JP3715438B2 - Electronic device and manufacturing method thereof - Google Patents

Electronic device and manufacturing method thereof Download PDF

Info

Publication number
JP3715438B2
JP3715438B2 JP20561598A JP20561598A JP3715438B2 JP 3715438 B2 JP3715438 B2 JP 3715438B2 JP 20561598 A JP20561598 A JP 20561598A JP 20561598 A JP20561598 A JP 20561598A JP 3715438 B2 JP3715438 B2 JP 3715438B2
Authority
JP
Japan
Prior art keywords
solder alloy
substrate
main surface
electronic device
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20561598A
Other languages
Japanese (ja)
Other versions
JP2000036657A (en
Inventor
秀文 植田
剛 山本
康男 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20561598A priority Critical patent/JP3715438B2/en
Publication of JP2000036657A publication Critical patent/JP2000036657A/en
Application granted granted Critical
Publication of JP3715438B2 publication Critical patent/JP3715438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、LSI素子および電子部品を、回路基板に表面実装する方法に関する。
【0002】
【従来の技術】
複数個のLSIチップを一つのモジュールに搭載して、高速化、小型化、高機能化を図るMCMは、大型コンピュータ、人工衛星、軍事用電子機器などのハイエンド機器から、最近では携帯電話、ノートパソコンなどの民生用電子機器まで応用範囲が広く、実装技術の中枢の一つとなっている。MCMとはMulti Chip Module の略である。最近のMCMの開発においては、機能の増強に伴うサイズの増大、および入出力ピン(以下I/Oピンという)の数の増大が生じており、これに伴いI/Oピンのピッチを減少させる必要が生じている。
【0003】
図1(A)、(B)は複数のチップ(図示せず)を担持したMCM基板1を基板6上に実装した従来の構造を示す。ただし、図1(B)は図1(A)の一部を拡大して示す。基板1は典型的には窒化アルミニウム(AlN)よりなり、チップをフェースダウン状態で担持する。基板6は配線基板であり、例としてコンピュータ用のマザーボードとして使用される。材質はガラスポリイミドである場合が多い。両基板は接続ピン4により電気的に接続されるが、接続ピン4はMCM基板1に対しては、Au−Sn系のはんだ合金3により基板1下面上の配線電極2において、また基板6に対してはSn−Pb系のはんだ合金5により、基板6上の対応する電極6Aにおいて、接合されている。
【0004】
【発明が解決しようとする課題】
このようなMCM基板を別の基板上に保持した電子装置では、I/Oピンの最大間隔が50mm以上、ピンピッチ(格子パターン)1.3mm以下の、例えば、大型コンピュータ用MCMの場合、MCM基板(窒化アルミ)とマザーボード基板(ガラスポリイミド)の熱膨張率差による位置ずれ、あるいはMCM基板のそりが深刻な問題となる。現状のSn−37Pb系のはんだ合金を使用した場合、はんだ合金をリフローさせるのに約180℃の温度まで加熱する必要がある。しかし、このように高い温度まで加熱すると、前記熱膨張率差による位置ずれが顕著となり、接合がほとんど不可能になる。またはんだ合金の凝固後に接合部のはんだ合金に対する永続的な応力歪みが発生し、クリープ特性に問題のあるSn−37Pbでは熱疲労特性などの接合信頼性に問題が生じる。
【0005】
上記問題が生じる例として、I/Oピン4の最大間隔l、ピンピッチpのMCM基板1を熱膨張率差がΔεのマザーボード基板に図1のようなピングリッドアレイ方式によって実装する場合、基板間の熱膨張率差によるI/Oピンの位置ずれDは、以下の式によって算出される。
D=Δε・(l/2)・(Tsol ーTr )(<p/4)
ここに、Tsol は接合部におけるはんだ合金の固相線温度を、Tr は室温を表す。 例として、マザーボード基板2との熱膨張率差が12×10-6、I/Oピンの最大間隔が50mm、ピンピッチ1.3mm のMCM基板1を図1(A),(B)のようなピングリッドアレイ方式によって接合する場合において、Sn−37Pbはんだ合金(固相線温度183 ℃)を用いて接合した場合の、最大間隔離れたI/Oピンのはんだ凝固後の位置ずれDspは、

Figure 0003715438
となり、ピンピッチ1300μm に対して、位置ずれが問題となる目安である、ピンピッチの1/ 3に相当する値を超えることになる。このずれ分がそのままはんだ合金接合部に加わる応力となり、接合の信頼性を低下させる原因となる。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明では、次に述べる各手段を講じたことを特徴とするものである。請求項1記載の発明では、AlNよりなり、相互に対向する第1および第2の主面を有する第1の基板と、ガラスポリイミドよりなり、相互に対向する第3および第4の主面を有し、前記第3の主面が前記第1の基板の前記第2主面に対面するように配設された第2の基板と、前記第1の主面上に担持された半導体チップと、前記第2の主面と第3の主面との間に50mm以下の長さであって、且つ最大50mm×50mmの領域に約1.3mm以下のピッチで担持された複数の導体ピンと、前記第3の主面上に形成された導体パターンと、前記第3の主面上において、前記複数の導体ピンの各々を、前記導体パターンに電気的に接合するはんだ合金とを少なくとも備えた電子装置において、前記はんだ合金は、その固相線温度と室温との温度差による第1の基板と第2の基板との熱膨張率差による位置ずれ量が、前記ピッチの1/3以下となるように、約150℃以下の固相線温度を有することを特徴とするものである。
【0007】
また、請求項2記載の発明では、前記はんだ合金は、Snを約42〜59重量%、Biを約41〜58重量%含むはんだ合金よりなることを特徴とするものである。
また、請求項3記載の発明では、前記はんだ合金は、約136℃の固相線温度を有することを特徴とするものである。
【0008】
また、請求項4記載の発明では、前記はんだ合金は、Snを約42重量%、Biを約57重量%、Agを約1重量%含むことを特徴とするものである。
【0013】
[作用] 以下本発明の作用を説明する。本発明では、図1(A),(B)の構成において、MCM基板1を接続ピン4のピングリッドアレイにより基板6に接続する場合、接続ピン4を基板6上の導体パターンに接続するはんだ合金5として、固相線温度が典型的には約150℃以下の組成のものを使う。この場合、配線基板6との熱膨張率差が12×10-6、I/Oピン4の最大間隔が50mm、ピンピッチを1.3mmとすると、固相線温度150℃のはんだ合金で行った場合の、はんだ合金凝固後の位置ずれDlsは、先の式によれば、
Dls=12×10-6・(25×104)・(150−25)=375μmとなり、ずれをピンピッチ1300μmに対して1/3以下に抑えることができる。このように、接合に使用するはんだ合金の固相線温度を約150℃以下に下げることにより、はんだ合金が完全に凝固してから室温に温度雰囲気が低下するまでの温度幅を狭めることができる。その結果、各基板の熱収縮量の差により接合部の凝固したはんだ合金に加わる応力歪みを小さくすることができる。また、本発明では、ヤング率が高くて硬いSn,Biを主成分とするはんだ合金を用いることにより、接合部に生じる応力歪みによるはんだ合金の変形を抑えることができる。以上の効果により接合部の信頼性を向上させることができる。
【0014】
【発明の実施の形態】
図2(A),(B)は本発明の実施例を示す構成図である。
図中第一の基板11 (モジュール基板)は、窒化アルミニウムを材質とするMCM基板であり、この形状として50mm四方、熱膨張率が5×10-6、I/Oピン14の最大間隔が50mm、ピンピッチが1.3mmのものである。これに従来方法であるAu−Snはんだ合金13を用いて接合された接続ピンであるI/Oピン14が、ガラスポリイミドを材質とするマザーボード(第二の基板(配線基板))16とを接合する上で本発明に係るはんだ合金23であるSn57Bi−1Ag(数値は重量比を表す)が用いられている例である。I/Oピン14は、信号の入出力のためのもの以外にも、例えば接地ピンや電源ピン、あるいはクロックピン等をも含む。
【0015】
本実施形態を図2(A),(B)に基いて順次説明すると、次のようになる。図2(A)は、MCM基板(第一の基板)11とマザーボード(第二の基板)16とを接合する前の状態を示すものであり、図2(B)はこれらを接合後の状態を示すものである。
図2(A)において、上部は、第1の基板であるMCM基板11が、その上面にプリントされた配線19と、ビアホール20と、下面にプリントされた配線21、および配線21とAu−Snはんだ合金13を介して接続されたI/Oピン14からなり、電極配線21、Au−Snはんだ13、I/Oピン14は電気的に接続されている。そしてこのMCM基板11の上面の配線19に対向して、その上部に、半導体チップ17がその電極バンプ18を含む表面を下部(MCM基板)側に向けて(フェースダウン状態)配接され、電極バンプ18とI/Oピン14とが電気的に接続されている。
【0016】
図2(A)下部は基板16面上に、対応する前記I/Oピン14が接合される位置に電極配線22が載置されている。基板16はガラスポリイミド等よりなり、例えばコンピュータのマザーボードとして使われる。基板16上の配線22上にははんだ合金のペーストが塗布されている。前記MCM基板11は、I/Oピン14が基板16上の対応する配線パターン22にコンタクトするように、前記基板16上に載置される。
【0017】
はんだ合金としては、例えばリフロー温度が約136℃の、組成がSn−57Bi−1Agと表されるSn−Bi系のはんだ合金を使う。このはんだ合金は、約42重量%のSnと約57重量%のBiと、約1重量%のAgとを含む。
次に、前記MCM基板11を載置した基板16は、温度136℃に設定されたリフロー炉中を通され、その結果はんだ合金はリフローし、図2(B)のように、I/Oピン14が、対応する配線パターン12に接続される。
【0018】
さらに、基板16は前記リフロー炉から出て室温に冷却されるが、この場合の温度差は高々116℃程度にすぎず、仮にI/Oピン14が1.3mmピッチあるいはそれ以下のピッチで、しかもMCM基板11上の50mm×50mmの領域に形成されていたとしても、生じる熱歪みは290 μm程度で、前記1.3mmピッチの場合の1/ 3以下となる。 続いて図2(B)は、図2(A)上部のI/Oピン14と、同図下部の電極配線22とが、本発明に係るはんだ合金23であるSn−57Bi−1Agを用いることによって接合された状態を示すものである。
【0019】
次に、本発明の効果を知るために、接合部の熱疲労特性試験を行い、従来技術におけるSn−37Pbとの違いを比較した。その結果を表1に示す。
【0020】
【表1】
Figure 0003715438
【0021】
図中サイクル数とは、Sn−37Pbについては室温からその固相線温度である183℃の間の温度の昇降回数を、Sn−57Bi−1Agについては室温から同様に136℃までの間の温度の昇降回数を示す。Sn−37Pbはんだ合金を用いたサンプルでは、1000サイクル後に顕著なクラック、はんだ合金表面のしわが発生し、ピンセットによるピッキングで破壊する接合部が現れたのに対し、Sn−57Bi−1Agはんだ合金を用いたサンプルでは、2000サイクル後まで、わずかなクラックの発生に留まり、ピンセットによるピッキングで破壊する接合部も現われなかった。
【0022】
以上の説明では、はんだ合金23としてSn−57Bi−1Agを用いたが、本発明では固相線温度が約150℃以下となるはんだ合金であれば、どのようなものを用いてもよい。例えば、Snを42〜59重量%、Biを41〜58重量%含むSn−Bi系のはんだ合金を用いてもよい。
また、117℃の固相線温度を有するSn−In系のはんだ合金(Inを48重量%、Snを52重量%含む)を用いてもよい。
【0023】
以上、本発明を好ましい実施例について説明したが、本発明は上記の実施例に限定されるものではなく、特許請求の範囲に記載した範囲内において、様々な変形や変更が可能である。
【0024】
【発明の効果】
本発明によって次のような効果が得られる。請求項1から請求項4までの記載の発明によれば、固相線温度が150℃程度以下のSn,Biを主成分とするはんだ合金を用いることによって接合することにより、基板間の熱膨張率の差により生じる、接合部はんだ合金への応力歪みを低減し、かつ、接合部のはんだ合金の変形を抑えることができ、接合信頼性を確保できる。また、低誘電率ガラスであるポリイミド材を使用したマザーボード基板では、耐熱性が低下する問題があるが、本発明はこの要求に対しても、固相線温度の低いSnBi共晶系はんだ合金を用いることで対応できる。さらに低融点はんだ合金の使用は、リムーブ、リプレス時の熱ストレス緩和という利点も併せ持つものである。
【図面の簡単な説明】
【図1】MCM基板を従来方法であるはんだ合金によってマザーボードに実装した構成図である。
【図2】(A)は、本発明に係るはんだ合金を用いて、モジュール基板と配線基板を接続する前の、それぞれの状態を示す図であり、(B)は本発明に係るはんだ合金を用いて、モジュール基板と配線基板を接続後の状態を示す図である。
【符号の説明】
1、11 モジュール基板(第一の基板)
2、6A、12、19、21、22 電極配線
3 Au−Snはんだ合金
4、14 入出力ピン(I/Oピン)
5 Sn−37Pbはんだ合金
6 配線基板(第二の基板)
13 Snー57Bi−1Agはんだ合金
16 マザーボード(第二の基板)
17 半導体チップ
18 電極バンプ
20 ビアホール
23 Sn−57Bi−1Agはんだ合金[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for surface mounting LSI elements and electronic components on a circuit board.
[0002]
[Prior art]
MCMs, which are equipped with multiple LSI chips in a single module to achieve high speed, miniaturization, and high functionality, are used in high-end devices such as large computers, artificial satellites, and military electronic devices. It has a wide range of applications, including consumer electronics such as personal computers, and is one of the centers of packaging technology. MCM is an abbreviation for Multi Chip Module. In recent MCM development, an increase in size accompanying an increase in functions and an increase in the number of input / output pins (hereinafter referred to as I / O pins) have occurred, and accordingly, the pitch of I / O pins is reduced. There is a need.
[0003]
1A and 1B show a conventional structure in which an MCM substrate 1 carrying a plurality of chips (not shown) is mounted on a substrate 6. Note that FIG. 1B is an enlarged view of part of FIG. The substrate 1 is typically made of aluminum nitride (AlN) and carries the chip in a face-down state. The board 6 is a wiring board, and is used as a mother board for a computer as an example. The material is often glass polyimide. Both substrates are electrically connected by connection pins 4, and the connection pins 4 are connected to the MCM substrate 1 at the wiring electrode 2 on the lower surface of the substrate 1 by the Au—Sn solder alloy 3 and to the substrate 6. On the other hand, a corresponding electrode 6A on the substrate 6 is joined by a Sn—Pb solder alloy 5.
[0004]
[Problems to be solved by the invention]
In an electronic device in which such an MCM substrate is held on another substrate, the maximum interval between I / O pins is 50 mm or more and the pin pitch (lattice pattern) is 1.3 mm or less. Positional displacement due to the difference in thermal expansion coefficient between (aluminum nitride) and the motherboard (glass polyimide) or warpage of the MCM substrate becomes a serious problem. When the current Sn-37Pb solder alloy is used, it is necessary to heat to a temperature of about 180 ° C. in order to reflow the solder alloy. However, when heated to such a high temperature, the displacement due to the difference in thermal expansion coefficient becomes significant, and joining becomes almost impossible. Further, permanent stress distortion to the solder alloy at the joint occurs after the solidification of the solder alloy, and Sn-37Pb, which has a problem in creep characteristics, causes a problem in joint reliability such as thermal fatigue characteristics.
[0005]
As an example in which the above problem occurs, when the MCM substrate 1 having the maximum interval l of the I / O pins 4 and the pin pitch p is mounted on a motherboard substrate having a thermal expansion coefficient difference Δε by the pin grid array method as shown in FIG. The positional deviation D of the I / O pin due to the difference in thermal expansion coefficient is calculated by the following equation.
D = Δε · (l / 2) · (T sol −T r ) (<p / 4)
Here, T sol represents the solidus temperature of the solder alloy at the joint, and Tr represents room temperature. As an example, an MCM board 1 having a thermal expansion coefficient difference of 12 × 10 −6 and a maximum I / O pin interval of 50 mm and a pin pitch of 1.3 mm as shown in FIGS. 1A and 1B is used. In the case of joining by the grid array method, the positional deviation Dsp after the solder solidification of the I / O pins separated by the maximum distance when joining using Sn-37Pb solder alloy (solidus temperature 183 ° C.) is:
Figure 0003715438
Thus, for a pin pitch of 1300 μm, it exceeds the value corresponding to 1/3 of the pin pitch, which is a rough guide for positional deviation. This deviation becomes the stress applied to the solder alloy joint as it is, which causes a decrease in the reliability of the joint.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is characterized by the following measures. According to the first aspect of the present invention, the first substrate made of AlN and having the first and second main surfaces facing each other, and the third and fourth main surfaces made of glass polyimide and facing each other are formed. has the third and the second substrate main surface is arranged so as to face the second main surface of the first substrate, the semiconductor chips carried on the first main surface A plurality of conductor pins having a length of 50 mm or less between the second main surface and the third main surface and carried at a pitch of about 1.3 mm or less in a maximum area of 50 mm × 50 mm ; And at least a conductor pattern formed on the third main surface and a solder alloy for electrically joining each of the plurality of conductor pins to the conductor pattern on the third main surface. in the electronic device, the solder alloy, with its solidus temperature and room temperature Positional displacement amount due to difference in thermal expansion coefficient between the first substrate and the second substrate by degrees difference, such that less than 1/3 of the pitch, characterized in that it has a solidus temperature of less than or equal to about 0.99 ° C. It is what.
[0007]
According to a second aspect of the present invention, the solder alloy is made of a solder alloy containing about 42 to 59% by weight of Sn and about 41 to 58% by weight of Bi.
According to a third aspect of the present invention, the solder alloy has a solidus temperature of about 136 ° C.
[0008]
According to a fourth aspect of the invention, the solder alloy contains about 42 wt% Sn, about 57 wt% Bi, and about 1 wt% Ag.
[0013]
[Operation] The operation of the present invention will be described below. In the present invention, in the configuration of FIGS. 1A and 1B, when the MCM substrate 1 is connected to the substrate 6 by the pin grid array of the connection pins 4, the solder for connecting the connection pins 4 to the conductor pattern on the substrate 6 is used. As the alloy 5, one having a composition having a solidus temperature of typically about 150 ° C. or lower is used. In this case, assuming that the thermal expansion coefficient difference with the wiring substrate 6 is 12 × 10 −6 , the maximum interval between the I / O pins 4 is 50 mm, and the pin pitch is 1.3 mm, the soldering is performed with a solidus temperature of 150 ° C. In this case, the positional deviation Dls after the solder alloy solidification is
Dls = 12 × 10 -6 · ( 25 × 10 4) · (150-25) = 375μm , and the displacement can be suppressed to 1/3 or less against pin pitch 1300 [mu] m. Thus, by reducing the solidus temperature of the solder alloy used for joining to about 150 ° C. or less, the temperature range from when the solder alloy is completely solidified until the temperature atmosphere is lowered to room temperature can be narrowed. . As a result, it is possible to reduce the stress strain applied to the solder alloy solidified at the joint due to the difference in thermal shrinkage between the substrates. Further, in the present invention, by using a solder alloy mainly composed of Sn and Bi having a high Young's modulus and hard, deformation of the solder alloy due to stress strain generated in the joint can be suppressed. The reliability of a junction part can be improved by the above effect.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
2A and 2B are configuration diagrams showing an embodiment of the present invention.
In the figure, the first substrate 11 (module substrate) is an MCM substrate made of aluminum nitride. The shape is 50 mm square, the coefficient of thermal expansion is 5 × 10 −6 , and the maximum distance between the I / O pins 14 is 50 mm. The pin pitch is 1.3 mm. An I / O pin 14 which is a connection pin joined using an Au—Sn solder alloy 13 which is a conventional method is joined to a mother board (second board (wiring board)) 16 made of glass polyimide. In this example, Sn57Bi-1Ag (numerical value represents weight ratio), which is the solder alloy 23 according to the present invention, is used. The I / O pin 14 includes, for example, a ground pin, a power supply pin, a clock pin, and the like in addition to those for inputting and outputting signals.
[0015]
The present embodiment will be described in sequence based on FIGS. 2A and 2B as follows. 2A shows a state before the MCM substrate (first substrate) 11 and the mother board (second substrate) 16 are joined, and FIG. 2B shows a state after joining them. Is shown.
In FIG. 2A, the MCM substrate 11 which is the first substrate is the upper side, the wiring 19 printed on the upper surface, the via hole 20, the wiring 21 printed on the lower surface, and the wiring 21 and Au-Sn. The electrode wiring 21, the Au—Sn solder 13, and the I / O pin 14 are electrically connected. The I / O pin 14 is connected via a solder alloy 13. Then, facing the wiring 19 on the upper surface of the MCM substrate 11, the semiconductor chip 17 is arranged on the upper side thereof so that the surface including the electrode bumps 18 faces the lower side (MCM substrate) side (face-down state). The bump 18 and the I / O pin 14 are electrically connected.
[0016]
In the lower part of FIG. 2A, the electrode wiring 22 is placed on the surface of the substrate 16 at a position where the corresponding I / O pin 14 is joined. The substrate 16 is made of glass polyimide or the like, and is used, for example, as a computer motherboard. A solder alloy paste is applied on the wiring 22 on the substrate 16. The MCM substrate 11 is placed on the substrate 16 such that the I / O pins 14 are in contact with the corresponding wiring patterns 22 on the substrate 16.
[0017]
As the solder alloy, for example, an Sn—Bi based solder alloy having a reflow temperature of about 136 ° C. and a composition represented by Sn-57Bi-1Ag is used. The solder alloy includes about 42% by weight Sn, about 57% by weight Bi, and about 1% by weight Ag.
Next, the substrate 16 on which the MCM substrate 11 is placed is passed through a reflow furnace set at a temperature of 136 ° C., and as a result, the solder alloy is reflowed, as shown in FIG. 14 are connected to the corresponding wiring pattern 12.
[0018]
Further, the substrate 16 exits from the reflow furnace and is cooled to room temperature. In this case, the temperature difference is only about 116 ° C., and the I / O pins 14 have a pitch of 1.3 mm or less. Moreover, even if it is formed in a 50 mm × 50 mm region on the MCM substrate 11, the generated thermal strain is about 290 μm, which is 1/3 or less of the case of the 1.3 mm pitch. Subsequently, in FIG. 2B, the I / O pin 14 in the upper part of FIG. 2A and the electrode wiring 22 in the lower part of FIG. 2A use Sn-57Bi-1Ag which is the solder alloy 23 according to the present invention. It shows the state joined by.
[0019]
Next, in order to know the effect of the present invention, a thermal fatigue characteristic test of the joint portion was performed, and the difference from Sn-37Pb in the prior art was compared. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0003715438
[0021]
The number of cycles in the figure refers to the number of times of temperature increase / decrease between room temperature and 183 ° C., which is the solidus temperature, for Sn-37Pb, and the temperature between room temperature and 136 ° C., similarly for Sn-57Bi-1Ag. Indicates the number of times of lifting. In the sample using Sn-37Pb solder alloy, remarkable cracks, wrinkles on the surface of the solder alloy were generated after 1000 cycles, and a joint portion that was broken by picking with tweezers appeared, whereas Sn-57Bi-1Ag solder alloy In the sample used, only slight cracks were generated until 2000 cycles, and no joints that were broken by picking with tweezers appeared.
[0022]
In the above description, Sn-57Bi-1Ag is used as the solder alloy 23. However, any solder alloy having a solidus temperature of about 150 ° C. or lower may be used in the present invention. For example, an Sn—Bi solder alloy containing 42 to 59 wt% Sn and 41 to 58 wt% Bi may be used.
Alternatively, an Sn—In solder alloy having a solidus temperature of 117 ° C. (including 48 wt% In and 52 wt% Sn) may be used.
[0023]
As mentioned above, although this invention was demonstrated about the preferable Example, this invention is not limited to said Example, A various deformation | transformation and change are possible within the range described in the claim.
[0024]
【The invention's effect】
The following effects are obtained by the present invention. According to the invention described in claims 1 to 4 , the thermal expansion between the substrates is achieved by bonding by using a solder alloy mainly composed of Sn and Bi whose solidus temperature is about 150 ° C. or less. It is possible to reduce the stress strain to the joint solder alloy caused by the difference in rate, and to suppress the deformation of the solder alloy at the joint, thereby ensuring the joint reliability. In addition, there is a problem that the heat resistance is lowered in the mother board using the polyimide material which is a low dielectric constant glass. However, the present invention can meet this requirement by using a SnBi eutectic solder alloy having a low solidus temperature. It can respond by using. Furthermore, the use of a low-melting-point solder alloy has the advantage of reducing thermal stress during removal and re-pressing.
[Brief description of the drawings]
FIG. 1 is a configuration diagram in which an MCM substrate is mounted on a mother board by a solder alloy which is a conventional method.
FIG. 2A is a view showing respective states before connecting a module substrate and a wiring board using the solder alloy according to the present invention, and FIG. 2B is a diagram showing the solder alloy according to the present invention. It is a figure which shows the state after using and connecting a module board and a wiring board.
[Explanation of symbols]
1,11 Module board (first board)
2, 6A, 12, 19, 21, 22 Electrode wiring 3 Au-Sn solder alloy 4, 14 Input / output pin (I / O pin)
5 Sn-37Pb solder alloy 6 Wiring board (second board)
13 Sn-57Bi-1Ag solder alloy 16 Mother board (second board)
17 Semiconductor chip 18 Electrode bump 20 Via hole 23 Sn-57Bi-1Ag solder alloy

Claims (4)

AlNよりなり、相互に対向する第1および第2の主面を有する第1の基板と、
ガラスポリイミドよりなり、相互に対向する第3および第4の主面を有し、前記第3の主面が前記第1の基板の前記第2主面に対面するように配設された第2の基板と、
前記第1の主面上に担持された半導体チップと、
前記第2の主面と第3の主面との間に50mm以下の長さであって、且つ最大50mm×50mmの領域に約1.3mm以下のピッチで担持された複数の導体ピンと、
前記第3の主面上に形成された導体パターンと、
前記第3の主面上において、前記複数の導体ピンの各々を、前記導体パターンに電気的に接合するはんだ合金とを少なくとも備えた電子装置において、
前記はんだ合金は、その固相線温度と室温との温度差による第1の基板と第2の基板との熱膨張率差による位置ずれ量が、前記ピッチの1/3以下となるように、約150℃以下の固相線温度を有することを特徴とする電子装置。
A first substrate made of AlN and having first and second main surfaces facing each other;
Made of glass polyimide, a third and fourth main surfaces facing each other, the third main surface is arranged so as to face the second major surface of said first substrate Two substrates;
A semiconductor chip carried on the first main surface;
A plurality of conductor pins having a length of 50 mm or less between the second main surface and the third main surface and carried at a pitch of about 1.3 mm or less in a maximum area of 50 mm × 50 mm ;
A conductor pattern formed on the third main surface;
On the third main surface, in an electronic device comprising at least a solder alloy that electrically joins each of the plurality of conductor pins to the conductor pattern,
The solder alloy has a positional shift amount due to a difference in thermal expansion coefficient between the first substrate and the second substrate due to a temperature difference between the solidus temperature and room temperature, so that it becomes 1/3 or less of the pitch. An electronic device having a solidus temperature of about 150 ° C. or less.
前記はんだ合金は、Snを約42〜59重量%、Biを約41〜58重量%含むはんだ合金よりなることを特徴とする請求項1記載の電子装置。  2. The electronic device according to claim 1, wherein the solder alloy is made of a solder alloy containing about 42 to 59% by weight of Sn and about 41 to 58% by weight of Bi. 前記はんだ合金は、約136℃以下の固相線温度を有することを特徴とする請求項1記載の電子装置。  The electronic device of claim 1, wherein the solder alloy has a solidus temperature of about 136 ° C. or less. 前記はんだ合金は、Snを約42重量%、Biを約57重量%、Agを約1重量%含む請求項1乃至3のうち、いずれか一項記載の電子装置。  4. The electronic device according to claim 1, wherein the solder alloy contains about 42 wt% Sn, about 57 wt% Bi, and about 1 wt% Ag. 5.
JP20561598A 1998-07-21 1998-07-21 Electronic device and manufacturing method thereof Expired - Fee Related JP3715438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20561598A JP3715438B2 (en) 1998-07-21 1998-07-21 Electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20561598A JP3715438B2 (en) 1998-07-21 1998-07-21 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000036657A JP2000036657A (en) 2000-02-02
JP3715438B2 true JP3715438B2 (en) 2005-11-09

Family

ID=16509820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20561598A Expired - Fee Related JP3715438B2 (en) 1998-07-21 1998-07-21 Electronic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3715438B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429388B1 (en) * 2000-05-03 2002-08-06 International Business Machines Corporation High density column grid array connections and method thereof
US6835593B2 (en) * 2002-08-01 2004-12-28 Rohm Co., Ltd. Method for manufacturing semiconductor device
JP4722795B2 (en) 2006-08-31 2011-07-13 富士通株式会社 Wiring board and electronic component module
JP2008177560A (en) * 2007-12-25 2008-07-31 Sharp Corp Solar cell and string
JP2013219118A (en) * 2012-04-05 2013-10-24 Mitsubishi Electric Corp Solar battery and manufacturing method of the same
CN108292662B (en) 2015-12-03 2023-06-16 索尼半导体解决方案公司 Semiconductor chip and electronic device
JP7263060B2 (en) * 2019-03-11 2023-04-24 株式会社日本マイクロニクス Electrical connection device

Also Published As

Publication number Publication date
JP2000036657A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US6570259B2 (en) Apparatus to reduce thermal fatigue stress on flip chip solder connections
EP0822738B1 (en) Column array connections
US5907187A (en) Electronic component and electronic component connecting structure
US6303992B1 (en) Interposer for mounting semiconductor dice on substrates
JPH09134934A (en) Semiconductor package and semiconductor device
JPH10256315A (en) Semiconductor chip bonding pad and its formation
KR100647003B1 (en) Lead free alloys for column/ball grid arrays, organic interposers and passive component assembly
JPH10256429A (en) Semiconductor package
KR20080024217A (en) Lead-free semiconductor package
JP3715438B2 (en) Electronic device and manufacturing method thereof
JP2004531080A (en) Extension of fatigue life of C4 solder balls on board
JP2713994B2 (en) Package structure
US20050073059A1 (en) Integrated circuit with dual electrical attachment PAD configuration
JPH09214088A (en) Mounting structure of ceramic board to printed board
JPH01291438A (en) Method of mounting flip chip
JP2004511922A (en) Integrated circuit carrier with recess
JPH10256428A (en) Semiconductor package
JPH10256413A (en) Semiconductor package
JP2705281B2 (en) Semiconductor device mounting structure
JPH10256414A (en) Semiconductor package
JP2000307238A (en) Pin inserting jig and method for mounting pin on print board
JPH10209213A (en) Semiconductor device and its production
JPS62281453A (en) Chip carrier module
JPH0637438A (en) Hybrid integrated circuit
JPH09270444A (en) Inter-board connection structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees