact mass calcd for C20393(M++1):327.2899;found:327.2899.
【0033】
実施例8:化合物9から化合物10の合成
【化33】
Figure 0003715673
ジオール化合物9(28mg,0.090mmol)の塩化メチレン溶液に、アルゴン気流中、Nーメチルモルフォリン−N−オキサイド(16mg,0.135mmol)、粉末モレキュラーシーブス(30mg)およびテトラ−n−プロピルアンモニウムパールテネート(n−Pr4NRu04,TPAP)(1.6mg,0.0045mmol)を加え、12時間室温で撹拌する。反応液をセライト濾過後、減圧下濃縮し、カラムクロマトグラフィー(シリカゲル10g、エーテル:ヘキサン=2:3の混合溶媒で溶出)で精製し、化学式10で表されるケトン化合物10(23mg,83%)を無色飴状物として得る。
【0034】
[α]D 21−78.4(C 0.75,CHCl3);
IR(neat):3485,1709cm-1
1H NMR(CDCl3)δ;0.64(3H,s),0.84(6H,t,J=7.5Hz),1.09(3H,d,J=5.9Hz),1.20−2.35(20H,m),2.46(1H,dd,J=6.2,10.8Hz),3.23(2H,m),3.56(1H,dt,J=9.0,6.2Hz);
MS(m/z):325(M++1),179(100%);
【0035】
実施例9:化合物3から化合物11の合成
【化34】
Figure 0003715673
アルコール化合物3(200mg,1.03mmol)の塩化メチレン(5ml)溶液にアルゴン気流中、氷冷下2,6−ルチジン(0.48ml,4.12mmol)とtert−ブチルジメチルシリルトリフルオロメタンスルフォネート(0.47ml,2.05mmol)を加え、撹拌する。30分後、反応液を塩化メチレンで希釈し、水洗し、無水硫酸マグネシウムで乾燥し、減圧下濃縮する。
得られた粗シリルエーテル(860mg)を塩化メチレン(20ml)とメタノール(4ml)の混合溶液に溶解し、−78℃でオゾンを導入する。薄層クロマトグラフィーで原料が消失後、ジメチルスルフィド(1ml)を加え、反応温度を徐々に室温にする。1時間後、反応液を減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル30g、酢酸エチル:ヘキサン=1:19の混合溶媒で溶出)で精製し、化学式11で表されるケトン化合物11(183mg,57%)を無色飴状物として得る。
【0036】
[α]D 22+107.6(C 1.00,CHCl3);
IR(neat):1702,1251 cm-1
1H NMR(CDCl3)δ;0.05(6H,s),0.90(9H,s),1.60(3H,s),2.10(3H,s),0.50−2.66(12H,m),4.06(1H,brs);
MS(m/z):310(M+);
Exact mass calcd for C18342Si(M+):310.2328;found:310.2303.
【0037】
実施例10:化合物11に化合物12を作用させることによる化合物13の合成
【化35】
Figure 0003715673
【化36】
Figure 0003715673
ケトン化合物11(100mg,0.325mmol)と化学式12で表されるシリルエーテル化合物12(130mg,487mmol)の塩化メチレン(6ml)溶液に、アルゴン気流中−78℃でTMSOTf(62μl,0.325mmol)を加え、1時間撹拌する。続いてトリエチルシラン(52μl,0.325mmol)を加え、そのままの温度でさらに1時間撹拌する。反応温度を除々に、−25℃まで上げ、その温度で4時間撹拌する。反応液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出する。塩化メチレン層を、水洗し、無水硫酸マグネシウムで乾燥し、減圧下濃縮する。
生じた残渣(178mg)をアセトニトリル(5ml)に溶解し、46%フッ化水素酸(0.5ml)を加え、室温で15時間撹拌する。反応液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出する。塩化メチレン層を水洗し、無水硫酸マグネシウムで乾燥し、減圧下濃縮する。その後、カラムクロマトグラフィー(シリカゲル18g、エーテル:ヘキサン=1:3の混合溶媒で溶出)で精製し、化学式13で表されるエーテル化合物13(82mg,68%)を無色飴状物として得る。
【0038】
[α]D 22+6.4(C 0.54,CHCl3);
IR(neat):3460 cm-1
1H NMR(CDCl3)δ;0.96(3H,s),0.74−2.25(15H,m),1.07(3H,d,J=5.9Hz),1.28(6H,s),3.04−4.73(4H,m),4.43(2H,s);7.31(5H,s);
MS(m/z):375(M++1),91(100%)
【0039】
実施例11:化合物11に化合物14を作用させることによる化合物15の合成
【化37】
Figure 0003715673
【化38】
Figure 0003715673
ケトン化合物11(31.5mg,0.102mmol)と化学式14で表されるシリルエーテル化合物14(67.5mg,0.307mmol)の塩化メチレン(2ml)溶液にアルゴン気流中、−30℃でTMSOTf(26μl,0.133mmol)を加える。1時間の撹拌後、トリエチルシラン(16μl,0.102mmol)を加え、30分撹拌する。反応液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出する。塩化メチレン層を、水洗し、無水硫酸マグネシウムで乾燥し、減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル10g、エーテル:ヘキサン=1:3の混合溶媒で溶出)で精製し、化学式15で表されるエーテル化合物15(16.5mg,44%)を得る。
【0040】
IR(neat):3370 cm-1
1H NMR(CDCl3)δ;0.05(6H,s),0.84(9H,s),0.92(3H,s),1.10(3H,d,J=5.7Hz),0.48−2.24(14H,m),2.62(1H,brs),3.88−3.03(5H,m),4.00(1H,brs);
MS(m/z):295(M+−75),133(100%)
【0041】
実施例12:化合物16から化合物17の合成
【化39】
Figure 0003715673
【化40】
Figure 0003715673
化学式16で表されるケトン化合物16(34mg,0.047mmol)とシリルエーテル化合物12(18.6mg,0.070mmol)の塩化メチレン(1ml)溶液にアルゴン気流中、−78℃でTMSOTf(11μl,0.056mmol)を加え、10分後−30℃に昇温する。なお、ここで出発原料として用いたケトン化合物16は、化学式18で表されるアルコール化合物18
【化41】
Figure 0003715673
をSwern 酸化した後、4−フェニル−1,2,4−トリアゾリン−3,5−ジオンを塩化メチレン中室温で付加させることにより得ることができる。
【0042】
上記の混合物を−30℃で50分撹拌後、トリエチルシラン(11μl,0.056mmol)を加え、さらに20分間撹拌する。反応液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出する。塩化メチレン層を、水洗し、無水硫酸マグネシウムで乾燥し、減圧下濃縮する。生じた残渣(70mg)をアセトニトリル(1ml)に溶解し、46%フッ化水素酸(0.1ml)を加えて室温で40分撹拌する。反応液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出する。塩化メチレン層を、水洗し、無水硫酸マグネシウムで乾燥し、減圧下濃縮後、残渣をカラムクロマトグラフィー(シリカゲル8g、 エーテル:ヘキサン=5:1で溶出)で精製し、化学式17で表されるエーテル化合物17(20mg,55%)を得る。
【0043】
1H NMR(CDCl3)δ;0.03(6H,s),0.78(3H,s),0.86(6H,s),0.88(9H,s),1.04(3H,d,J=5.7Hz),1.40(3H,s),0.56−2.71(18H,m),2.97−3.97(5H,m),4.37(2H,s),6.15(1H,d,J=8.3Hz),6.40(1H,d,J=8.3Hz),7.21(5H,s),7,30−7.52(5H,m)
【0044】
【発明の効果】
本発明の製造方法により、20位の立体配位が非天然型であるような22−オキサビタミンD誘導体およびその合成中間体を立体選択的に合成することができる。[0001]
[Industrial application fields]
The present invention relates to a production method for stereoselectively synthesizing vitamin D and vitamin D synthesis intermediate. More particularly, the present invention relates to a production method for stereoselectively synthesizing an intermediate for synthesizing a compound having a configuration opposite to the 20-position configuration of natural vitamin D.
[0002]
[Prior art]
Recently, it has become clear that stereoisomers of vitamin D derivatives have antitumor activity and immunosuppressive activity, and are attracting great attention. For example, the formula (XII)
Embedded image
Figure 0003715673
KH1060 represented by is currently under development as an immunosuppressant.
[0003]
The 20-position configuration of KH1060 is opposite to the configuration of natural vitamin D. Examples of methods for synthesizing vitamin D having this non-natural configuration and vitamin D synthesis intermediate include As described in JP-A-4-503669, a carbonyl group at the 20-position is replaced with LiAlH.FourAnd NaBHFourA method of alkylating after reduction with the like has been developed. However, this method has the disadvantages that the stereoselectivity of the resulting compound is low and the types of substituents that can be introduced into the side chain are limited due to poor alkylation reactivity.
[0004]
[Problems to be solved by the invention]
As described above, so far, it is satisfactory as a synthetic method capable of stereoselectively obtaining vitamin D and vitamin D synthesis intermediate in which the 20-position configuration is opposite to that of natural vitamin D. Things have not yet been developed. Accordingly, the present invention has been developed to provide a novel method for synthesizing vitamin D and vitamin D synthesis intermediates.
That is, an object of the present invention is to provide a new synthesis method for reductively alkylating a carbonyl group represented by the general formula (I). More specifically, the object of the present invention is to stereoselectively select vitamin D and vitamin D synthetic intermediate having a configuration opposite to that of natural vitamin D and vitamin D synthetic intermediate at the 20th position. To synthesize.
[0005]
[Means for Solving the Problems]
As a result of diligent research, the present inventor found that the reaction of reductively alkylating a ketone at the position corresponding to the 20th position of vitamin D proceeds in a stereoselective manner, thereby completing the present invention.
[0006]
That is, the present invention relates to the general formula (I)
Embedded image
Figure 0003715673
(Wherein R1, R2, RThreeAre the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group, or R1, R2Forms a steroid ring which may have a substituent together with the bicyclo (4,3,0) nonane ring in the general formula (I), or R2, RThreeTogether form a double bond, together with the bicyclo (4,3,0) nonane ring in general formula (I), a vitamin D skeleton which may have a substituent or may be protected. It shows that it forms. The compound represented by formula (II)
Embedded image
Figure 0003715673
(Wherein RFourIs an optionally substituted alkyl group having 2 to 15 carbon atoms, an optionally substituted alkenyl group having 2 to 15 carbon atoms, or an optionally substituted substituent having 2 to 2 carbon atoms. Represents 15 alkynyl groups, RFive, R6, R7Are the same or different and each represents a lower alkyl group or an aryl group. The compound represented by the general formula (III)
Embedded image
Figure 0003715673
(Wherein R1, R2, RThreeAre the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group, or R1, R2Forms a steroid ring which may have a substituent together with the bicyclo (4,3,0) nonane ring in the general formula (I), or R2, RThreeTogether form a double bond, together with the bicyclo (4,3,0) nonane ring in general formula (I), a vitamin D skeleton which may have a substituent or may be protected. It shows that it forms. RFourIs an optionally substituted alkyl group having 2 to 15 carbon atoms, an optionally substituted alkenyl group having 2 to 15 carbon atoms, or an optionally substituted substituent having 2 to 2 carbon atoms. 15 alkynyl groups are shown. It is related with the method of manufacturing the compound represented by this.
[0007]
According to a preferred embodiment of the present invention, the above reaction is carried out under reducing conditions, and according to a further preferred embodiment, the above reaction is carried out in the presence of an acid and hydrosilane.
According to another preferred embodiment of the present invention, R in the above general formula (II)FourIs an alkyl group having 2 to 15 carbon atoms substituted with a hydroxyl group which may have a protecting group.
[0008]
Examples of the hydroxyl-protecting group in the present invention include an acyl group, a substituted silyl group and a substituted alkyl group, and an acyl group and a substituted silyl group are preferred. Examples of the acyl group include acetyl group, benzoyl group, substituted acetyl group, substituted benzoyl group and the like, as well as carbonate type and carbamate type, and particularly preferable examples include acetyl group. Examples of the substituted silyl group include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, and the like, and a t-butyldimethylsilyl group is particularly preferable. It is done.
[0009]
R in general formula (I)1, R2, RThreeIn the definition of bicyclo (4,3,0) nonane ring and R1, R2The substituent in the steroid ring that may have a substituent formed together may be any one that is inert to the reaction, and particularly preferably a hydroxyl group that may have a protecting group Is mentioned. The steroid ring may have an unsaturated bond, and may be a diene such as 4-phenyl-1,2,4-triazoline-3,5-dione or diethyl maleate introduced as a diene protecting group. It may be an adjunct of a file.
[0010]
R in general formula (I)1, R2, RThreeIn the definition of bicyclo (4,3,0) nonane ring and R2, RThreeThe substituents in the vitamin D skeleton that may have a substituent formed together with each other and may be protected are not particularly limited as long as they are inert to the reaction. The hydroxyl group which may have is mentioned. Vitamin D skeleton is SO2It may be protected by adding.
[0011]
In the present invention, preferable examples of the compound represented by the general formula (I) include, for example, the general formula (IV).
Embedded image
Figure 0003715673
(Wherein R8Represents an acyl group or a substituted silyl group. ) Or a compound represented by the general formula (V)
Embedded image
Figure 0003715673
(Wherein R9, RTenAre the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group. ) Or a compound represented by the general formula (VI)
Embedded image
Figure 0003715673
(Wherein R11, R12Are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group. ) Or a compound represented by the general formula (VII)
Embedded image
Figure 0003715673
(Wherein R13, R14Are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group. ) Or a compound represented by the general formula (VIII)
Embedded image
Figure 0003715673
(Wherein R15, R16Are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group. ) Or a compound represented by the general formula (IX)
Embedded image
Figure 0003715673
(Wherein R17, R18Are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group. Or a compound represented by the general formula (X)
Embedded image
Figure 0003715673
(Wherein R19, R20Are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group. ) Or a compound represented by the general formula (XI)
Embedded image
Figure 0003715673
(Wherein Rtwenty one, Rtwenty twoAre the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group. In particular, compounds represented by general formula (IV) or general formula (VIII) are preferred.
[0012]
R in general formula (I)FourIn the definition, an optionally substituted alkyl group having 2 to 15 carbon atoms, an optionally substituted alkenyl group having 2 to 15 carbon atoms, and an optionally substituted carbon. The alkyl group, alkenyl group and alkynyl group in the alkynyl group of 2 to 15 may be linear, branched or cyclic. Examples of alkyl groups include, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, pentyl, hexyl Group, heptyl group, octyl group, nonyl group, decanyl group and the like. Preferably, 3-methylbutyl group, 3-ethylpentyl group, 4-methylpentyl group, 3- (n-propyl) hexyl group, 4-ethylhexyl group, 5-methylhexyl group, 6-methylheptyl group, 5-ethyl Examples include heptyl group, 4- (n-propyl) heptyl group, 2,3-dimethylbutyl group, 3,4-dimethylpentyl group.
RFourThe substituent that can be substituted is not particularly limited as long as it is inert to the reaction, but a hydroxyl group that may be protected is preferred.
[0013]
R in general formula (I)Five, R6, R7In this definition, the lower alkyl group represents a linear or branched alkyl group having 1 to 6 carbon atoms. Examples of the lower alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, and a t-butyl group, preferably a methyl group. It is.
R in general formula (I)Five, R6, R7In this definition, the aryl group represents a monovalent aromatic hydrocarbon group which may be substituted with a substituent such as an alkyl group, and examples thereof include a phenyl group.
[0014]
The reaction of the present invention is preferably performed under reducing conditions. Examples of reducing conditions include, for example, in the presence of an acid and hydrosilane, in the presence of an acid and borane, and particularly in the presence of an acid and hydrosilane. It is preferable.
Examples of the acid used here include trimethylsilyl triflate, boron trifluoride ether complex, trifluoroacetic acid, and the like, and trimethylsilyl triflate is particularly preferable.
Examples of the hydrosilane used here include trialkylsilane, dialkylsilane, monoalkylsilane, tris (trialkylsilyl) silane, and a preferred example is triethylsilane.
[0015]
The solvent used in the reaction of the present invention is appropriately selected according to the compound, reagent, etc. used. For example, halogen solvents, hydrocarbon solvents, ether solvents and the like are usually used, and preferable examples include , Methylene chloride, and toluene, and more preferably methylene chloride.
[0016]
The reaction temperature is appropriately selected according to the compound, reagent and the like to be used, but is generally within the range of about −100 ° C. to about 40 ° C., preferably within the range of about −78 ° C. to about 25 ° C. is there.
The reaction time varies depending on the compounds and reagents used and is appropriately determined by following the progress of the reaction by thin layer chromatography or the like, but is generally from 30 minutes to 12 hours, preferably from 1 hour. About 7 hours.
[0017]
The compound represented by the general formula (III) obtained by the method of the present invention can be converted into a vitamin D derivative in which the configuration at the 20-position is an unnatural type by an ordinary method.
[0018]
【Example】
The following examples further illustrate the present invention in detail but are not to be construed to limit the scope thereof.
Example 1: Synthesis of Compound 2 from Compound 1
Embedded image
Figure 0003715673
Embedded image
Figure 0003715673
[0019]
Diphenyl disulfide (2.0 g, 9.16 mmol) and tri-n-butylphosphine (2.3 ml, 9.16 mmol) were added to a solution of diol compound 1 represented by Chemical Formula 1 (1.0 g, 4.72 mmol) in pyridine (7 ml). 16 mmol) and heated to 50 ° C. in a stream of argon. Four days later, pyridine was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel 100 g, eluted with a mixed solvent of ether: hexane = 1: 10), and sulfide compound 2 represented by Chemical Formula 2 (1.38 g). , 96%) as a colorless rod.
[0020]
 [α]D twenty four+75.3 (C 1.30, CHClThree);
IR (neat): 3443, 1583, 1479, 1439 cm-1;
11 H NMR (CDClThree) Δ; 0.93 (3H, s), 1.10 (3H, d, J = 6.5 Hz), 1.17-2.02 (14H, m), 2.66 (1H, ddd, J = 1.3, 8.6, 12.2 Hz), 3.14 (1H, dd, J = 2.1, 12.2 Hz), 4.08 (1H, brs), 7.10-7.35 (5H) , m);
MS (m / z): 304 (M+);
Exact mass calcd for C19H28OS (M+): 304.1861; found: 304.1867.
[0021]
Example 2: Synthesis of Compound 3 from Compound 2
Embedded image
Figure 0003715673
To a solution of sulfide compound 2 (3.36 g, 11.04 mmol) in methanol (30 ml) is added 30% aqueous hydrogen peroxide (2.58 ml, 22.07 mmol), and the mixture is stirred at room temperature for 4 days. The reaction mixture is diluted with ethyl acetate and washed with saturated brine. The organic layer is dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give sulfoxide (3.77 g) as a yellow candy.
The crude sulfoxide (3.77 g) obtained above is dissolved in toluene (60 ml), calcium carbonate (5.46 g, 54.60 mmol) is added, and the mixture is heated to reflux in an argon stream. After 5 days, the reaction mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 150 g, eluted with a mixed solvent of ethyl acetate: hexane = 1: 10), and olefin compound 3 represented by Chemical Formula 3 (1.80 g, 84%) is obtained as a colorless bowl.
[0022]
 [α]D twenty three+34.3 (C 0.86, CHClThree);
IR (neat): 3416, 1640, 1449, 1373, 1163 cm-1;
11 H NMR (CDClThree) Δ; 0.83 (3H, s), 1.75 (3H, s), 1.19-2.02 (13H, m), 4.10 (1H, brs), 4.70 (1H, brs) ), 4.88 (1H, brs);
MS (m / z): 194 (M+), 125 (100%);
Exact mass calcd for C13Htwenty twoO (M+): 194.1671; found: 194.1665.
[0023]
Example 3: Synthesis of Compound 4 from Compound 3
Embedded image
Figure 0003715673
A solution of olefin compound 3 (1.30 g, 6.69 mmol) in methylene chloride (50 ml) was added to triethylamine (2.8 ml, 20.07 mmol), dimethylaminopyridine (81 mg, 0.67 mmol) and acetic anhydride (1.26 ml, 13 .38 mmol) are added successively and stirred at room temperature for 3 hours. Methanol (1 ml) is added to the reaction mixture under ice-cooling, stirred for 10 minutes, diluted with methylene chloride and washed with water. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 30 g, eluted with hexane) to obtain acetate compound 4 (1.45 g, 92%) represented by Chemical Formula 4. Obtained as a colorless rod.
[0024]
 [α]D twenty two+21.5 (C 0.98, CHClThree);
IR (neat): 1738, 1246 cm-1;
11 H NMR (CDClThree) Δ; 0.79 (3H, s), 1.15-2.04 (12H, m), 1.76 (3H, s), 2.05 (3H, s), 4.71 (1H, brs) ), 4.88 (1H, brs), 5.18 (1H, brs);
MS (m / z): 236 (M+), 133 (100%);
Exact mass calcd for C15Htwenty fourO2(M+): 236.1769; found: 236.1769.
[0025]
Example 4: Synthesis of Compound 5 from Compound 4
Embedded image
Figure 0003715673
Acetate compound 4 (1.45 g, 6.14 mmol) is dissolved in a mixed solution of methylene chloride (80 ml) and methanol (16 ml), and ozone is introduced at -78 ° C. When the raw material disappears by thin layer chromatography, dimethyl sulfide (2 ml) is added, the reaction temperature is raised to room temperature, and the mixture is further stirred for 30 minutes. The reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel 25 g, eluted with a mixed solvent of ethyl acetate: hexane = 1: 5) to give ketone compound 5 (1.24 g, 85 represented by chemical formula 5). %) As a colorless rod.
[0026]
 [α]D twenty two+100.4 (C 1.15, CHClThree);
IR (neat): 1738, 1705, 1244 cm-1;
11 H NMR (CDClThree) Δ; 0.81 (3H, s), 1.38-2.48 (12H, m), 2.02 (3H, s), 2.10 (3H, s), 5.16 (1H, brs) );
MS (m / z): 239 (M++1), 179 (100%);
Exact mass calcd for C14Htwenty threeOThree(M++1): 239.1647; found: 239.1658.
[0027]
Example 5: Synthesis of compound 7 by reacting compound 6 with compound 5
Embedded image
Figure 0003715673
Embedded image
Figure 0003715673
A solution of ketone compound 5 (510 mg, 2.14 mmol) and silyl ether compound 6 represented by chemical formula 6 (420 mg, 2.68 mmol) in methylene chloride (85 ml) was stirred at −78 ° C. in an argon stream at trimethylsilyl triflate ( (Hereinafter referred to as TMSOTf) (0.41 ml, 2.12 mmol) is added. After 30 minutes, triethylsilane (0.4 ml, 2.52 mmol) is added and the reaction temperature is gradually brought to room temperature. After 5.5 hours, a saturated aqueous sodium hydrogen carbonate solution is added to the reaction mixture, and the mixture is extracted with methylene chloride. The extract was washed with water, dried, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 40 g, eluted with methylene chloride) to obtain ether compound 7 (538 mg, 83%) represented by chemical formula 7. Obtained as a colorless rod.
[0028]
[α]D twenty two-3.9 (C 1.47, CHClThree);
IR (neat): 1736, 1244 cm-1;
11 H NMR (CDClThree) Δ; 0.89 (3H, s), 1.05 (3H, d, J = 5.9 Hz), 1.08-1.90 (13H, m), 2.03 (3H, s), 2 .00-2.20 (3H, m), 3.19 (1H, dt, J = 9.0, 6.8 Hz), 3.17-3.30 (2H, m), 3.55 (1H, dt, J = 9.0, 6.6 Hz), 4,95 (1H, brd, J = 10.2 Hz), 5.01 (1H, brd, J = 17.0 Hz), 5.82 (1H, ddt , J = 17.0, 10.2, 6.8 Hz);
MS (m / z): 293 (M+-Me), 69 (100%);
Exact mass calcd for C19H32OThree(M+): 308.2352; found: 308.2370.
[0029]
Example 6: Synthesis of Compound 8 from Compound 7
Embedded image
Figure 0003715673
To a solution of ether compound 7 (50 mg, 0.162 mmol) in acetone (3 ml), 1.6% osmium tetroxide-tetrahydrofuran solution (0.25 ml, 0.016 mmol) and 2.67 M Jones reagent (0.57 ml, 1. 521 mmol) and stirred at room temperature for 24 hours. Sodium bisulfite (96 mg) and 2-propanol (0.21 ml) are added to the reaction solution and stirred for 30 minutes. Water is added to the reaction mixture, and the mixture is extracted with ethyl acetate. The ethyl acetate layer is washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The obtained carboxylic acid is dissolved in ether, and a diazomethane ether solution is added for esterification. The reaction mixture is concentrated under reduced pressure, and the residue is purified by column chromatography (silica gel 10 g, eluted with methylene chloride) to give methyl ester compound 8 (44 mg, 80%) represented by Chemical Formula 8 as a colorless rod.
[0030]
[α]D twenty four-5.1 (C 1.42, CHClThree);
IR (neat): 1736, 1244 cm-1;
11 H NMR (CDClThree) Δ; 0.89 (3H, s), 1.05 (3H, d, J = 5.9 Hz), 1.00-2.20 (14H, m), 2.04 (3H, s), 2 .41 (2H, t, J = 6.8 Hz), 3.25 (2H, m), 3.57 (1H, dt, J = 9.0, 6.3 Hz), 3.68 (3H, s) , 5.16 (1H, brs);
MS (m / z): 341 (M++1), 163 (100%);
Exact mass calcd for C19H33OFive(M++1): 341.2328; found: 341.2373.
[0031]
Example 7: Synthesis of Compound 9 from Compound 8
Embedded image
Figure 0003715673
To a solution of methyl ester compound 8 (87 mg, 0.256 mmol) in tetrahydrofuran (5 ml) was added 0.9 M ethylmagnesium bromide-tetrahydrofuran solution (2.85 ml, 2.56 mmol) at 0 ° C. in an argon stream, and the mixture was stirred for 3 hours. . Saturated aqueous ammonium chloride solution is added to the reaction mixture, and the mixture is extracted with ether. The ether layer was washed with water, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel 10 g, eluted with a mixed solvent of ethyl acetate: hexane = 1: 3). Diol compound 9 (60 mg, 75%) is obtained as a colorless bowl.
[0032]
[α]D twenty two-51.4 (C 1.12, CHClThree);
IR (neat): 3416 cm-1;
11 H NMR (CDClThree) Δ; 0.86 (6H, t, J = 7.5 Hz), 0.96 (3H, s), 1.07 (3H, d, J = 5.9 Hz), 1.00-2.00 ( 21H, m), 2.24 (1H, brd, J = 14.0 Hz), 3.25 (2H, m), 3.53 (1H, m), 4.10 (1H, brs);
MS (m / z): 327 (M++1), 163 (100%);
Exact mass calcd for C20H39OThree(M++1): 327.2899; found: 327.2899.
[0033]
Example 8: Synthesis of Compound 10 from Compound 9
Embedded image
Figure 0003715673
To a methylene chloride solution of diol compound 9 (28 mg, 0.090 mmol), N-methylmorpholine-N-oxide (16 mg, 0.135 mmol), powder molecular sieves (30 mg) and tetra-n-propylammonium in a stream of argon. Pearl Tenate (n-PrFourNRu0Four, TPAP) (1.6 mg, 0.0045 mmol) is added and stirred for 12 hours at room temperature. The reaction mixture was filtered through celite, concentrated under reduced pressure, purified by column chromatography (elution with silica gel 10 g, mixed solvent of ether: hexane = 2: 3), and ketone compound 10 represented by chemical formula 10 (23 mg, 83%). ) As a colorless rod.
[0034]
[α]D twenty one-78.4 (C 0.75, CHClThree);
IR (neat): 3485, 1709 cm-1;
11 H NMR (CDClThree) Δ; 0.64 (3H, s), 0.84 (6H, t, J = 7.5 Hz), 1.09 (3H, d, J = 5.9 Hz), 1.20-2.35 ( 20H, m), 2.46 (1H, dd, J = 6.2, 10.8 Hz), 3.23 (2H, m), 3.56 (1H, dt, J = 9.0, 6.2 Hz) );
MS (m / z): 325 (M++1), 179 (100%);
[0035]
Example 9: Synthesis of Compound 11 from Compound 3
Embedded image
Figure 0003715673
2,6-lutidine (0.48 ml, 4.12 mmol) and tert-butyldimethylsilyl trifluoromethanesulfonate in a methylene chloride (5 ml) solution of alcohol compound 3 (200 mg, 1.03 mmol) in an argon stream under ice-cooling. (0.47 ml, 2.05 mmol) is added and stirred. After 30 minutes, the reaction mixture is diluted with methylene chloride, washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
The obtained crude silyl ether (860 mg) is dissolved in a mixed solution of methylene chloride (20 ml) and methanol (4 ml), and ozone is introduced at −78 ° C. After disappearance of the raw material by thin layer chromatography, dimethyl sulfide (1 ml) is added, and the reaction temperature is gradually brought to room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel 30 g, eluted with a mixed solvent of ethyl acetate: hexane = 1: 19), and the ketone compound 11 represented by Chemical Formula 11 (183 mg) , 57%) as a colorless rod.
[0036]
[α]D twenty two+107.6 (C 1.00, CHClThree);
IR (neat): 1702, 1251 cm-1;
11 H NMR (CDClThree) Δ; 0.05 (6H, s), 0.90 (9H, s), 1.60 (3H, s), 2.10 (3H, s), 0.50-2.66 (12H, m) ), 4.06 (1H, brs);
MS (m / z): 310 (M+);
Exact mass calcd for C18H34O2Si (M+): 310.2328; found: 310.2303.
[0037]
Example 10: Synthesis of compound 13 by reacting compound 12 with compound 11
Embedded image
Figure 0003715673
Embedded image
Figure 0003715673
To a solution of ketone compound 11 (100 mg, 0.325 mmol) and silyl ether compound 12 represented by chemical formula 12 (130 mg, 487 mmol) in methylene chloride (6 ml) at −78 ° C. in an argon stream at −78 ° C., TMSOTf (62 μl, 0.325 mmol). And stir for 1 hour. Subsequently, triethylsilane (52 μl, 0.325 mmol) is added and stirred at that temperature for an additional hour. The reaction temperature is gradually raised to −25 ° C. and stirred at that temperature for 4 hours. Saturated aqueous sodium hydrogen carbonate solution is added to the reaction mixture, and the mixture is extracted with methylene chloride. The methylene chloride layer is washed with water, dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
The resulting residue (178 mg) is dissolved in acetonitrile (5 ml), 46% hydrofluoric acid (0.5 ml) is added, and the mixture is stirred at room temperature for 15 hours. Saturated aqueous sodium hydrogen carbonate solution is added to the reaction mixture, and the mixture is extracted with methylene chloride. The methylene chloride layer is washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Thereafter, the residue is purified by column chromatography (elution with a mixed solvent of silica gel 18 g, ether: hexane = 1: 3) to obtain the ether compound 13 (82 mg, 68%) represented by the chemical formula 13 as a colorless bowl.
[0038]
[α]D twenty two+6.4 (C 0.54, CHClThree);
IR (neat): 3460 cm-1;
11 H NMR (CDClThree) Δ; 0.96 (3H, s), 0.74-2.25 (15H, m), 1.07 (3H, d, J = 5.9 Hz), 1.28 (6H, s), 3 .04-4.73 (4H, m), 4.43 (2H, s); 7.31 (5H, s);
MS (m / z): 375 (M++1), 91 (100%)
[0039]
Example 11: Synthesis of compound 15 by allowing compound 14 to act on compound 11
Embedded image
Figure 0003715673
Embedded image
Figure 0003715673
  A solution of ketone compound 11 (31.5 mg, 0.102 mmol) and silyl ether compound 14 represented by chemical formula 14 (67.5 mg, 0.307 mmol) in methylene chloride (2 ml) at −30 ° C. in an argon stream at −30 ° C. 26 μl, 0.133 mmol) is added. After stirring for 1 hour, triethylsilane (16 μl, 0.102 mmol) is added and stirred for 30 minutes. Saturated aqueous sodium hydrogen carbonate solution is added to the reaction mixture, and the mixture is extracted with methylene chloride. The methylene chloride layer was washed with water, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography (eluting with a mixed solvent of silica gel 10 g, ether: hexane = 1: 3). The ether compound 15 (16.5 mg, 44%) is obtained.
[0040]
IR (neat): 3370 cm-1;
11 H NMR (CDClThree) Δ; 0.05 (6H, s), 0.84 (9H, s), 0.92 (3H, s), 1.10 (3H, d, J = 5.7 Hz), 0.48-2 .24 (14H, m), 2.62 (1H, brs), 3.88-3.03 (5H, m), 4.00 (1H, brs);
MS (m / z): 295 (M+-75), 133 (100%)
[0041]
Example 12: Synthesis of Compound 17 from Compound 16
Embedded image
Figure 0003715673
Embedded image
Figure 0003715673
A solution of ketone compound 16 (34 mg, 0.047 mmol) represented by chemical formula 16 and silyl ether compound 12 (18.6 mg, 0.070 mmol) in methylene chloride (1 ml) at room temperature in an argon stream at −78 ° C. with TMSOTf (11 μl, 0.056 mmol) is added, and the temperature is raised to -30 ° C after 10 minutes. The ketone compound 16 used as a starting material here is an alcohol compound 18 represented by the chemical formula 18.
Embedded image
Figure 0003715673
Can be obtained by adding 4-phenyl-1,2,4-triazoline-3,5-dione in methylene chloride at room temperature.
[0042]
After stirring the above mixture at −30 ° C. for 50 minutes, triethylsilane (11 μl, 0.056 mmol) is added and stirred for another 20 minutes. Saturated aqueous sodium hydrogen carbonate solution is added to the reaction mixture, and the mixture is extracted with methylene chloride. The methylene chloride layer is washed with water, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue (70 mg) is dissolved in acetonitrile (1 ml), 46% hydrofluoric acid (0.1 ml) is added, and the mixture is stirred at room temperature for 40 minutes. Saturated aqueous sodium hydrogen carbonate solution is added to the reaction mixture, and the mixture is extracted with methylene chloride. The methylene chloride layer was washed with water, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography (eluting with 8 g of silica gel, ether: hexane = 5: 1) to obtain an ether represented by Chemical Formula 17. Compound 17 (20 mg, 55%) is obtained.
[0043]
11 H NMR (CDClThree) Δ; 0.03 (6H, s), 0.78 (3H, s), 0.86 (6H, s), 0.88 (9H, s), 1.04 (3H, d, J = 5) .7Hz), 1.40 (3H, s), 0.56-2.71 (18H, m), 2.97-3.97 (5H, m), 4.37 (2H, s), 6. 15 (1 H, d, J = 8.3 Hz), 6.40 (1 H, d, J = 8.3 Hz), 7.21 (5 H, s), 7, 30-7.52 (5 H, m)
[0044]
【The invention's effect】
By the production method of the present invention, it is possible to stereoselectively synthesize a 22-oxavitamin D derivative and a synthetic intermediate thereof in which the 20-position configuration is unnatural.

Claims (3)

一般式(I)
Figure 0003715673
(式中、R1、R2、R3は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示すか、またはR1、R2は一般式(I)中のビシクロ(4,3,0)ノナン環とともに置換基を有していてもよいステロイド環を形成するか、またはR2、R3は一緒になって二重結合を形成し、一般式(I)中のビシクロ(4,3,0)ノナン環とともに、置換基を有していてもよく保護されていてもよいビタミンD骨格を形成することを示す。)で表される化合物に、一般式(II)
Figure 0003715673
(式中、R4は置換基を有していてもよい炭素数2〜15のアルキル基、置換基を有していてもよい炭素数2〜15のアルケニル基または置換基を有していてもよい炭素数2〜15のアルキニル基を示し、R5、R6、R7は、同一または異なって、低級アルキル基またはアリール基を示す。)で表される化合物を、トリメチルシリルトリフラートおよびトリエチルシランの存在下で作用させることにより、一般式(III)
Figure 0003715673
(式中、R1、R2、R3は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示すか、またはR1、R2は一般式(I)中のビシクロ(4,3,0)ノナン環とともに置換基を有していてもよいステロイド環を形成するか、またはR2、R3は一緒になって二重結合を形成し、一般式(I)中のビシクロ(4,3,0)ノナン環とともに、置換基を有していてもよく保護されていてもよいビタミンD骨格を形成することを示す。R4は置換基を有していてもよい炭素数2〜15のアルキル基、置換基を有していてもよい炭素数2〜15のアルケニル基または置換基を有していてもよい炭素数2〜15のアルキニル基を示す。)で表される化合物を製造する方法。
Formula (I)
Figure 0003715673
(In the formula, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group, or R 1 and R 2 in the general formula (I)). A bicyclo (4,3,0) nonane ring together with a steroid ring which may have a substituent is formed, or R 2 and R 3 together form a double bond. A compound represented by the general formula (showing that it forms a vitamin D skeleton which may have a substituent and may be protected together with a bicyclo (4,3,0) nonane ring in the middle). II)
Figure 0003715673
(Wherein R 4 has an optionally substituted alkyl group having 2 to 15 carbon atoms, an optionally substituted alkenyl group having 2 to 15 carbon atoms, or a substituent. R 5 , R 6 and R 7 are the same or different and each represents a lower alkyl group or an aryl group.) A compound represented by trimethylsilyl triflate and triethylsilane By acting in the presence of general formula (III)
Figure 0003715673
(In the formula, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group, or R 1 and R 2 in the general formula (I)). A bicyclo (4,3,0) nonane ring together with a steroid ring which may have a substituent is formed, or R 2 and R 3 together form a double bond. It shows that it forms a vitamin D skeleton which may have a substituent and may be protected together with a bicyclo (4,3,0) nonane ring in the inside, and R 4 may have a substituent. A good alkyl group having 2 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms which may have a substituent, or an alkynyl group having 2 to 15 carbon atoms which may have a substituent. A method for producing the represented compound.
4が保護基を有していてもよい水酸基で置換された炭素数2〜15のアルキル基であることを特徴とする請求項1記載の製造方法。The production method according to claim 1, wherein R 4 is an alkyl group having 2 to 15 carbon atoms substituted with a hydroxyl group which may have a protecting group. 一般式(I)で表される化合物が、一般式(IV);
Figure 0003715673
(式中、R8はアシル基または置換シリル基を示す。)
一般式(V);
Figure 0003715673
(式中、R9、R10は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)
一般式(VI);
Figure 0003715673
(式中、R11、R12は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)
一般式(VII);
Figure 0003715673
(式中、R13、R14は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)
一般式(VIII);
Figure 0003715673
(式中、R15、R16は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)
一般式(IX);
Figure 0003715673
(式中、R17、R18は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)
一般式(X);
Figure 0003715673
(式中、R19、R20は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)
および、一般式(XI);
Figure 0003715673
(式中、R21、R22は、同一または異なって、水素原子または保護基を有していてもよい水酸基を示す。)
から成る群から選ばれる一般式で表される化合物であることを特徴とする請求項1記載の製造方法。
The compound represented by the general formula (I) is represented by the general formula (IV);
Figure 0003715673
(In the formula, R 8 represents an acyl group or a substituted silyl group.)
Formula (V);
Figure 0003715673
(Wherein R 9 and R 10 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group.)
General formula (VI);
Figure 0003715673
(In the formula, R 11 and R 12 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group.)
General formula (VII);
Figure 0003715673
(Wherein R 13 and R 14 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group.)
General formula (VIII);
Figure 0003715673
(In the formula, R 15 and R 16 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group.)
Formula (IX);
Figure 0003715673
(In the formula, R 17 and R 18 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group.)
Formula (X);
Figure 0003715673
(In the formula, R 19 and R 20 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group.)
And general formula (XI);
Figure 0003715673
(Wherein R 21 and R 22 are the same or different and each represents a hydrogen atom or a hydroxyl group optionally having a protecting group.)
The production method according to claim 1, which is a compound represented by a general formula selected from the group consisting of:
JP05091195A 1995-03-10 1995-03-10 Method for producing vitamin D synthetic intermediate Expired - Fee Related JP3715673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05091195A JP3715673B2 (en) 1995-03-10 1995-03-10 Method for producing vitamin D synthetic intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05091195A JP3715673B2 (en) 1995-03-10 1995-03-10 Method for producing vitamin D synthetic intermediate

Publications (2)

Publication Number Publication Date
JPH08245467A JPH08245467A (en) 1996-09-24
JP3715673B2 true JP3715673B2 (en) 2005-11-09

Family

ID=12871972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05091195A Expired - Fee Related JP3715673B2 (en) 1995-03-10 1995-03-10 Method for producing vitamin D synthetic intermediate

Country Status (1)

Country Link
JP (1) JP3715673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU720454B2 (en) * 1996-12-20 2000-06-01 Chugai Seiyaku Kabushiki Kaisha 16-ene-vitamin D derivatives
JP2005350417A (en) * 2004-06-11 2005-12-22 Dai Ichi Seiyaku Co Ltd Method for producing pyrrolidine derivative using reductive etherification method

Also Published As

Publication number Publication date
JPH08245467A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
EP0078704B1 (en) Intermediates in the synthesis of vitamin d derivatives
JP2648845B2 (en) Method for producing 19-nor-vitamin D compound and intermediate used therefor
EP3461817B1 (en) Potassium salt of beraprost
CA2272721C (en) Stereoselective synthesis of 24-hydroxylated compounds useful for the preparation of aminosterols, vitamin d analogs, and other compounds
US4554105A (en) Process for the preparation of 1-hydroxylated vitamin D compounds
US4310467A (en) Process and intermediates for the synthesis of vitamin D3 metabolites
EP0125909B1 (en) Ring a- and triene-modified vitamin d compounds
JP3715673B2 (en) Method for producing vitamin D synthetic intermediate
US4336193A (en) Process for preparing vitamin D-lactones
JPH0662558B2 (en) 1α, 7,8-trihydroxyvitamin D compound
JP3759639B2 (en) 22-thiavitamin D3 derivative
CS200538B2 (en) Method of producing derivatives of oleandomycin
EP1048661B1 (en) Process for preparing anti-osteoporotic agents
US5571936A (en) Intermediates for the synthesis of 16-phenoxy-prostatrienoic acid derivatives and a preparing method thereof
JPH07112968A (en) Production of 1alpha,24-dihydroxycholecalciferol
EP1688409B1 (en) Vitamin d-derived monohalogenovinyl compounds
JPH047755B2 (en)
HU190996B (en) Process for preparing prostaglandin e down 1 compounds
GB1579464A (en) Processes for the preparation of lactonediol derivatives
JP3228486B2 (en) Hydroxyketone derivative and method for producing the same
AU2002300302B2 (en) Stereoselective synthesis of 24-hydroxylated compounds useful for the preparation of aminosterols, vitamin D analogs, and other compounds
DE4336429C1 (en) Process for the preparation of intermediates in vitamin D or vitamin D derivative syntheses
WO2002060850A1 (en) METHOD OF SYNTHESIZING α-KETOL UNSATURATED FATTY ACID
EP1026155A1 (en) Vitamin d derivatives and process for producing the same
JPH05246983A (en) Vitamin d3 derivative and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees